APPLICATIONS OF A VIETORIS-BEGLE THEOREM
FOR MULTI-VALUED MAPS TO THE
COHOMOLOGY OF HYPERSPACES

James T. Rogers, Jr.

Let C(X) denote the hyperspace of subcontinua of the continuum X. J. L. Kelley
[1] observed that H. Whitney had defined a monotone map p: C(X) — R satisfying the
three conditions

(1) p({x}) =0 for each point x in X,
(2) p(X) = 1, and
(3) u(A) < u(B) whenever A CB and A # B.

A function p satisfying these conditions is called a Whitney map. (It would be more
accurate to call it a Whitney-Kelley map.) The collection {u -1(t): 0 <t<L 1} is
called the set of Whitney subcontinua of C(X) or the set of Whitney continua asso-
ciated with X. Note that p-1(1) is the singleton set {X} and that p-1(0) is the set
of degenerate subcontinua of X. Since the map of X into C(X) defined by sending a
point x to the degenerate continuum {x} is an isometry of X into C(X), it follows
that p-1(0) = X.

The following general problem naturally presents itself: Suppose that X has a
topological property P. What can one say about u-!(t)? In particular, does u-1l(t)
have P?

The following example shows that X and p~!(t) need not be homeomorphic; in
fact, there are numbers s and t such that X cannot be mapped onto p-I(t) and
1 -1(s) cannot be mapped onto X.

Example. Let X be the planar continuum obtained from the standard topolo-
gist’s {sin 1/x}-curve by identifying the points (0, 1) and (0, -1). The continuum X
is pictured in Figure 1. If ¢ is a small positive number, then p-1(1 - €) = [0, 1],
while p-1(g) is homeomorphic to the planar continuum pictured in Figure 2. To see
this last fact, note that if a segment of the circle has (0, -1) as an interior point, then
(for sufficiently small €) there is no family of subcontinua of the {sin l/x}-curve
that converges to it. Therefore X cannot be mapped onto p-1(g), while p-1(1 - €)
cannot be mapped onto X.

Our example shows that X and p-1(t) need not be cohomologically equivalent.
There is, however, a relationship between the first cohomology groups of X and
p-1(t) that can be stated roughly as follows: As we go higher into the hyperspace,
no new one-dimensional holes are created, and perhaps some one-dimensional holes
are swallowed. This vague conjecture finds formulation as the following theorem:

THEOREM. For each continuum X and each t in [0, 1], theve is an induced
injection
Y, B (u ') - B ().
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Figure 1. Figure 2.

A continuum X is a compact, connected, nonvoid metric space. 2X is the set of
all nonempty, closed subsets of X with the topology induced by the Hausdorff metric.
The subspace C(X) of 2X consists of all the subcontinua of X.

H®(X) denotes the reduced nth Alexander-Cech cohomology group of the con-
tinnum X. A continuum X is acyclic if HMX) = 0, for n > 0. A set-valued function
F from the continuum X to the continuum Y is a function from X into 2Y. 1t is
said to be upper-semicontinuous if {x: F(x) C U} is open for each open set U in Y.

See [5] or [2] for information about the carry-over of other topological proper-
ties from X to pu-1(t).

The author is indebted to Karl Hofmann and Mike Mislove for their helpful com-
ments,

1. APPLICATIONS OF THE COHOMOLOGY OF STRUCTURES
TO ACYCLICITY IN HYPERSPACES

For each point Z of C(X), we define C(X; Z) to be the set of all subcontinua Y
of X such that Z € Y. Then the continuum C(X; Z) is a topological semilattice with
identity Z, and therefore C(X; Z) is contractible.

We shall now review Lawson’s definition [3] of a cohomology theory for a struc-
ture and investigate the applications of this theory to C(X).

A nonempty collection Z of closed subsets of a continuum is called a structure
if 2 is closed with respect to finite unions, finite intersections, and intersections of
towers ordered by inclusion.

We find two interesting structures in C(X). If «f is a closed subset of C(X),
define M(.«# ) = U {C(X; Z): Z € A4 }. Let

Z, = {M(#): # is a closed subset of C(X)}.

Each set M{.# ) is closed in C(X) [4]. Furthermore, M is, in some sense, a
closure operator, in that
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M(A U B) = M(A) U M(B)

and
M(nM(Aa)) = nM(Aa),

where « runs through some index set. Hence X, is a structure.

The second structure occurs in C(X; Z), where Z is an arbitrary point of X. If
A is a point of C(X; Z), define

L(A) = {YecCX Z):YCA}.

If A is a closed subset of C(X; Z), define

L(w) = U{La):ae «}.
Finally, define
Z, = {L(#): A& is a closed subset of C(X; Z)} .

Each L( ) is closed, and the family ¥ is closed under finite unions and arbitrary
intersections. Therefore Z, is a structure.

If Z is a structure on a continuum, then a closed set P € ¥ is called an inde-
composable set if P=A U B for some A and B in Z implies P= A or P = B.
The indecomposable sets of Z; are the sets of the form M(Z), where Z € C(X).
The indecomposable sets of £, are the sets of the form L(A), where A ¢ C(X; Z).
The indecomposable sets of both structures are acyclic. We now state a version of
Theorem 8.1 of [3].

