COMPACT, TOTALLY DISCONNECTED SETS
THAT CONTAIN K-SETS

Frank B. Miles

It is well known that every infinite subset of a discrete abelian group contains
an infinite Sidon set. In this paper, we present two analogous theorems on K-sets in
nondiscrete, locally compact abelian groups. Each theorem says, roughly, that cer-
tain compact, metrizable, totally disconnected sets E contain K-sets homeomorphic
to themselves and that each such sef E is almost a K-set in the sense that the
identity map from E to E can be uniformly approximated by homeomorphisms of E
onto K-sets in E. More precisely, the two theorems are as follows:

THEOREM A. Let G be a nondiscrete, locally compact, abelian Ty-group, and
let E be an independent, nonvoid, compact, metrizable, totally disconnected subset
of G. Then theve exist a metric space C)(E, E) of continuous functions from E to
E, complete in the uniform topology and containing the identity map from E to E,
and a subset H of the first category in C)(E, E) with the property that each
f € C\(E, E)\ H maps E homeomovphically onto a K-set.

THEOREM B. Lef G be a nondiscrete, locally compact, abelian Ty-group, and
suppose that the torsion subgroup of G is at most countable. Let E be a subset of
G homeomovphic to Cantor's tevnavy set. Then the set C(E, E) of continuous func-
tions from E to E with the uniform topology contains a set H of the fivst category
with the property that each t € C(E, E) \ H maps E homeomorphically onto a K-
set.

Definitions and Notation. In all that follows, G denotes a locally compact
abelian Ty-group with character group X. We write C(E, T) for the set of continu-
ous functions from E to the unit circle T in the complex plane.

A nonvoid compact subset E of G is called a K-set if X | E, the set of restric-
tions to E of continuous characters of G, is uniformly dense in C(E, T). We remind
the reader that a K-set consists solely of independent elements of infinite order and
that a nonvoid finite independent set is necessarily a K-set. (A finite subset

n
{xy, ***, X} of G is called independent if the relation Xrl11 -+ %, X = e, where e is

the identity of G and the exponents n j are integers, implies that all the exponents
nj are zero. An infinite subset of G is called independent if every finite subset of
it is independent. The void set is independent.)

Remarks. (a) We prove both theorems by using an argument whose original
form is due to R. Kaufman [2]. A modification of Kaufman’s argument given by
Y. Katznelson [1, pp. 184-185] has been adapted for use here and in the related

paper [3].

(b) Suppose that E consists of a convergent sequence together with its limit
point x. Then each homeomorphism of E into E must map x to itself. Thus, the
set of homeomorphisms of E into E is not dense in C(E, E). This example and a
little further thought show that, in order to obtain a conclusion of the form “all
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functions except those in a set of first category map E homeomorphically onto a K-
set” we must restrict ourselves to the functions in C(E, E) that take limit points to
limit points, limit points of limit points to limit points of limit points, and so forth.

We are thus led to consider the subspace Cy(E, E) of C(E, E) defined below.

(c) The hypothesis in Theorem B that the torsion subgroup of G is countable is
necessary, as is shown by the following example. Let G be the product of countably
infinitely many copies of T. Let E be the subset of G consisting of those elements
each coordinate of which is +1. Then E is homeomorphic to Cantor’s ternary set;
but no subset of E is a K-set, since elements of K-sets have infinite order. If we
translate E by an element of infinite order, then no subset of E containing more
than one element is a K-set, since K-sets are independent.

In the general case, we may drop the hypothesis that the torsion subgroup of G
is countable if we add the hypothesis that E is independent; but then we have a spe-
cial case of Theorem A, for C,(E, E) = C(E, E) when E has no isolated points (see
the definition of C)(E, E) below).

(d) Let d; and d, be equivalent metrics on the compact metric space E. For
f and g € C(E, E), let

Di(f, g) = sup {dj{f(x), gx)): x e E} (j=1,2).

The topologies on C(E, E) induced by D; and D, are the same, since each is the
compact-open topology on C(E, E). It follows that a sequence in C(E, E) is a D;-
Cauchy sequence if and only if it is a D,-Cauchy sequence. We may therefore speak
of the uniform topology on C(E, E) and of Cauchy sequences in C(E, E) without
specifying a particular metric on E.

Definition. Let E be a compact metric space. For each ordinal a < Q (the
first uncountable ordinal), define Ey as follows. Let Eg = E. Let

Eg:] = 1X € Ey: x is a limit point of Eg | .

