CENTRALIZERS OF SEPARABLE SUBALGEBRAS
Susan Montgomery

0. INTRODUCTION

There has been some interest recently in the relationship between the structure
of an algebra R and the centralizer of an appropriate subset A of R (denoted by
Cgr(A)). In particular, I. N. Herstein and L. Neuman have considered the case when
A consists of a single element a € R such that a? is in the center of R for some
positive integer n. They have shown that if R is semiprime and Cg(a) is simple or
semisimple Artinian, then R itself must also be simple or semisimple Artinian.
This result was extended by M. Cohen [2], who showed that if Cr(a) is a Goldie
ring, then R must also be a Goldie ring.

The intent of this paper is to show that these results can be extended to the
situation where A is any finite-dimensional separable subalgebra of R. That is, we
show that if R is semiprime and Cr(A) is either simple, semisimple, or semi-
simple Artinian, then so is R.

Further results are obtained on the relationships between the ideals, zero-divi-
sors, and Jacobson radical of CR(A) and those of R. The result on zero-divisors
has now been used by Cohen to show that if R is semiprime and Cg(A) is a Goldie
ring, then so is R [3]. We discuss these results in more detail at the end of the
paper.

We note that centralizers of separable subalgebras arise naturally as fixed-
point sets of automorphism groups, as follows: Let R be a ring whose center k is
a field, and let G be a finite group of inner automorphisms of R as a k-algebra
such that the order of G is relatively prime to the characteristic of k. For each
7 € G, choose an x; € R that induces 7. If A is the subalgebra of R generated by
the x,, then Cgr(A) is precisely the ring of fixed points RG of G acting on R. The
algebra A is separable, since it is a homomorphic image of a twisted group algebra
k([G], which is separable. (For details, see [7].)

This relationship was used in [7] to show that if RG satisfies a polynomial
identity (PI), then R also satisfies an identity, where G is as described above. For,
it was first shown that if A is a finite-dimensional separable subalgebra of a k-
algebra R, and CR(A) satisfies a PI, then R satisfies a PI.

1. PRELIMINARIES

In all that follows, unless otherwise stated, R will denote an algebra over a
field k, and A will denote a finite-dimensional, separable k-subalgebra of R. By
J(R) we denote the Jacobson radical of R, and by N(R) the lower nil (prime) radical
of R. A ring R is said to be semiprime of N(R) = (0); equivalently, R has no non-
zero nilpotent ideals. CR(A) denotes the centralizer of A in R.
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16 SUSAN MONTGOMERY

We first list several known results that will be used repeatedly. The first
follows from the classical theory of algebras [1].

PROPOSITION 1.1. Theve exists a finite separvable field extension K of k such
that A Qx K =Ky, @D Kny» where K, denotes the n, -by-n, matrix ring over

1
K.
We refer to K as a splitting field for A, and we say that A is split if A is al-
ready a direct sum of complete matrix rings over k.

PROPOSITION 1.2 [4, p. 112). If R has a unit element, and A is centval sim-
ple over k with the same unit element as R, then R = AR, Ci(A).

PROPOSITION 1.3 [6, p. 252). If K is a separable field extension of k, then
J(R @y K) = J(R) ®y K.

PROPOSITION 1.4. If K is a finite sepavable field extension of Kk, then
N(R @y K) € N(R) ®y K.

Proof. It was pointed out in [7, (see Proposition 2)] that R® K is semiprime
whenever R is. Thus, since R/N(R) is semiprime, R/N(R) ® K is semiprime. But
R/N(R) ® K =2 (R® K)/(N(R) ® K); by [6, p. 194], N(R ® K) is the intersection of
all ideals M such that (R ® K)/M has no nonzero nilpotent ideals. Thus
N(R ® K) C N(R) ® K.

PROPOSITION 1.5 [7, Lemma 2]. If A is split and R is any homomorphic
image of R, then CR(A) = Cr(A). That is, the image of the centralizer is the cen-
tralizer of the image A of A.

The general method of proof is to reduce the problem to the case when A is
split, and then, if necessary, to reduce it to the case when A is central simple.

2. IDEALS

In this section, we show that if R is semiprime, ideals of R contract to ideals

We begin with the analogue of [5, Lemma 1]. For the first few lemmas, we do
not need the previous assumptions about R and A.

LEMMA 2.1. Let N be the lower nil vadical of a ving R. Let A be a subrving
of R with a unit f, and say that Cgr(A) contains a unit e. Then e + N is a unit for
R/N.

