CENTRALIZERS OF SEPARABLE SUBALGEBRAS

Susan Montgomery

0. INTRODUCTION

There has been some interest recently in the relationship between the structure of an algebra R and the centralizer of an appropriate subset A of R (denoted by $C_R(A)$). In particular, I. N. Herstein and L. Neuman have considered the case when A consists of a single element a ϵ R such that a^n is in the center of R for some positive integer n. They have shown that if R is semiprime and $C_R(a)$ is simple or semisimple Artinian, then R itself must also be simple or semisimple Artinian. This result was extended by M. Cohen [2], who showed that if $C_R(a)$ is a Goldie ring, then R must also be a Goldie ring.

The intent of this paper is to show that these results can be extended to the situation where A is any finite-dimensional separable subalgebra of R. That is, we show that if R is semiprime and $C_R(A)$ is either simple, semisimple, or semisimple Artinian, then so is R.

Further results are obtained on the relationships between the ideals, zero-divisors, and Jacobson radical of $C_R(A)$ and those of R. The result on zero-divisors has now been used by Cohen to show that if R is semiprime and $C_R(A)$ is a Goldie ring, then so is R [3]. We discuss these results in more detail at the end of the paper.

We note that centralizers of separable subalgebras arise naturally as fixed-point sets of automorphism groups, as follows: Let R be a ring whose center k is a field, and let G be a finite group of inner automorphisms of R as a k-algebra such that the order of G is relatively prime to the characteristic of k. For each $\tau \in G$, choose an $x_{\tau} \in R$ that induces τ . If A is the subalgebra of R generated by the x_{τ} , then $C_R(A)$ is precisely the ring of fixed points R^G of G acting on R. The algebra A is separable, since it is a homomorphic image of a twisted group algebra $k_t[G]$, which is separable. (For details, see [7].)

This relationship was used in [7] to show that if R^G satisfies a polynomial identity (PI), then R also satisfies an identity, where G is as described above. For, it was first shown that if A is a finite-dimensional separable subalgebra of a kalgebra R, and $C_R(A)$ satisfies a PI, then R satisfies a PI.

1. PRELIMINARIES

In all that follows, unless otherwise stated, R will denote an algebra over a field k, and A will denote a finite-dimensional, separable k-subalgebra of R. By J(R) we denote the Jacobson radical of R, and by N(R) the lower nil (prime) radical of R. A ring R is said to be semiprime of N(R) = (0); equivalently, R has no non-zero nilpotent ideals. $C_R(A)$ denotes the centralizer of A in R.

Received April 7, 1975.

This research was supported in part by NSF Grant No. GP-38601.

Michigan Math. J. 22 (1975).

We first list several known results that will be used repeatedly. The first follows from the classical theory of algebras [1].

PROPOSITION 1.1. There exists a finite separable field extension K of k such that $A \otimes_k K = K_{n_1} \oplus \cdots \oplus K_{n_\ell}$, where K_{n_i} denotes the n_i -by- n_i matrix ring over K.

We refer to K as a *splitting field* for A, and we say that A is *split* if A is already a direct sum of complete matrix rings over k.

PROPOSITION 1.2 [4, p. 112]. If R has a unit element, and A is central simple over k with the same unit element as R, then $R = A \bigotimes_k C_R(A)$.

PROPOSITION 1.3 [6, p. 252]. If K is a separable field extension of k, then $J(R \otimes_k K) = J(R) \otimes_k K$.

PROPOSITION 1.4. If K is a finite separable field extension of k, then $N(R \otimes_k K) \subseteq N(R) \otimes_k K$.

Proof. It was pointed out in [7, (see Proposition 2)] that $R \otimes K$ is semiprime whenever R is. Thus, since R/N(R) is semiprime, $R/N(R) \otimes K$ is semiprime. But $R/N(R) \otimes K \cong (R \otimes K)/(N(R) \otimes K)$; by [6, p. 194], $N(R \otimes K)$ is the intersection of all ideals M such that $(R \otimes K)/M$ has no nonzero nilpotent ideals. Thus $N(R \otimes K) \subseteq N(R) \otimes K$.

