APPLICATIONS OF A VIETORIS-BEGLE THEOREM FOR MULTI-VALUED MAPS TO THE COHOMOLOGY OF HYPERSPACES

James T. Rogers, Jr.

Let C(X) denote the hyperspace of subcontinua of the continuum X. J. L. Kelley [1] observed that H. Whitney had defined a monotone map $\mu \colon C(X) \to R$ satisfying the three conditions

- (1) $\mu(\lbrace x \rbrace) = 0$ for each point x in X,
- (2) $\mu(X) = 1$, and
- (3) $\mu(A) < \mu(B)$ whenever $A \subseteq B$ and $A \neq B$.

A function μ satisfying these conditions is called a *Whitney map*. (It would be more accurate to call it a Whitney-Kelley map.) The collection $\{\mu^{-1}(t): 0 \le t \le 1\}$ is called the set of *Whitney subcontinua* of C(X) or the set of *Whitney continua associated with* X. Note that $\mu^{-1}(1)$ is the singleton set $\{X\}$ and that $\mu^{-1}(0)$ is the set of degenerate subcontinua of X. Since the map of X into C(X) defined by sending a point X to the degenerate continuum $\{X\}$ is an isometry of X into C(X), it follows that $\mu^{-1}(0) \cong X$.

The following general problem naturally presents itself: Suppose that X has a topological property P. What can one say about $\mu^{-1}(t)$? In particular, does $\mu^{-1}(t)$ have P?

The following example shows that X and $\mu^{-1}(t)$ need not be homeomorphic; in fact, there are numbers s and t such that X cannot be mapped onto $\mu^{-1}(t)$ and $\mu^{-1}(s)$ cannot be mapped onto X.

Example. Let X be the planar continuum obtained from the standard topologist's $\{\sin 1/x\}$ -curve by identifying the points (0, 1) and (0, -1). The continuum X is pictured in Figure 1. If ϵ is a small positive number, then $\mu^{-1}(1-\epsilon) \cong [0, 1]$, while $\mu^{-1}(\epsilon)$ is homeomorphic to the planar continuum pictured in Figure 2. To see this last fact, note that if a segment of the circle has (0, -1) as an interior point, then (for sufficiently small ϵ) there is no family of subcontinua of the $\{\sin 1/x\}$ -curve that converges to it. Therefore X cannot be mapped onto $\mu^{-1}(\epsilon)$, while $\mu^{-1}(1-\epsilon)$ cannot be mapped onto X.

Our example shows that X and $\mu^{-1}(t)$ need not be cohomologically equivalent. There is, however, a relationship between the first cohomology groups of X and $\mu^{-1}(t)$ that can be stated roughly as follows: As we go higher into the hyperspace, no new one-dimensional holes are created, and perhaps some one-dimensional holes are swallowed. This vague conjecture finds formulation as the following theorem:

THEOREM. For each continuum X and each t in [0, 1], there is an induced injection

$$\gamma^*$$
: H¹($\mu^{-1}(t)$) \to H¹(X).

Received March 18, 1975.

Michigan Math. J. 22 (1975).

Figure 1. Figure 2.

A continuum X is a compact, connected, nonvoid metric space. 2^X is the set of all nonempty, closed subsets of X with the topology induced by the Hausdorff metric. The subspace C(X) of 2^X consists of all the subcontinua of X.

 $H^n(X)$ denotes the reduced nth Alexander-Čech cohomology group of the continuum X. A continuum X is acyclic if $H^n(X) = 0$, for $n \ge 0$. A set-valued function F from the continuum X to the continuum Y is a function from X into 2^Y . It is said to be upper-semicontinuous if $\{x\colon F(x)\subset U\}$ is open for each open set U in Y.

See [5] or [2] for information about the carry-over of other topological properties from X to $\mu^{-1}(t)$.

The author is indebted to Karl Hofmann and Mike Mislove for their helpful comments.

1. APPLICATIONS OF THE COHOMOLOGY OF STRUCTURES TO ACYCLICITY IN HYPERSPACES

For each point Z of C(X), we define C(X; Z) to be the set of all subcontinua Y of X such that $Z \subset Y$. Then the continuum C(X; Z) is a topological semilattice with identity Z, and therefore C(X; Z) is contractible.

We shall now review Lawson's definition [3] of a cohomology theory for a structure and investigate the applications of this theory to C(X).

A nonempty collection Σ of closed subsets of a continuum is called a *structure* if Σ is closed with respect to finite unions, finite intersections, and intersections of towers ordered by inclusion.