Proof. First note that e acts as the identity on A. For, certainly f € Cy(A),
and thus ef = fe = . But by assumption, fa = af = a, for all a € A. Thus
ea = efa = fa = a. Similarly, ae = a.

Now choose any x € R, and consider the element y = (1 - e)x(1 - e). Then
ay =ya =0 for each a € A, since a =ea =ae. Thus y € Cr(A). But then ey =y.
Since certainly ey = 0, we see that y = 0; that is, (1 - e)x(1 - e) = 0 for all x € R.
This says that ((1 - €)R)2 = (0), and therefore (1 - e)R is a nilpotent right ideal of
R. But then (1 - ¢) R C N; that is, x - ex € N for all x € R. Similarly, x - xe € N,
for all x. But this says precisely that e + N is a unit element in R/N,

Note that if R is semiprime, Lemma 1 says that R must have a unit element.

The next lemma is well known.
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LEMMA 2.2. Let R be a k-algebva, and lei A and B be two k-subalgebras of
R. Let K be a finite Galois extension of k, and consider A @y K and B @y K as
subalgebras f R @y K. Then, if (AQ K) N (BAK) # (0), AN B # (0).

Proof. Write A} =A® K, B =B® K, R; =R® K, and let G be the Galois
group of K over k. Extend G 1o acton Ry, via (r ® a)? =r ® a9, for all r € R,
@ € K, and ¢ € G. Then A{Y =A; and Bf =B,, forall ¢ € G.

n
Now choose x = Ei:l r; ® a@; € A; N By, where the @; are linearly independ-

ent over k and r; € A for each i. We shall show that r; ¢ B for each i. Now

n
(Xai)o = Z; rj ® (Olj ai)o € Al N Bl .
j=1

Summing this on ¢ and letting y;;= 2
1)

oziozj)0 =tr(o; ;) € k, we see that for
i= 1, 2, cev, M,

o j

EI'J®'}/J1 = EI‘J'}/J1®1€A1 ﬂBl EB®K.
J J

Since K is a Galois extension of k, the matrix ('J’ij) is invertible, and thus each r;
is in B.
We now resume our assumptions on R and A.

THEOREM 2.1. If U is an ideal of R, then either U N Cr(A) # (0) or AU (and
thus UA) is nilpotent.

Proof. Let K be a finite Galois extension of k that is a splitting field for A,
and consider Ry, A;, and U; =U® K as in Lemma 2.2. The algebra A; is now
split, and U; is an ideal of R;. Also, CRI(Al) = Cr(A) ® K. Now, if A; U; is nil-

potent, certainly AU is nilpotent, and by Lemma 2.2, U N Cr(A) # (0) if
U, N CRI(AI) # (0). Thus, it will suffice to prove the theorem when A is split.

Let e be a primitive central idempotent of A. Then eAe is central simple
over k (since A is split) and C_ r.(eAe) = eCg(A)e. In addition, e is the unit ele-
ment for both eAe and eRe. Thus, by Proposition 1.2, eRe = eAe ®k e Cgr(A)e.
Assume for the moment that eUe # (0). Then eUe is an ideal of eRe, and therefore
(since eAe is central simple) eUe = eAe ®, V, where V is a nonzero ideal of
eCr(A)e. But eCgr(A)e C Cr(A), and thus

V C eUe NeCr(A)e C U N Cgr(A);

that is, U 0 Cg(A) # (0).

We have shown that if U N Cr(A) = (0), then eUe = (0) for every primitive cen-
tral idempotent e of A. Let f be the unit element of A. Then f=e] + - + e,
where the e; are the primitive central idempotents of A. Since e;Ue; = (0),

fUf = 2J; 45 e;Ue;. But then

1

fupk = EeieriZU---UeikH = (0),
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since in every set {ei1 )iy, s €

same. This implies that (fU)k*! = (0), since f2 =f. But then AU is nilpotent, since
AU = fAU C {U, and the theorem is proved.

COROLLARY 2.1. If R has a unit element, and A has the same unit element
as R, then each ideal of R either intersects Cg (A) nontrivially ov is nilpotent.

Proof. The proof of the theorem shows that if U N Cr(A) = (0) and f is the unit
of A, then fU is nilpotent.

COROLLARY 2.2. If R is semiprime and U # (0) is an ideal of R, then
U N Cgr(a) # (0).