PROPOSITION 1.5 [7, Lemma 2]. If A is split and \overline{R} is any homomorphic image of R, then $C_{\overline{R}}(\overline{A}) = \overline{C_R(A)}$. That is, the image of the centralizer is the centralizer of the image \overline{A} of A.

The general method of proof is to reduce the problem to the case when A is split, and then, if necessary, to reduce it to the case when A is central simple.

2. IDEALS

In this section, we show that if R is semiprime, ideals of R contract to ideals of $C_{\rm R}(A)$.

We begin with the analogue of [5, Lemma 1]. For the first few lemmas, we do not need the previous assumptions about R and A.

LEMMA 2.1. Let N be the lower nil radical of a ring R. Let A be a subring of R with a unit f, and say that $C_R(A)$ contains a unit e. Then e+N is a unit for R/N.

Proof. First note that e acts as the identity on A. For, certainly $f \in C_R(A)$, and thus ef = fe = f. But by assumption, fa = af = a, for all a \in A. Thus ea = efa = fa = a. Similarly, ae = a.

Now choose any $x \in R$, and consider the element y = (1 - e)x(1 - e). Then ay = ya = 0 for each $a \in A$, since a = ea = ae. Thus $y \in C_R(A)$. But then ey = y. Since certainly ey = 0, we see that y = 0; that is, (1 - e)x(1 - e) = 0 for all $x \in R$. This says that $((1 - e)R)^2 = (0)$, and therefore (1 - e)R is a nilpotent right ideal of R. But then $(1 - e)R \subseteq N$; that is, $x - ex \in N$ for all $x \in R$. Similarly, $x - xe \in N$, for all $x \in R$. But this says precisely that e + N is a unit element in R/N.

Note that if R is semiprime, Lemma 1 says that R must have a unit element. The next lemma is well known.

LEMMA 2.2. Let R be a k-algebra, and let A and B be two k-subalgebras of R. Let K be a finite Galois extension of k, and consider $A \otimes_k K$ and $B \otimes_k K$ as subalgebras of $R \otimes_k K$. Then, if $(A \otimes K) \cap (B \otimes K) \neq (0)$, $A \cap B \neq (0)$.

Proof. Write $A_1 = A \otimes K$, $B_1 = B \otimes K$, $R_1 = R \otimes K$, and let G be the Galois group of K over k. Extend G to act on R_1 , via $(r \otimes \alpha)^{\sigma} = r \otimes \alpha^{\sigma}$, for all $r \in R$, $\alpha \in K$, and $\sigma \in G$. Then $A_1^{\sigma} = A_1$ and $B_1^{\sigma} = B_1$, for all $\sigma \in G$.

Now choose $x = \sum_{i=1}^n r_i \otimes \alpha_i \in A_1 \cap B_1$, where the α_i are linearly independent over k and $r_i \in A$ for each i. We shall show that $r_i \in B$ for each i. Now

$$(x\alpha_i)^{\sigma} = \sum_{j=1}^n r_j \otimes (\alpha_j \alpha_i)^{\sigma} \in A_1 \cap B_1.$$

Summing this on σ and letting $\gamma_{ij} = \sum_{\sigma} (\alpha_i \alpha_j)^{\sigma} = \operatorname{tr}(\alpha_i \alpha_j) \in k$, we see that for $i = 1, 2, \dots, n$,

$$\sum_{\mathbf{j}} \mathbf{r}_{\mathbf{j}} \otimes \gamma_{\mathbf{j}\mathbf{i}} = \sum_{\mathbf{j}} \mathbf{r}_{\mathbf{j}} \gamma_{\mathbf{j}\mathbf{i}} \otimes \mathbf{1} \in A_{1} \cap B_{1} \subseteq B \otimes K.$$

Since K is a Galois extension of k, the matrix (γ_{ij}) is invertible, and thus each r_j is in B.