We find two interesting structures in C(X). If \mathscr{A} is a closed subset of C(X), define $M(\mathscr{A}) = \bigcup \{C(X; Z) \colon Z \in \mathscr{A} \}$. Let

$$\Sigma_1 = \{M(\mathscr{A}): \mathscr{A} \text{ is a closed subset of } C(X)\}.$$

Each set $M(\mathcal{A})$ is closed in C(X) [4]. Furthermore, M is, in some sense, a closure operator, in that

$$M(A \cup B) = M(A) \cup M(B)$$

and

$$M\left(\bigcap M(A_{\alpha})\right) = \bigcap M(A_{\alpha}),$$

where α runs through some index set. Hence Σ_1 is a structure.

The second structure occurs in C(X; Z), where Z is an arbitrary point of X. If A is a point of C(X; Z), define

$$L(A) = \{Y \in C(X; Z): Y \subset A\}.$$

If \mathcal{A} is a closed subset of C(X; Z), define

$$L(\mathcal{A}) = \bigcup \{L(A): A \in \mathcal{A}\}.$$

Finally, define

$$\Sigma_2 = \{L(\mathcal{A}): \mathcal{A} \text{ is a closed subset of } C(X; Z)\}.$$

Each $L(\mathcal{A})$ is closed, and the family Σ_2 is closed under finite unions and arbitrary intersections. Therefore Σ_2 is a structure.

If Σ is a structure on a continuum, then a closed set $P \in \Sigma$ is called an *inde-composable set* if $P = A \cup B$ for some A and B in Σ implies P = A or P = B. The indecomposable sets of Σ_1 are the sets of the form M(Z), where $Z \in C(X)$. The indecomposable sets of Σ_2 are the sets of the form L(A), where $A \in C(X; Z)$. The indecomposable sets of both structures are acyclic. We now state a version of Theorem 8.1 of [3].

THEOREM 1. Let Σ be a structure on a topological space, and let H and \overline{H} be continuous cohomologies on Σ . If τ is a homomorphism from H to \overline{H} that is an isomorphism for all indecomposable sets of Σ , then τ is an isomorphism for every $S \in \Sigma$.

Theorem 1 is applicable to hyperspaces in the following manner.

THEOREM 2. If Σ is one of the structures Σ_1 and Σ_2 defined above, then each member S of Σ is acyclic.

Proof. Define H on Σ to be reduced Alexander cohomology, and \overline{H} on Σ to be trivial cohomology. Both trivial cohomology and reduced Alexander cohomology are continuous cohomologies on Σ . Consider the natural homomorphism τ from H to \overline{H} . Each indecomposable set of Σ is acyclic, so that τ is an isomorphism on indecomposable sets. Therefore τ is an isomorphism for each $S \in \Sigma$; that is, each $S \in \Sigma$ is acyclic. This completes the proof.

2. THE COHOMOLOGY GROUPS OF WHITNEY CONTINUA

Consider the following extension of the Vietoris-Begle theorem to set-valued maps.

THEOREM 3. Let n be a nonnegative integer, let X and Y be compact Hausdorff spaces, and let $F: X \to Y$ be an upper-semicontinuous, set-valued surjection that satisfies the two conditions

- (1) $H^k(\mathbf{F}(\mathbf{x})) \stackrel{\sim}{=} 0$ for all \mathbf{x} in X and for all integers k such that $0 \le k \le n+1$,
- (2) $H^k(\mathbf{F}^{-1}(y)) \cong 0$ for all y in Y and for all integers k such that $0 \le k \le n$.

Then there is a morphism F^* : $H^*(Y) \to H^*(X)$ in dimensions 0 through n+1 such that

- (3) $F^*\colon H^k(Y)\to H^k(X)$ is an isomorphism for $0\le k\le n,$ and
- (4) $F^*: H^{n+1}(Y) \to H^{n+1}(X)$ is a monomorphism.

Proof. Let $G = \{(x, y): y \in F(x)\}$ be the graph of F. The set G is closed in $X \times Y$, because F is upper-semicontinuous. Let $p: G \to X$ and $q: G \to Y$ be the projection maps, and let $0 \le k \le n+1$. Since $H^k(F(x)) \cong 0$, it follows from the Vietoris-Begle theorem that $p^*\colon H^k(Y) \to H^k(X)$ is an isomorphism. Define $F^*\colon H^k(Y) \to H^k(X)$ by $F^* = (p^*)^{-1} \circ q^*$. Since $H^k(F^{-1}(y)) \cong 0$ for $0 \le k \le n$, it follows from the Vietoris-Begle theorem that q^* is an isomorphism in dimensions 0 through n and a monomorphism in dimension n+1. Thus the same is true of F^* .