Proof. If U N Cgr(A) = (0), it follows that AU = (0) and UA = (0), since R con-
tains no nilpotent ideals. But this says that U C Cr(A), a contradiction.

COROLLARY 2.3. If R is semiprime and CR(A) is simple, then R itself musit
be simple.

} at least two of the elements e;, are the
J

Proof. Let f be the unit element in A. Then f is a central idempotent in
Cr(A), and therefore f is the unit element for Cg(A), since Cgr(A) is simple.
Thus, by Lemma 2.1, f is the unit element for R.

Now, if U is a nonzero ideal of R, then U N Cr(A) is a nonzero ideal of Cgr(A),
by Corollary 2.2. Thus U N Cr(A) = Cr(A), and therefore f € U. This gives U =R.

3. RADICALS AND SEMISIMPLICITY

In this section we show that the radical of Cr(A) is simply the radical of R
intersected with Cg(A).

LEMMA 3.1. J(R) N Cg(a) € J(Cgr(A)).

Proof. We shall show that J(R) N Cr(A) is a quasi-regular ideal of Cgr(A).
Now, if x € J(R) N Cy(A), then x has a quasi-inverse y in R. But since x € Cg(A)
and x +y +xy = 0, it follows that y € CRr(A) also. This completes the proof.

THEOREM 3.1. If Cr(A) is semisimple, then J(R) is nilpotent.

Proof, By Lemma 3.1, J(R) N Cr(A) = (0), and thus by Theorem 2.1, AJ(R) and
J(R) A are nilpotent.

First consider the case when A is split. Let Nj be the ideal of R generated
by AJ(R) and J(R)A. Clearly, N is nilpotent. Let R =R/Nj. Since Ny N A = (0)
and Ny N Cgr(A) = (0), we see that A = A and Cgr(A) = Cr(A). By Proposition 1.5,
Cr(A) = Cg(A), and thus Cg(A) is semisimple. Now in R, since AJ(R) = (0) and
J(R)A = (0), we have the relation J(R) C Cr(A). But J(R) is a quasi-regular ideal,
and therefore J(R) C J(Cg(A)) = (0). That is, J(R) C Ny, and thus J(R) is nilpotent.

Now consider the general case. Let K be a splitting field for A, and consider
R;=R®XK, A; =AR®K, and CRI(AI) = Cr(A) ® K. Since Cr(A) is semisimple,

CRI(AI) is semisimple, by Proposition 1.3. Thus, the hypotheses are preserved in

R;. Now, by the previous paragraph, J(R}) is nilpotent. Since J(Rj) = J(R) Q@ K
(Proposition 1.3 again), it follows that J(R) is nilpotent.

We next prove a converse to Theorem 3.1.
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THEOREM 3.2. If R is semisimple, then Cr(A) is semisimple.

Proof. Arguing as at the end of the proof of the previous theorem, we may as-
sume that A is split. Let f denote the unit element of A.

We first show that the algebra fCr(A) =fCr(A)f is semisimple. Now fRf is
semisimple, by [4, Theorem 1.3.3], and C;gs(A) = £ Cr(A), since f is a central
idempotent in CR(A). Let e be a primitive central idempotent of A; then eAe is
central and simple, and in fact eAe = k,, since A is split. Now, by Proposition 1.2,

eRe = eAe &, eCR(A)e = (e CR{A) e), .

Since eRe is semisimple, eCR(A) e is semisimple. But {, the unit in A, may be
written as f = e + :-- + e, where the e; are the primitive central idempotents in
A. Since the e; are also central orthogonal idempotents in Cr(A),

fCR(A) = 27 e;CRr(A) = 2J e;Cg(A) ey,

1 1

and the last member is a finite direct sum of semisimple rings. Thus fCg(A) is
semisimple.

Now, Cr(A) =C; ® C,, where
C, =fCr(A) and C, = (1-1£)Cg(a) = {x- fx| x € Cx(A)}

(the “1” is only a formal device). It is easy to verify that C, = (1 - f)R(1 - £), and
thus C, is semisimple, since R is semisimple (use the same proof as in [4, Theo-
rem 1.3.3]).

Since CgR(A) is the direct sum of two semisimple rings, Cr(A) must be semi-
simple.

COROLLARY 3.1. If R is semiprime, then Cr(A) is semisimple if and only if
R is semisimple.

Proof. Apply Theorems 3.1 and 3.2.

COROLLARY 3.2. J(R) N CR(A) = J(CR(A)).