We now resume our assumptions on R and A.

THEOREM 2.1. If U is an ideal of R, then either $U \cap C_R(A) \neq (0)$ or AU (and thus UA) is nilpotent.

Proof. Let K be a finite Galois extension of k that is a splitting field for A, and consider R_1 , A_1 , and $U_1 = U \otimes K$ as in Lemma 2.2. The algebra A_1 is now split, and U_1 is an ideal of R_1 . Also, $C_{R_1}(A_1) = C_R(A) \otimes K$. Now, if $A_1 U_1$ is nilpotent, certainly AU is nilpotent, and by Lemma 2.2, $U \cap C_R(A) \neq (0)$ if $U_1 \cap C_{R_1}(A_1) \neq (0)$. Thus, it will suffice to prove the theorem when A is split.

Let e be a primitive central idempotent of A. Then eAe is central simple over k (since A is split) and $C_{eRe}(eAe) = eC_R(A)e$. In addition, e is the unit element for both eAe and eRe. Thus, by Proposition 1.2, eRe \cong eAe \bigotimes_k e $C_R(A)e$. Assume for the moment that eUe \neq (0). Then eUe is an ideal of eRe, and therefore (since eAe is central simple) eUe \cong eAe $\bigotimes_k \bar{V}$, where V is a nonzero ideal of e $C_R(A)e$. But e $C_R(A)e\subseteq C_R(A)$, and thus

$$V \subseteq eUe \cap eC_R(A)e \subseteq U \cap C_R(A);$$

that is, $U \cap C_R(A) \neq (0)$.

We have shown that if $U \cap C_R(A) = (0)$, then eUe = (0) for every primitive central idempotent e of A. Let f be the unit element of A. Then $f = e_1 + \cdots + e_k$, where the e_i are the primitive central idempotents of A. Since $e_i U e_i = (0)$,

$$fUf = \sum_{i \neq j} e_i U e_j$$
. But then

$$(fUf)^{k} = \sum e_{i_{1}} Ue_{i_{2}} U \cdots Ue_{i_{k+1}} = (0),$$

since in every set $\{e_{i_1}, e_{i_2}, \cdots, e_{i_{k+1}}\}$ at least two of the elements e_{i_j} are the same. This implies that $(fU)^{k+1} = (0)$, since $f^2 = f$. But then AU is nilpotent, since $AU = fAU \subseteq fU$, and the theorem is proved.

COROLLARY 2.1. If R has a unit element, and A has the same unit element as R, then each ideal of R either intersects $C_R(A)$ nontrivially or is nilpotent.

Proof. The proof of the theorem shows that if $U \cap C_R(A) = (0)$ and f is the unit of A, then fU is nilpotent.

COROLLARY 2.2. If R is semiprime and U \neq (0) is an ideal of R, then U \cap C_R(A) \neq (0).

Proof. If $U \cap C_R(A) = (0)$, it follows that AU = (0) and UA = (0), since R contains no nilpotent ideals. But this says that $U \subseteq C_R(A)$, a contradiction.

COROLLARY 2.3. If R is semiprime and $C_R(A)$ is simple, then R itself must be simple.

Proof. Let f be the unit element in A. Then f is a central idempotent in $C_R(A)$, and therefore f is the unit element for $C_R(A)$, since $C_R(A)$ is simple. Thus, by Lemma 2.1, f is the unit element for R.

Now, if U is a nonzero ideal of R, then $U \cap C_R(A)$ is a nonzero ideal of $C_R(A)$, by Corollary 2.2. Thus $U \cap C_R(A) = C_R(A)$, and therefore $f \in U$. This gives U = R.

3. RADICALS AND SEMISIMPLICITY

In this section we show that the radical of $C_R(A)$ is simply the radical of R intersected with $C_R(A)$.

LEMMA 3.1. $J(R) \cap C_R(A) \subseteq J(C_R(A))$.