For each point Z of C(X), let $C_Z^t = \{A \in \mu^{-1}(t) \colon Z \subseteq A\}$. Note that $C_Z^t = M(Z) \cap \mu^{-1}(t)$. In [5], we showed that if p is a degenerate subcontinuum of X, then C_Z^t is an arcwise connected continuum. The same proof shows that C_Z^t is an arcwise connected continuum, provided that $t \ge \mu(Z)$ (if $t < \mu(Z)$, then $C_Z^t = \emptyset$). Moreover, we can obtain the following additional information on these continua.

THEOREM 4. For each point Z in C(X) and for each t in [0, 1] satisfying $t > \mu(Z)$, the continuum C_Z^t is acyclic.

Proof. Consider the pair $\{M(C_Z^t), L(C_Z^t)\}$ of subsets of C(X; Z). For an integer n > 0, consider the relevant part of the reduced Mayer-Vietoris sequence

$$H^{n}(M(C_{Z}^{t})) \oplus H^{n}(L(C_{Z}^{t})) \rightarrow H^{n}(C_{Z}^{t}) \rightarrow H^{n+1}(C(X; Z))$$

for this pair. $H^n(M(C_Z^t)) = H^n(L(C_Z^t)) = 0$, by Theorem 2, and $H^{n+1}(C(X; Z)) = 0$. Thus $H^n(C_Z^t) = 0$. Thus C_Z^t is acyclic, and the theorem is proved.

Consider the set-valued function $\gamma_s^t\colon \mu^{-1}(s)\to \mu^{-1}(t)$ ($s\le t$), from the Whitney continuum $\mu^{-1}(s)$ to the Whitney continuum $\mu^{-1}(t)$, defined by $\gamma_s^t(Z)=C_Z^t$. We showed in [5, Theorem 4.3] that the map γ_0^t is an upper-semicontinuous, continuum-valued function; the proof there is valid for other values of s as well.

THEOREM 5. For each s and t in [0, 1] (s \leq t), the set-valued map γ_s^t : $\mu^{-1}(s) \to \mu^{-1}(t)$ induces a monomorphism $(\gamma_s^t)^*$: $H^1(\mu^{-1}(t)) \to H^1(\mu^{-1}(s))$. If $\mu^{-1}(s)$ is a curve (that is, a one-dimensional continuum), if t \neq 1, and if $H^1(Y) = 0$ for each proper subcontinuum Y of $\mu^{-1}(s)$, then $(\gamma_s^t)^*$: $H^*(\mu^{-1}(t)) \to H^*(\mu^{-1}(s))$ is an isomorphism.

Proof. Each $\gamma_s^t(Z)$ is acyclic, by Theorem 4. If $t \neq 1$ and if B is a point of $\mu^{-1}(t)$, then $(\gamma_s^t)^{-1}(B)$ is the proper subcontinuum $C(B) \cap \mu^{-1}(s)$ of $\mu^{-1}(s)$. The theorem now follows from Theorem 3.

COROLLARY 6. The map γ_0^t induces a monomorphism

$$(\gamma_0^t)^*$$
: $H^1(\mu^{-1}(t)) \to H^1(X)$.

COROLLARY 7. If X is an acyclic curve, then $\mu^{-1}(t)$ is acyclic (though not necessarily a curve).

The next corollary is proved by different methods in [5].

COROLLARY 8. If X is a circle-like continuum and $t \neq 1$, then X and $\mu^{-1}(t)$ are cohomologically equivalent.

Proof. Each proper subcontinuum of a circle-like continuum is arc-like and hence acyclic.

Question. Is $(\gamma_s^t)^*$: $H^n(\mu^{-1}(t)) \to H^n(\mu^{-1}(s))$ a monomorphism, for n > 1?

REFERENCES

- 1. J. L. Kelley, *Hyperspaces of a continuum*. Trans. Amer. Math. Soc. 52 (1942), 22-36.
- 2. J. Krasinkiewicz and S. B. Nadler, Jr., Whitney properties (preprint).
- 3. J. D. Lawson, *Comparison of taut cohomologies*. Aequationes Math. 9 (1973), 201-209.
- 4. J. T. Rogers, Jr., Dimension and the Whitney subcontinua of C(X). General Topology and Appl. (to appear).
- 5. ——, Whitney continua in the hyperspace C(X). Pacific J. Math. (to appear).

Tulane University New Orleans, Louisiana 70118