Proof. Because of Lemma 3.1, it is enough to show that J(Cgr(A)) € J(R). Asin
the previous arguments, Proposition 1.3 implies that it will suffice to show this for
the case when A is split.

Consider R = R/J(R). By Proposition 1.5, Cg(A) = Cr(A). Since R is semi-
simple, CR(A) is semisimple, by Theorem 3.2. Now J(Cgr(A)) is a quasi-regular

ideal of Cg(A), which is semisimple, and thus J(Cr(A)) = (0). This proves
J(Cr(A)) € I(R).

We now prove an analogous result for the lower nil radical. The proof is very
similar.

THEOREM 3.3. If R is semiprime, then CR(A) is semiprime.
Proof. The proof follows that of Theorem 3.2 almost exactly. Cr(A) =C; @ C;,

where

C, = fCR(A) and C, = (1-f)R(1-1).
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C, is semiprime since R is, and we need only show that C; is semiprime. As be-
fore, under the assumption that A is split, we get the equation

eRe = eAe ®, eCr(A)e.

If N were a nilpotent ideal of e Cr(A)e, the set eAe ® N would be a nilpotent ideal
of the semiprime ring eRe. Thus eCRr(A)e is semiprime, and therefore f Cr(A) is
semiprime. This proves that Cr(A) is semiprime when. A is split.

However, if A is not split, consider Ry, A, and Cr (A;) =Cr(A) ® K as be-
1> Al R,\A1) = CR

fore. By Proposition 1.4, R, is semiprime, since R is semiprime; certainly, if
CRI(AI) is semiprime, then Cr(A) is semiprime. Thus the proof for the split case

suffices.

4. SEMISIMPLE ARTINIAN RINGS

The main purpose of this section is to determine the structure of R when Cg(A)
is semisimple Artinian. Before proceeding, we note that when K is a finite separa-
ble extension of k, then R is Artinian if and only if R ®k K is Artinian. It then fol-
lows, by virtue of Proposition 1.3, that R is semisimple Artinian if and only if
R ® K is semisimple Artinian.

LEMMA 4.1. Assume that R is semiprime and that A is split. Then, if Cg(A)
is simple Artinian, R is simple Avrtinian.

Proof. First, R is simple, by Corollary 2.3. Now A must be simple also,
since every central idempotent of A is also a central idempotent in Cy(A), which is
simple. It also follows that the unit element in A is a unit element for Cr(A), and
thus, by Lemma 2.1, it must also be a unit element for R.

Since A is split, A is a central simple k-algebra, and thus R = A ®, Cr(A), by
Proposition 1.2. Since A is finite-dimensional and Cr(A) is Artinian, R must also
be Artinian.

The method of proof now follows that of [5, Theorem 5]. Our next lemma was
established in the course of proving [5, Theorem 5].

LEMMA 4.2 (Herstein and Neumann). Let R be a semiprime ving with 1. As-
sume that 1 =e; + --- + ey, whevre the elements e; are orthogonal idempotents, and
that e;Re; is simple Avtinian for i =1, ---, k. Then R is semisimple Avtinian.

THEOREM 4.1. Let R be semiprime. Then, if Cr(A) is semisimple Ariinian,
R is semisimple Avtinian.

Proof. By the remarks preceeding Lemma 4.1, it will suffice to prove the
theorem when A is split.

Let T=Cgr(A)=¢; T @ -+ @ e, T, where each e; is a central idempotent in T
and each e;T is simple Artinian. The unit element 1 of T is also the unit element
for R (by Lemma 2.1), and 1 = e + --- + ey.

Let R; =e;Re;. It is easy to verify that each R; is semiprime and that
Cgr.(e;A) =e;CRr(A)e; =e;T. Now, since e; centralizes A, the algebra e;A (asa
1

homomorphic image of A) is also a split separable k-algebra. Since CRi(eiA) is

simple Artinian, we may apply Lemma 4.1 to the ring R; to see that R; is simple
Artinian. If we apply Lemma 4.2, it follows that R is semisimple Artinian.
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COROLLARY 4.1. If R is semiprime and Cg(A) is simple Artinian, then R is
simple Arvtinian,
This follows from Theorem 4.1 and Corollary 2.3.
We now prove a converse to Theorem 4.1.

THEOREM 4.2. If R is semisimple Avtinian, then Cr(A) is semisimple
Avritinian.

Proof. By the remarks preceeding Lemma 4.1, it will suffice to prove the theo-
rem when A is split.