Proof. We shall show that $J(R) \cap C_R(A)$ is a quasi-regular ideal of $C_R(A)$. Now, if $x \in J(R) \cap C_R(A)$, then x has a quasi-inverse y in R. But since $x \in C_R(A)$ and x + y + xy = 0, it follows that $y \in C_R(A)$ also. This completes the proof.

THEOREM 3.1. If $C_R(A)$ is semisimple, then J(R) is nilpotent.

Proof. By Lemma 3.1, $J(R) \cap C_R(A) = (0)$, and thus by Theorem 2.1, AJ(R) and J(R) A are nilpotent.

First consider the case when A is split. Let N_0 be the ideal of R generated by AJ(R) and J(R) A. Clearly, N_0 is nilpotent. Let $\overline{R} = R/N_0$. Since $N_0 \cap A = (0)$ and $N_0 \cap C_R(A) = (0)$, we see that $\overline{A} \cong A$ and $\overline{C_R(A)} \cong C_R(A)$. By Proposition 1.5, $\overline{C_R(A)} = C_{\overline{R}}(\overline{A})$, and thus $C_{\overline{R}}(\overline{A})$ is semisimple. Now in \overline{R} , since $\overline{AJ(R)} = (0)$ and $\overline{J(R)} = (0)$, we have the relation $\overline{J(R)} \subseteq C_{\overline{R}}(\overline{A})$. But $\overline{J(R)}$ is a quasi-regular ideal, and therefore $\overline{J(R)} \subseteq J(C_{\overline{R}}(\overline{A})) = (0)$. That is, $J(R) \subseteq N_0$, and thus J(R) is nilpotent.

Now consider the general case. Let K be a splitting field for A, and consider $R_1 = R \otimes K$, $A_1 = A \otimes K$, and $C_{R_1}(A_1) = C_R(A) \otimes K$. Since $C_R(A)$ is semisimple, $C_{R_1}(A_1)$ is semisimple, by Proposition 1.3. Thus, the hypotheses are preserved in R_1 . Now, by the previous paragraph, $J(R_1)$ is nilpotent. Since $J(R_1) = J(R) \otimes K$ (Proposition 1.3 again), it follows that J(R) is nilpotent.

We next prove a converse to Theorem 3.1.

THEOREM 3.2. If R is semisimple, then $C_R(A)$ is semisimple.

Proof. Arguing as at the end of the proof of the previous theorem, we may assume that A is split. Let f denote the unit element of A.

We first show that the algebra $f C_R(A) = f C_R(A) f$ is semisimple. Now fRf is semisimple, by [4, Theorem 1.3.3], and $C_{fRf}(A) = f C_R(A)$, since f is a central idempotent in $C_R(A)$. Let e be a primitive central idempotent of A; then eAe is central and simple, and in fact eAe $\cong k_n$, since A is split. Now, by Proposition 1.2,

$$eRe = eAe \bigotimes_{k} eC_{R}(A) e = (eC_{R}(A) e)_{n}.$$

Since eRe is semisimple, $eC_R(A)$ e is semisimple. But f, the unit in A, may be written as $f = e_1 + \dots + e_k$, where the e_i are the primitive central idempotents in A. Since the e_i are also central orthogonal idempotents in $C_R(A)$,

$$fC_R(A) = \sum_i e_i C_R(A) = \sum_i e_i C_R(A) e_i$$

and the last member is a finite direct sum of semisimple rings. Thus $fC_R(A)$ is semisimple.

Now, $C_R(A) = C_1 \oplus C_2$, where

$$C_1 = fC_R(A)$$
 and $C_2 = (1 - f)C_R(A) = \{x - fx | x \in C_R(A)\}$

(the "1" is only a formal device). It is easy to verify that $C_2 = (1 - f)R(1 - f)$, and thus C_2 is semisimple, since R is semisimple (use the same proof as in [4, Theorem 1.3.3]).