THEOREM 1. Let ¥ be a structuve on a topological space, and let H and H be

continuous cohomologies on . If T is a homomorphism from H to H that is an
isomovphism for all indecomposable sets of =, then T is an isomovphism for every
Se 2.

Theorem 1 is applicable to hyperspaces in the following manner.

THEOREM 2. If Z is one of the strvuctures Z) and X, defined above, then
each member S of T is acyclic.

Proof. Define H on Z to be reduced Alexander cohomology, and H on T to be
trivial cohomology. Both trivial cohomology and reduced Alexander cohomology are
continuous cohomologies on Z. Consider the natural homomorphism 7 from H to
H. Each indecomposable set of Z is acyclic, so that 7 is an isomorphism on inde-
composable sets. Therefore 7 is an isomorphism for each S € Z; that is, each
S € ¥ is acyclic. This completes the proof.

2. THE COHOMOLOGY GROUPS OF WHITNEY CONTINUA

Consider the following extension of the Vietoris-Begle theorem to set-valued
maps.

THEOREM 3. Let n be a nonnegative integer, let X and Y be compact Haus-
dovff spaces, and let ¥: X —- Y be an upper-semicontinuous, set-valued suvrjection
that satisfies the two conditions
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(1) HXF(x)) = 0 for all x in X and for all integers k such that 0 <k <n + 1,
(2) HXFUy) 20 forall y in Y and for all integers k such that 0 <k <n.

Then theve is a movphism F*: H¥(Y) — H¥*(X) in dimensions 0 through n + 1
such that

(3) F*: HK(Y) - HX(X) is an isomorphism for 0 <k <n, and
(4) F*: Ht(Y) - H*MU(X) is a monomovphism.

Proof. Let G={(x, y):y € F(x)} be the graph of F. The set G is closed in
X XY, because F is upper-semicontinuous. Let p: G 4 X and q: G — Y be the
projection maps, and let 0 <k <n + 1. Since HX(F(x)) £ 0, it follows from the
Vietoris-Begle theorem that p*: HX(Y) — HX(X) is an isomorphism. Define
F*: HK(Y) — HX(X) by F* = (p*)-! o q*. Since HX(F-1(y)) £ 0 for 0 <k <n, it fol-
lows from the Vietoris-Begle theorem that q* is an isomorphism in dimensions 0
through n and a monomorphism in dimension n + 1. Thus the same is true of F*.
For each pomt 7 of C(X), let C}, = {A e p-1(t): Z < A}. Note that
ct, =M(Z) N p-1(t). In [5], we showed that if p is a degenerate subcontinuum of X,
then Ct is an arcwise connected continuum. The same proof shows that C is an
arcw1se connected continuum, provided that t > u(Z) (if t < u(Z), then C = Q).
Moreover, we can obtain the following additional information on these continua.

THEOREM 4. Fov each point Z in C(X) and for each t in [0, 1] satisfying
t > u(2), the continuum C%, is acyclic.

Proof. Consider the pair {M(Ctz), L(Ct;-'z)} of subsets of C(X; Z). For an inte-
ger n > 0, consider the relevant part of the reduced Mayer-Vietoris sequence

HY(M(C%)) D H™(1(C)) — H™CY) — ™' (C(X; 2))

for this pair. HYM(CY)) = HYL(CY)) = 0, by Theorem 2, and H*"}(C(X; Z)) = 0
Thus H*(CY) = 0. Thus cY is acyclic, and the theorem is proved.

Consider the set-valued function &: 1 ~1(s) = pu~1(t) (s <t), from the Whitney
continuum p-1(s) to the Whitney continuum p -1(t), defined by y%(Z) = ct . we
showed in [5, Theorem 4.3] that the map »} is an upper-semicontinuous, continuum-
valued function; the proof there is valid for other values of s as well.

THEOREM 5. For each s and t in [0, 1] (s <t), the set-valued map
yts: p-Ys) — pYt) induces a monomorphism (yts)*: Hlp-tw) — 71lips)). If
u-1(s) is a curve (that is, a one-dimensional continuum), if t # 1, and if HY(Y) = 0
Jfov each proper subcontinuum Y of p-l(s), then (yL)*: H¥(u-1(t)) — H¥(u-1(s)) is
an isomorphism.

Proof. Each yi(Z) is acyclic, by Theorem 4. If t # 1 and if B is a point of
p-1(t), then (y%)-1(B) is the proper subcontinuum C(B) N p~!(s) of p-!(s). The
theorem now follows from Theorem 3.

COROLLARY 6. The map 'yg induces a monomovphism

O* (W) - H(%).
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COROLLARY 7. If X is an acyclic curve, then pn-1(t) is acyclic (though not
necessarily a curve).
The next corollary is proved by different methods in [5].

COROLLARY 8. If X is a circle-like continuum and t # 1, then X and p~'(t)
ave cohomologically equivalent.

Proof. Each proper subcontinuum of a circle-like continuum is arc-like and
hence acyclic.

Question. Is (y£)*: H*(u-1(t)) — H*(-1(s)) a monomorphism, for n > 1?
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