Since R is semisimple Artinian, 1 € R, and 1 = e + --- + e}, where the e; are
central idempotents and each e; R is simple Artinian.

Now 1 € Cr(A), and therefore C = Cr(A) = Ei @ e; C. Thus, to show that C is
semisimple Artinian, it will suffice to show that each e; C is semisimple Artinian.
Now e;A = e;Ae; is separable and finite-dimensional, and C, g(e;A) = e;C. Thus,

1

by looking at the rings e;R, we see that we need only prove the theorem when R is
simple.

Let £ be the unit element in A, and let e be any primitive central idempotent in
A. Since A is split, eAe is central simple over k, and as before,
eRe = eAe @, eCgr(A)e,
by virtue of Proposition 1.2. Since R is simple Artinian, eRe is simple Artinian,
and thus e Cr(A)e = e Cr(A) is simple Artinian. Now f =g, + -+ + g,,,, where the

g; are the primitive central idempotents in A. Thus fCr(A) = Ej g; Cr(4) is
semisimple Artinian.

Now, as in Theorem 3.2, C =C; @® C,, where
C, = fCRr(A) and C, =(1-f)Cr(A) = (1 -H)R(1-1).
Again, C, is simple Artinian, since R is. Thus C, being a finite direct sum of

simple Artinian rings, must be semisimple Artinian.

COROLLARY 4.2. Let R be semiprime. Then Cr(A) is semisimple Avtinian
if and only if R is semisimple Avtinian.

This follows from Theorems 4.1 and 4.2.
Finally, we consider the situation when R is not necessarily semiprime.

THEOREM 4.3. Assume that Cg(A) is semisimple Avtinian. Then R has a
nilpotent ideal N such that R/N is semisimple Avtinian.

Proof. By Theorem 3.1, J(R) is nilpotent. Since R/J(R) is semisimple,
J(R) = N is the desired ideal. It only remains to show that R/N is Artinian. For
this, it suffices to show that R/N ® K is Artinian, for each finite extension K of k.

Let K be a splitting field for A. Then

R/NOK =R®K/NQK = ROK/JR® K) »

since J(R) ® K = J(R ® K), by Proposition 1.3. Thus, if R; = R ® K, it suffices to
show that R, /J(R;) is Artinian.
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Now R;, A;, and CRI(Al) = Cr(A) ® K satisfy the hypotheses on A and
Cr(A). In R} = R; /J(R;),

CKI(AI) = CRl(Al) = CRI(AI)’

since A; is split. Thus we may apply Theorem 4.1 to the ring El , and therefore
R; is semisimple Artinian. The theorem is now proved.

COROLLARY 4.3. Assume that Cr(A) is simple. Then J(R) is nilpotent and
R/J(R) is simple. Movreover, if Cr(A) is simple Artinian, R/I(R) is simple
Artinian.

Proof. I e is the unit element for A, then e € Cr(A), and therefore e is the
unit element for Cr(A). Thus, by Lemma 2.1, e + N is a unit element in R/N, where
N is the lower nil radical of R. Now, since Cgr(A) is semisimple, J(R) = N is nil-
potent, by Theorem 3.1.

Let U be any ideal of R. If U N Cr(A) = (0), then eU is nilpotent, by Theorem
2.1. Thus eU C N, hence eU = (0) in R = R/N. But & is the unit element in R, and
thus U = (0). On the other hand, if U n Cgr(A) # (0), then U N Cr(A) = Cr(A), by the
simplicity of Cgr{(A). This means that e € U, and thus in R, U = R. We have shown
that N is a maximal ideal of R, and thus R/N is simple.

The rest of the proof follows directly from Theorem 4.3.

5. ZERO-DIVISORS

We say that an element x is 7egular in R if x is not a zero-divisor in R. In
this section, we show that if x is regular in Cr(A), then x is regular in R, provided
that R is semiprime.

LEMMA 5.1. Let R be semiprime, and assume that x € Cr(A) is rvegular in
CR(A). Then

(1) xa # 0, forall a€ A (a# 0),

(2) if x is not vegular in R, then xz = 0, for some z € fRf (z # 0), where f is
the unit element of A.

Proof. (1) Say that xa = 0, for some a € A. Then xAaA = (0), since x € Cyr(A).
But AaA is an ideal of A, and thus it contains a nonzero element z in the center of
A. But then z € Cg(A) and xz = 0, a contradiction.