When « is a limit ordinal, let E, = nB<a EB'
LEMMA 1. Let E be a compact melvic space.
(i) For some a that strictly precedes §, we have the relation Ey = Eg 4 .
(ii) If F is open and closed in E, then Fy =F N Ey fov all a < Q.
Proof. (i) Write E = P U C, where P is perfect, C is countable, and

PN C=@. Clearly, P C Ep. Hence, Ua<ﬂ (Eqg \ Eg+1) C€ C. Since © has un-
countably many predecessors and C is countable, Eg \ Ey4+; = @ for some « that
strictly precedes .

(ii) The proof is an easy argument by means of transfinite induction.
Definitions. Suppose that E is a compact metric-space.

(i) By ar we denote the first ordinal o that satisfies the relation Ey = E 4}
in part (i) of Lemma 1.

(ii) For x € E, let A(X) = ar when x € EaE. When x € E \ EO‘E’ let A(x) be

the last ordinal « such that x € E5 . (Proof that such an o exists: Let 8 be the
first ordinal such that x ¢ Eg. Then x € E, for all vy < B; therefore, if 8 were a
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limit ordinal, x would be an element of ﬂKB E.), =Eg, a contradiction.) Observe
that A(x) > o implies that x € Egy.

(iii) Let F be a nonvoid open and closed subset of E. If F N EC‘E # @, define
AMF)=ap. If FN EO‘E = @, let A(F) be the last @ suchthat F, # @. (Proof that

such an o exists: By Lemma 1, there is a first ordinal g such that Fg = @. Then
F # ¢ for all ¥y < B and the F?’ are nested; therefore, if f§ were a limit ordinal,

the set ny< g F Y = Fg would be empty, contradicting the fact that the F are a

family of closed sets with the finite-intersection property.) Observe that When
MF) < ag, the set Fy(f) is finite and A(x) <A(F) for all x € F.

(iv) Let C)(E, E) consist of all f ¢ C(E, E) that satisfy the two conditions
(a) for all x € E, A(x) <A(f(x)) and (b) for all y € E\ E, g f-1(y) contains at

most one element of EMV) .

THEOREM 1. Let E be a nonvoid, compact metvic space. Then C)(E, E) is
complete in the topology of uniform convergence.

Proof. Let {f, }: | be a Cauchy sequence in C)(E, E) that converges to
f € C(E, E). We show that f satisfies the two conditions in the definition of
C)L(E E).

Let x € E. Then Mx) < A(f,(x)) for all n; therefore, every f,(x) is in E) (x) -

Since E)(x) is closed and £,(x) — £(x), we see that f(x) € E) (), and hence that
Ax) < Af(x).

Now let y € E with A(y) = ¢ < ag, and assume that there exist distinet x; and
X, in Ey such that f(x;) = f(x;) = y. We show that this leads to a contradiction.
Since y is an isolated point of E,, there exists a neighborhood U of y such that
UNEy = {y}. We have the relations o <A(x3) < A(fn(x3)) for all n and j. For
sufficiently large n, we see that fn(xj) € U, hence )\(fn(xj)) < a, hence A(fn(xj)) =«
hence f,(x;) =y (j = 1, 2). Thus, for large n, the set f;1(y) contains at least two
elements of E ; this contradicts the hypothesis f, € C)(E, E).

LEMMA 2. Let E be a compact metvic space with metvic d; let x;, -+, x, be
distinct elements of E; let g € C)\(E, E), and let 1 > 0. Then theve ave distinct
elements y), -+, y, of E such that A(x;) <(y;) and dly;, g(x;) <7 for 1 <j<n.

Proof. Let F ={g(x;), -, g(x,)}, and write o —h(x) and B; h(g(x ))
(1 <j<n). We may suppose that a; < ap; < - < ay. We choose the elements ¥j
of E by induction as follows.

Case 1: aj <Bjor aj=pj=ag. Here g(x;) is a limit point of Eaj, and we
choose yj € Eaj so that d(yj, g(xj)) <7, y; ¢ F, and y; is distinct from each pre-
viously chosen element y, .

Case 2: aj = B; < ag. In this case, choose yj = g(xJ) It is sufficient to show
that yj is distinct from each previously chosen yi.. Assume that ¥; = ¥k for some
k <j. We show that this leads to a contradiction. If a)p <Py, then ykx was chosen
as described in Case 1, so that yi ¢ F, contrary to the relation yj € F. If
ayx = Bk < aj = Bj, then we chose yx by taking yx = g(xx). Hence,

By = A(Yk) = }\(Yj) = 3j;
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contrary to the relation 8, < BJ- . If ay =By = o; = BJ- , We again see that y, = g(x;).

Therefore, g‘l(yj) contains at least two points of Eh(yj) , and this contradicts the
hypothesis g € C)(E, E).

Proof of Theovem A. If E is finite, take H = @. Since f € Cy(E, E) if and only
if f maps E onto E, and since a finite independent set is a K-set, the result holds.