Since $C_R(A)$ is the direct sum of two semisimple rings, $C_R(A)$ must be semisimple.

COROLLARY 3.1. If R is semiprime, then $C_R(A)$ is semisimple if and only if R is semisimple.

Proof. Apply Theorems 3.1 and 3.2.

COROLLARY 3.2.
$$J(R) \cap C_R(A) = J(C_R(A))$$
.

Proof. Because of Lemma 3.1, it is enough to show that $J(C_R(A)) \subseteq J(R)$. As in the previous arguments, Proposition 1.3 implies that it will suffice to show this for the case when A is split.

Consider $\overline{R}=R/J(R)$. By Proposition 1.5, $C_{\overline{R}}(\overline{A})=\overline{C_R(A)}$. Since \overline{R} is semisimple, $C_{\overline{R}}(\overline{A})$ is semisimple, by Theorem 3.2. Now $\overline{J(C_R(A))}$ is a quasi-regular ideal of $\overline{C_R(A)}$, which is semisimple, and thus $\overline{J(C_R(A))}=(0)$. This proves $J(C_R(A))\subseteq J(R)$.

We now prove an analogous result for the lower nil radical. The proof is very similar.

THEOREM 3.3. If R is semiprime, then $C_R(A)$ is semiprime.

Proof. The proof follows that of Theorem 3.2 almost exactly. $C_R(A) = C_1 \oplus C_2$, where

$$C_1 = f C_R(A)$$
 and $C_2 = (1 - f) R (1 - f)$.

 C_2 is semiprime since R is, and we need only show that C_1 is semiprime. As before, under the assumption that A is split, we get the equation

$$eRe = eAe \bigotimes_{k} eC_{R}(A) e$$
.

If N were a nilpotent ideal of $eC_R(A)$ e, the set $eAe \otimes N$ would be a nilpotent ideal of the semiprime ring eRe. Thus $eC_R(A)$ e is semiprime, and therefore $fC_R(A)$ is semiprime. This proves that $C_R(A)$ is semiprime when A is split.

However, if A is not split, consider R_1 , A_1 , and $C_{R_1}(A_1) = C_R(A) \otimes K$ as before. By Proposition 1.4, R_1 is semiprime, since R is semiprime; certainly, if $C_{R_1}(A_1)$ is semiprime, then $C_R(A)$ is semiprime. Thus the proof for the split case suffices.

4. SEMISIMPLE ARTINIAN RINGS

The main purpose of this section is to determine the structure of R when $C_R(A)$ is semisimple Artinian. Before proceeding, we note that when K is a finite separable extension of k, then R is Artinian if and only if $R \bigotimes_k K$ is Artinian. It then follows, by virtue of Proposition 1.3, that R is semisimple Artinian if and only if $R \bigotimes K$ is semisimple Artinian.

LEMMA 4.1. Assume that R is semiprime and that A is split. Then, if $C_R(A)$ is simple Artinian, R is simple Artinian.

Proof. First, R is simple, by Corollary 2.3. Now A must be simple also, since every central idempotent of A is also a central idempotent in $C_R(A)$, which is simple. It also follows that the unit element in A is a unit element for $C_R(A)$, and thus, by Lemma 2.1, it must also be a unit element for R.

Since A is split, A is a central simple k-algebra, and thus $R = A \otimes_k C_R(A)$, by Proposition 1.2. Since A is finite-dimensional and $C_R(A)$ is Artinian, R must also be Artinian.

The method of proof now follows that of [5, Theorem 5]. Our next lemma was established in the course of proving [5, Theorem 5].

LEMMA 4.2 (Herstein and Neumann). Let R be a semiprime ring with 1. Assume that $1=e_1+\cdots+e_k$, where the elements e_i are orthogonal idempotents, and that e_i R e_i is simple Artinian for $i=1,\cdots,k$. Then R is semisimple Artinian.

THEOREM 4.1. Let R be semiprime. Then, if $C_R(A)$ is semisimple Artinian, R is semisimple Artinian.

