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1. INTRODUCTION

Let A denote the infinite series E;ozl ayx, where {ak}oﬁzl is a sequence of
elements of a topological vector space X. If p is a permutation of the positive in-

o]
tegers, let A, denote the series Ek:l ap(k), called a reavrangementi ot A. Let
S o denote the set of elements s € X such that some rearrangement of A converges
to s. If A converges and Sp contains only one element, then A is said to converge
with invariant sum. If A converges, but not every rearrangement of A converges,
then A is said to converge conditionally. If Ap converges for every permutation p,
then A is said to converge unconditionally.

In every linear topological space, unconditional convergence implies conver-
gence with invariant sum. In a Euclidean space R™, the converse is true. In fact,
if A is a conditionally convergent series in R™, then S, is an affine subspace of
R™ whose dimension is at least one. (In the case when m = 1, this result is of
course a well-known theorem of Riemann (see [15, p. 419] or [1, Chapter 12});
proofs for the general case have been given by E. Steinitz [13] and others ([6], [14],
[16], [17]).) In Section 2, we shall prove that the same statement holds for the
countably-infinite product space R® (with the product topology). Our treatment
makes it easy to understand just how the dimension of S, is determined, in either
the finite- or infinite-dimensional case.

C. W. McArthur [11], using work of H. Hadwiger [9], showed that in every in-
finite-dimensional Banach space there is a conditionally convergent series that con-
verges with invariant sum. His method yields the same result for every infinite-
dimensional Fréchet space on which a continuous homogeneous norm can be defined.
A Fréchet space has such a norm if and only if it does not contain a subspace iso-
morphic to R® (see [2]).

We should like to mention the important result of A. Dvoretzky and C. A.
Rogers [5], that in every infinite-dimensional Banach space there is a series that
converges unconditionally but not absolutely. For other proofs of this, see [10],
[12], and [7] or [8].

In Section 3, we consider another question about series in R*: Is it true that
for every sequence {ay}%-; in R® such that lim; _, , a; = 0, there exists a se-

[>e]
quence {&y }j-1, with each ¢y equal to +1 or -1, such that 2121 Exa5 Con-
verges? The answer is yes. The answer was known to be yes in the case of R™ [3]
and no in the case of every infinite-dimensional Banach space [4, p. 157, Theorem 8].

We should like to thank J. R. Retherford for telling us about these two questions
and advising us of relevant references.
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2. CONDITIONALLY CONVERGENT SERIES

In order to state our main theorem, we need a few more definitions. If W is a
subspace of X, if 7 = my is the projection from X onto W, and if A is a series

o0 [ee]
Ekzl ax in X, let 7A denote the series Ek:1 7ax in W. It is easy to see that
TS A C S A, and that this inclusion is sometimes proper.

If A is a series in X, and B is a series in Y, and if X XY is the product
space, let A X B denote the series in X XY such that 7yx(A X B) = A and
WY(A X B) =B,

In R™ or R”, let {e;} denote the canonical basis, and let ¢ and 7j denote
projections, as follows:

o. (E x.e.) = Xx.e,,
J : il

j
75 (Z) xiei) = 'Z) X;e;.
1

i=1

Given two series A and B, we shall say that A defermines B if for every per-
mutation p such that Ap converges, B, also converges.

In describing Sp for the case of an arbitrary conditionally convergent series A
in R, we may ignore the case when oA is unconditionally convergent for one or
more values of j, since it is obvious that 03 Sa is a singleton for every such j.

THEOREM 1. Let A be a sevies in. R™ such that for every j, the sevies o5 A
ts conditionally convevgent to a sum xj. Let J be the set of indices j such that
122 and 751 A deleymines o;A. Then there exist linear mappings Lj; from
7;.1R*® onto R such that

Sa = {s={s;}521 € R®: s; =x;+ Lysy, =+, sj_1) for each j e J}.
The theorem is proved by means of the tect;nical proposition below. For
m 1/2
X =(x], =+, Xm) € R™, let |x| = (Z}jzl xJZ) . We shall use the symbol oy to

mean the sum of a convergent rearrangement Ap of the series A, and similarly, B,
to mean the sum of B,, and so forth.

PROPOSITION. Lef A and B be series in R™ agud R, vespectively, that con-
verge conditionally to zevo., If A detevmines B, then theve is a linear mapping 'L

from R™ onto R such that E;:zl |by - L(ay)| <, so that
Saxp = 1(x,y) e R XR:x € Sp and y = L(x)} .

If A does not determine B, then Spyp = S A X Sp. In this case, in fact, if o, € Sp,
B, € Sp, and € > 0, then for all sufficiently lavge kg theve is a pevmutation q such

that aq = oy, By =Br, alk) = plk) for k <ko, and IZ)LkO aq(x)| < & for all
r Z ko .



CONDITIONALLY CONVERGENT SERIES IN R” 99

How the proposition implies the theorem. We may suppose without loss of gen-
erality that xj = 0 for every j. Let X be the subspace of R* spanned by the ele-
ments ej for which j ¢ J. Suppose that we can show that SnXA = X. Then, if J is

void, Sp = R®. Otherwise, according to the first part of the proposition, for each
j € J there exists a linear map Lj from 7j.1R* onto o;R™ such that

o0
Ekzl ] ojak - Lj(“l‘j-lak)l < oo, and therefore
Sp = {s= {sj}gozl e R®: s5=Lj(sy, -+, s5_)) for each j e J}.

It remains to show that STTXA = X. It suffices to deal with the case when

X = R®, and to show that then S, = R®. Let s = {s}x-1 € R®. For each k, there
exists a permutation py such that (o kA)Pk converges to s;.. We must show that

there exists a permutation p such that Ap converges to s. We may suppose, with-
out loss of generality, that s = 0.