Suppose now that E is infinite. For h € C(E, T), f € C(E, E), and € > 0, let
the statement “(*) holds for h, f, and €” mean “there is a y € X such that

| At(y)) - h(y)| <& forall y € E.” Let f € C(E, E). Clearly, f is a homeomor-

phism of E onto f(E) if and only if f is one-to-one. Also, if f is not one-to-one, it
is clear that there exist h € C(E, T) and € > 0 such that (*) fails for h, f, and &.
Hence, f is a homeomorphism of E onto f(E) and f(E) is a K-set if and only if for
every h € C(E, T) and every & > 0, (*) holds for h, f, and €.

Let d be a metric on E compatible with the topology of E. For f and g in
C(E, E), let D(f, g) = sup {d(f(y), g(y): y € E}.
Let he C(E, T), ge C(E, E), € >0, and 5 > 0. We shall show that there is
an f € C)(E, E) such that D(f, g) <7 and (*) holds for h, f, and £. Write
n
E = U j=1 Ej, where the sets E; are pairwise disjoint, nonvoid, open and closed
subsets of E, and where h varies less than €/2 and g varies less than n/2 on

each E;. (The sets E; exist, since E is totally disconnected.) Let A(Ej) = ;
(1<j<n). If oj <ag, then (Ej)aj is finite, so that we may suppose without loss

of generality that E; contains exactly one point xj such that h(xj) =a;. I aj=ag,
let x; be any point of E; N EaE . By Lemma 2, there are distinct points y;, ---, y,

in E such that
A(y;) > AMx;) and d(y;, g(x;)) < n/2 for 1<j<n.

Define f(y) =y; when y € Ej. Then D(f, g) <n and f € C)(E, E). (The second
condition in the definition of CA(E, E) is satisfied, because when o < ag, then E;
contains only one point xj such that A(Xj) = aj.) Since {y1, *--, Yn} is a finite in-
dependent set, it is a K-set, and therefore there exists a vy € X such that

I’)/(Yj) - h(Xj)| <¢/2 (1<j<n). For y e E;, we see that
|7E() - hy)| < [AAyy) - hix)| + [n(x) - hy)| < &/2+2/2 = &.

Hence, (*) holds for h, f, and €.

For he C(E, T) and & > 0, let
H(h, ¢) = {f € C\(E, E): (¥) fails for h, f, and €} .

It is easy to show that H(h, €) is closed. By the preceding paragraph, H(h, €) is
nowhere dense in C)(E, E). Let {h, }n-1 be dense in C(E, T). Let

o0
H= Un,kzl H(h,, 1/k). Then H is a first-category set in the complete metric
space C)(E, E). Also, if f € C\(E, E) \ H, then every h € C(E, T) can be uniformly
approximated by functions yof (y € X); therefore, by the second paragraph of this
proof, f is a homeomorphism and f(E) is a K-set.

LEMMA 3. Let G and E be as in Theovem B, and let F be a finite independ-
ent subset of G. Then there exists an x € E\ F such that {x} U F is independent.
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Proof. If F = ¢, let x be any element of E of infinite order. Suppose now that
F # @. Let F' be the subgroup of G generated (algebraically) by F, and let

~

= {x € G: X" € F' for some nonzero integer n} .

Since the torsion subgroup of G is at most countable, it follows that F is at most
countable. Let x be any element of E \ F. Then {x} U F is independent.

LEMMA 4. Let G and E be as in Theorem B. Let n > 0. Let d be a melric

on E compatible with the topology of E. Suppose that E = U? 1 Ej, where the sets
ave paivwise disjoint, nonvoid, open and closed subsets of E. Let g € C(E, E).

Tllen theve exist distinct elements x,, -+, X, of E such that {x;, -, X} is a K-
set and d(x;, g(E;)) <n for 1<j<n.

Proof. We use induction on n. For 1 <j<n, let F;= {x € E: d(x, g(E ) <n}t.
Each Fj is nonvoid and hence contains a homeomorph D; of E. Applying Lemma 3
to the case E =D; and F = ¢, we obtain an element x, e D; such that {xl} is in-
dependent. Suppose now that 1 <k <n - 1 and that distinct x; € D; have been

chosen such that {x1 , " xk} is independent. Apply Lemma 3 to the case
E =Dg41 and F = {xl , " xk} to obtain an element Xy, € Dy, distinct from
X1, ***, X} such that {xl ) ! ka} is independent. The result now follows from

the fact that a nonvoid finite 1ndependent subset of G is a K-set.

Proof of Theovem B. The proof is essentially the same as that given above for
Theorem A, except that we use Lemma 4 instead of Lemma 2 and C(E, E) in place
of C,(E, E).
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