Proof. By the remarks preceding Lemma 4.1, it will suffice to prove the theorem when A is split.

Let $T = C_R(A) = e_1 T \oplus \cdots \oplus e_k T$, where each e_i is a central idempotent in T and each $e_i T$ is simple Artinian. The unit element 1 of T is also the unit element for R (by Lemma 2.1), and $1 = e_1 + \cdots + e_k$.

Let $R_i = e_i R e_i$. It is easy to verify that each R_i is semiprime and that $C_{R_i}(e_i A) = e_i C_R(A) e_i = e_i T$. Now, since e_i centralizes A, the algebra $e_i A$ (as a homomorphic image of A) is also a split separable k-algebra. Since $C_{R_i}(e_i A)$ is simple Artinian, we may apply Lemma 4.1 to the ring R_i to see that R_i is simple Artinian. If we apply Lemma 4.2, it follows that R_i is semisimple Artinian.

COROLLARY 4.1. If R is semiprime and $C_R(A)$ is simple Artinian, then R is simple Artinian.

This follows from Theorem 4.1 and Corollary 2.3.

We now prove a converse to Theorem 4.1.

THEOREM 4.2. If R is semisimple Artinian, then $C_R(A)$ is semisimple Artinian.

Proof. By the remarks preceding Lemma 4.1, it will suffice to prove the theorem when A is split.

Since R is semisimple Artinian, $1 \in R$, and $1 = e_1 + \cdots + e_k$, where the e_i are central idempotents and each e_i R is simple Artinian.

Now $1 \in C_R(A)$, and therefore $C = C_R(A) = \sum_i \oplus e_i C$. Thus, to show that C is semisimple Artinian, it will suffice to show that each $e_i C$ is semisimple Artinian. Now $e_i A = e_i A e_i$ is separable and finite-dimensional, and $C_{e_i R}(e_i A) = e_i C$. Thus, by looking at the rings $e_i R$, we see that we need only prove the theorem when R is simple.

Let f be the unit element in A, and let e be any primitive central idempotent in A. Since A is split, eAe is central simple over k, and as before,

$$eRe = eAe \otimes_k e C_R(A) e$$
,

by virtue of Proposition 1.2. Since R is simple Artinian, eRe is simple Artinian, and thus $e\,C_R(A)\,e=e\,C_R(A)$ is simple Artinian. Now $f=g_1+\dots+g_m$, where the g_i are the primitive central idempotents in A. Thus $f\,C_R(A)=\sum_j g_i\,C_R(A)$ is semisimple Artinian.

Now, as in Theorem 3.2, $C = C_1 \oplus C_2$, where

$$C_1 = f C_R(A)$$
 and $C_2 = (1 - f) C_R(A) = (1 - f) R (1 - f)$.

Again, C_2 is simple Artinian, since R is. Thus C, being a finite direct sum of simple Artinian rings, must be semisimple Artinian.

COROLLARY 4.2. Let R be semiprime. Then $C_R(A)$ is semisimple Artinian if and only if R is semisimple Artinian.

This follows from Theorems 4.1 and 4.2.

Finally, we consider the situation when R is not necessarily semiprime.

THEOREM 4.3. Assume that $C_R(A)$ is semisimple Artinian. Then R has a nilpotent ideal N such that R/N is semisimple Artinian.

Proof. By Theorem 3.1, J(R) is nilpotent. Since R/J(R) is semisimple, J(R) = N is the desired ideal. It only remains to show that R/N is Artinian. For this, it suffices to show that $R/N \otimes K$ is Artinian, for each finite extension K of K.

Let K be a splitting field for A. Then

$$R/_N \otimes K$$
 = $R \otimes K/_N \otimes _K$ = $R \otimes K/_{J(R \otimes K)}$,

since $J(R) \otimes K = J(R \otimes K)$, by Proposition 1.3. Thus, if $R_1 = R \otimes K$, it suffices to show that $R_1/J(R_1)$ is Artinian.