(2) Say that x is not regular, and let I = {y € R| xy =0}. Then I is a nonzero
right ideal of R. Let W= (1 - £)I(1 - f). Now AW = WA = (0), and therefore
W C Cr(A). Since xW = (1 - f)xI(1 - f) = (0) and x is regular in Cg(A), we see that
W =(0). Thus ((1 - £f)1)2 = (0). Since R is semiprime, (1 - £f)I=(0). That is, y = fy,
for all y € 1. -

Since R is semiprime, yRy = fyRfy # (0), and since yR C I, this means that
fif # (0). But, xfIf = fxIf = (0), and thus xz = 0, for some z ¢ fRf (z # 0).

THEOREM 5.1. Let R be semiprime. Then, if x € Cgr(A) is vegular in Cr(A),
X is vegular in R.

Pyoof. We first claim that we may assume A is split. For consider
R;=RQ®XK, A; =AQ®K, and CRI(Al) = Cr(A) ® K as before, where K is a
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splitting field for A. Now, if x is regular in Cg(A), x ® 1 must be regular in

Cr(A) ® K. For if not, say (x ® 1)y =0, and write y = 27 r; ® k;, where the
r; belong to Cr(A) and the k; are linearly independent over k. Then

x®1y-= Exri ®k; =0 implies that xr; = 0, for all i. Since r; € Cr(4), it
follows that r; = 0 for all i and thus y = 0. Thus x ® 1 is regular in CRI(AI)' If

we can show that x @ 1 is regular in R, surely x is regular in R. Thus, assume
that A is split.

By Lemma 5.1, if x is not regular in R, then xz = 0, where 0 # z € fRf and {
is the unit element in A. Consider the ring fRf. Clearly,

Ciri{A) = £CR(A)E = £CR(A),

and xf € C;g¢A) is regular in Cire(A) (for, if z # 0 and z € £Cg(A), then

xfz = xz # 0, since z € CR(A)). Since fRf is a semiprime ring, we may reduce the
problem to the case of the ring fRf; that is, we may assume that the unit in A is the
unit element for R.

Assuming that x is not regular in R, let I be the right annihilator of x. Then I
is a nonzero right ideal of R. Let e be a primitive central idempotent in A, and
consider eI. Since 1 € A and I # (0), eI # (0) for some such e. Since R is semi-
prime, it follows that ele # (0). But then xele = exIe = (0), since e € Cr(A). Thus,
xXe is a zero divisor in the ring eRe.

Now eRe = eAe ®y e Cr(A)e, as before. Consider 1 @ xe. Since it is not

regular in eRe, (1® xe)y = 0 for some y. Write y = 27 a; ® r;, where
r; € eCr(A)e and the a; are linearly independent over k. Then

(1® xe)y = Eai®xeri = (0).

Thus xer; = 0, for all i. But er; =r; € Cr(A), and thus r; = 0, since x is regular
in CR(A). This implies that y = 0, a contradiction. This proves the theorem.

As we mentioned in the introduction, Cohen has used this last result, along with
several other results discussed above, to show that when R is semiprime and Cgr(A)
is a Goldie ring, then R is also a Goldie ring [3]. The general method of proof is to
show first that R can be localized at the set T of regular elements of Cg(A) (which
are regular in R, by Theorem 5.1), and then to show that the localization Ry is
semisimple Artinian. Since R is an order in R, R must be a Goldie ring.

REFERENCES

1. A. A. Albert, Structure of algebras. Revised printing, American Mathematical
Society Colloquium Publications, Vol. 24. Amer. Math. Soc., Providence, R.1.,
1960.

2. M. Cohen, Semi-prime Goldie centralizers. Israel J. Math. (to appear).

. , Goldie centralizers of separable subalgebras. Notices Amer. Math. Soc.
22 (1975), p. A-306.

4. I. N. Herstein, Noncommutative rings. The Carus Mathematical Monographs,
No. 15. Mathematical Association of America, New York, 1968.



24 SUSAN MONTGOMERY

5. I. N. Herstein and L. Neumann, Centralizers in vings. Ann. Mat. Pura Appl. (4)
102 (1975), 37-44.

6. N. Jacobson, Structure of rvings. American Mathematical Society Colloquium
Publication, Vol. 37. Revised edition. Amer. Math. Soc., Providence, R.1., 1964.

7. S. Montgomery and M. K. Smith, Algebras with a separable subalgebra whose
centralizer satisfies a polynomial identity. Comm. Algebra 3 (1975), 151-168.

University of Southern California
Los Angeles, California 90007