Now R_1 , A_1 , and $C_{R_1}(A_1)=C_R(A)\otimes K$ satisfy the hypotheses on A and $C_R(A). In \ \overline{R}_1=R_1\,/J(R_1)$,

$$C_{\overline{R}_1}(\overline{A}_1) = \overline{C_{R_1}(A_1)} \stackrel{\sim}{=} C_{R_1}(A_1),$$

since A_1 is split. Thus we may apply Theorem 4.1 to the ring \overline{R}_1 , and therefore \overline{R}_1 is semisimple Artinian. The theorem is now proved.

COROLLARY 4.3. Assume that $C_R(A)$ is simple. Then J(R) is nilpotent and R/J(R) is simple. Moreover, if $C_R(A)$ is simple Artinian, R/J(R) is simple Artinian.

Proof. If e is the unit element for A, then $e \in C_R(A)$, and therefore e is the unit element for $C_R(A)$. Thus, by Lemma 2.1, e+N is a unit element in R/N, where N is the lower nil radical of R. Now, since $C_R(A)$ is semisimple, J(R) = N is nilpotent, by Theorem 3.1.

Let U be any ideal of R. If $U \cap C_R(A) = (0)$, then eU is nilpotent, by Theorem 2.1. Thus $eU \subseteq N$, hence $\overline{eU} = (0)$ in $\overline{R} = R/N$. But \overline{e} is the unit element in \overline{R} , and thus $\overline{U} = (0)$. On the other hand, if $U \cap C_R(A) \neq (0)$, then $\underline{U} \cap C_R(A) = C_R(A)$, by the simplicity of $C_R(A)$. This means that $e \in U$, and thus in \overline{R} , $\overline{U} = \overline{R}$. We have shown that N is a maximal ideal of R, and thus R/N is simple.

The rest of the proof follows directly from Theorem 4.3.

5. ZERO-DIVISORS

We say that an element x is regular in R if x is not a zero-divisor in R. In this section, we show that if x is regular in $C_R(A)$, then x is regular in R, provided that R is semiprime.

LEMMA 5.1. Let R be semiprime, and assume that $x \in C_R(A)$ is regular in $C_R(A)$. Then

- (1) $xa \neq 0$, for all $a \in A$ $(a \neq 0)$,
- (2) if x is not regular in R, then xz = 0, for some $z \in fRf(z \neq 0)$, where f is the unit element of A.

Proof. (1) Say that xa = 0, for some $a \in A$. Then xAaA = (0), since $x \in C_R(A)$. But AaA is an ideal of A, and thus it contains a nonzero element z in the center of A. But then $z \in C_R(A)$ and xz = 0, a contradiction.

(2) Say that x is not regular, and let $I = \{ y \in R \mid xy = 0 \}$. Then I is a nonzero right ideal of R. Let W = (1 - f)I(1 - f). Now AW = WA = (0), and therefore $W \subseteq C_R(A)$. Since xW = (1 - f)xI(1 - f) = (0) and x is regular in $C_R(A)$, we see that W = (0). Thus $((1 - f)I)^2 = (0)$. Since R is semiprime, (1 - f)I = (0). That is, y = fy, for all $y \in I$.

Since R is semiprime, $yRy = fyRfy \neq (0)$, and since $yR \subseteq I$, this means that $fIf \neq (0)$. But, xfIf = fxIf = (0), and thus xz = 0, for some $z \in fRf(z \neq 0)$.

THEOREM 5.1. Let R be semiprime. Then, if $x \in C_R(A)$ is regular in $C_R(A)$, x is regular in R.

Proof. We first claim that we may assume A is split. For consider $R_1 = R \otimes K$, $A_1 = A \otimes K$, and $C_{R_1}(A_1) = C_R(A) \otimes K$ as before, where K is a

splitting field for A. Now, if x is regular in $C_R(A)$, $x \otimes 1$ must be regular in $C_R(A) \otimes K$. For if not, say $(x \otimes 1)y = 0$, and write $y = \sum r_i \otimes k_i$, where the r_i belong to $C_R(A)$ and the k_i are linearly independent over k. Then $(x \otimes 1)y = \sum xr_i \otimes k_i = 0$ implies that $xr_i = 0$, for all i. Since $r_i \in C_R(A)$, it follows that $r_i = 0$ for all i and thus y = 0. Thus $x \otimes 1$ is regular in $C_{R_1}(A_1)$. If we can show that $x \otimes 1$ is regular in R_1 , surely x is regular in R. Thus, assume that A is split.

By Lemma 5.1, if x is not regular in R, then xz = 0, where $0 \neq z \in fRf$ and f is the unit element in A. Consider the ring fRf. Clearly,

$$C_{fRf}(A) = fC_R(A)f = fC_R(A),$$

and $xf \in C_{fRf}(A)$ is regular in $C_{fRf}(A)$ (for, if $z \neq 0$ and $z \in fC_R(A)$, then $xfz = xz \neq 0$, since $z \in C_R(A)$). Since fRf is a semiprime ring, we may reduce the problem to the case of the ring fRf; that is, we may assume that the unit in A is the unit element for R.

Assuming that x is not regular in R, let I be the right annihilator of x. Then I is a nonzero right ideal of R. Let e be a primitive central idempotent in A, and consider eI. Since $1 \in A$ and $I \neq (0)$, $eI \neq (0)$ for some such e. Since R is semiprime, it follows that $eIe \neq (0)$. But then xeIe = exIe = (0), since $e \in C_R(A)$. Thus, xe is a zero divisor in the ring eRe.

Now eRe = eAe \bigotimes_k e $C_R(A)$ e, as before. Consider $1 \otimes xe$. Since it is not regular in eRe, $(1 \otimes xe)$ y = 0 for some y. Write y = $\sum a_i \otimes r_i$, where $r_i \in eC_R(A)$ e and the a_i are linearly independent over k. Then

$$(1 \otimes xe) y = \sum a_i \otimes xer_i = (0)$$
.

Thus $xer_i = 0$, for all i. But $er_i = r_i \in C_R(A)$, and thus $r_i = 0$, since x is regular in $C_R(A)$. This implies that y = 0, a contradiction. This proves the theorem.

As we mentioned in the introduction, Cohen has used this last result, along with several other results discussed above, to show that when R is semiprime and $C_R(A)$ is a Goldie ring, then R is also a Goldie ring [3]. The general method of proof is to show first that R can be localized at the set T of regular elements of $C_R(A)$ (which are regular in R, by Theorem 5.1), and then to show that the localization R_T is semisimple Artinian. Since R is an order in R_T , R must be a Goldie ring.

REFERENCES

- 1. A. A. Albert, *Structure of algebras*. Revised printing, American Mathematical Society Colloquium Publications, Vol. 24. Amer. Math. Soc., Providence, R.I., 1960.
- 2. M. Cohen, Semi-prime Goldie centralizers. Israel J. Math. (to appear).
- 3. ——, Goldie centralizers of separable subalgebras. Notices Amer. Math. Soc. 22 (1975), p. A-306.
- 4. I. N. Herstein, *Noncommutative rings*. The Carus Mathematical Monographs, No. 15. Mathematical Association of America, New York, 1968.

- 5. I. N. Herstein and L. Neumann, *Centralizers in rings*. Ann. Mat. Pura Appl. (4) 102 (1975), 37-44.
- 6. N. Jacobson, *Structure of rings*. American Mathematical Society Colloquium Publication, Vol. 37. Revised edition. Amer. Math. Soc., Providence, R.I., 1964.
- 7. S. Montgomery and M. K. Smith, Algebras with a separable subalgebra whose centralizer satisfies a polynomial identity. Comm. Algebra 3 (1975), 151-168.

University of Southern California Los Angeles, California 90007