We shall define a strictly increasing sequence of integers k(m) and a sequence
of permutations q,, such that

(1) ('rm+1 A) converges to zero,

qm
(2) m e {gu(): i <k(m)},
(3) dmG) =am-1(§) for m > 1 and j < k(m), and

(4) IEJZk(m) Tmaqm(j)l <27™ for m > 1 and r > k(m).

Then we shall let p(j) = lim _,  _ qm(j). By (2) and (3), it is clear that p is a per-
mutation. By (3) and (4), we see that

(5) IE;‘:k(m) 'rmap(j)l <27 for m > 1and r > k(m).
By (1), (4), and (5), A, converges to zero.

It remains to specify the definition of k(m) and q. Let qo = po, and choose
k(0) sufficiently large so that (2) is satisfied for m = 0. Now suppose that q; and
k(j) have been chosen suitably for j < m. Then the series 7,,A does not determine

the series o, .1 A, and both (7., A)qm_1 and (o m+1A)qm—l converge to zero. Ac-

cording to the proposition, then, we may choose k(m) sufficiently large and find a
d, Such that (1) to (4) are satisfied. The argument is complete.

It remains to prove the proposition. The proof will unfold in a sequence of
lemmas.

LEMMA 1 (see [6], [13]). Suppose that b; € R™ for 1<j<n, that

n
[Ejzl bjl < 6, and that |bj| < 6 for each j. Then there is a permutation p of the
syt < (2™ - 1) for 1 <k <n.

The next lemma is an easy consequence of Lemma 1.

k
integers from 1 fo n such that 2 j=1 P

LEMMA 2. Let A be a convergent sevies in R™ . Suppose that theve is a per-
mutation q such that a subsequence J] E?:(;) aq(j)} ?:1 of the partial sums of Aq

converges to s. Then theve is a pevmutation p such that Ap converges to S.
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LEMMA 3. Let A be a series in R™ that converges to zevo. Let Tp be the
set of s € R™ such that for every ¢ > 0 and N, therve is a finite set X of integers
greater than N such that Is - EnGX anl < &. Then Sy, =T,.

Proof. Let op € Sp. Let € >0 and N be arbitrary. Choose m > N so that

m k
| Zot1 an| < &/2. Choose k so that |ap - 2 i) ap(j)l < &/2 and so that the set
Z = {p(j): 1 <j <k} contains the set Y={n: 1<n<m}. If X=2\Y, then
Iap - Enex anl < &. Therefore aj, € Ta.

For s € T p, the following inductive procedure defines a permutation q such

n(k) 1 ® .
that a subsequence Ej:l aq(j) f k=1 of partial sums converges to s. It follows

that TA C SA .
mi(l)
Step 1. Choose m(1) so that |En=1 anl < 1/2. Let q(j) =j for 1 <j < m(1).
Set k equal to 1 and proceed to Step 2.
Step 2. Let X be a finite set of integers such that

s- 21 a <2k

nexX

XN {q({:1<j<mk)} =p and

Pick n(k) and define q on {j: m(k) <j<n(k)} sothat {q{i): m(k) <j<n(k)} isa
k -

one-to-one enumeration of X. Note that then Is - E?:(l) aq(j)| < 2"k Proceed to

Step 3.

k+1
Step 3. Choose m{k + 1) so that IZ?:(I ) anl < 2781 and so that the set

Z ={n: 1 <n<m(k+1)} contains the set Y = {q(j): 1 <j < n(k)}. Define q on
{j: nk) <j <mk+1)?} sothat {q(j): n(k) <j <m(k+1)} is a one-to-one enumer-
ation of the integers in Z \ Y. Change the value of k by adding 1, and proceed to
Step 2.

The inductive procedure is fully described. Lemma 3 is proved.

LEMMA 4. If A is a series in R™ that converges to zevo, then Sp is a linear
subspace.

Proof. It suffices to show (1) that if s; and s, belong to Sa, then so does
S] - sp; and (2) that if s € Sy and 0 <X < 1, then As € Sx.

To prove (1), we shall show that s; - s; € Ta. Let € > 0 and N be arbitrary.
There is a finite set Y containing every n < N such that lsz - EneY anl < g/2.
There is a finite set Z containing Y such that 'sl - EnEZ anl < g/2. Let

X=7Z\Y. Then Isl -8, - 2nex anl < &. Therefore s; - s, € Ta. To prove (2)
we shall show that Axs € Tp. Let ¢ > 0 and N be arbitrary. We may suppose that
N is sufficiently large so that Ian| < g for n > N. Since s € Tp, there is a finite

set X of integers greater than N such that Is - En€X anl < &. There is an ortho-
normal basis {e;, ***, €y} such that s = |s| e, . Since |ay| < & for n € X and

IEnEX Tm-1 anl < ¢, Lemma 1 guarantees the existence of an enumeration
X = {n(j)}g(:l such that
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< (@m-l-1)e for 1<r<n.

J

T
| Tm-1 a'n(j)

Since ||s| - E?:l oman(j)l < ¢ and Ian(j)| < ¢ for each j, there evidently is an

r such that Ihlsl - E;:l aman(j)l < ¢. For this r, then,

r
AS - 27 a
j=1

< gm-lg,

n(j)

It follows that As € T ,. Lemma 4 is proved.

LEMMA 5. Let A and B be sevies in Euclidean spaces. Suppose that the fol-
lowing condition holds:

(I) For every € > 0, there exist 6 >0 and N such that if X is a finite set of
integers greater than N, and if l EneX anl < 6, then IEneX bnl <e.

Then for every € > 0 there is a 6> 0 such that if |a, - ag| <6, then
l‘gp - 5q| < e.

Remarks. Condition (I) implies the condition that A determines B. In fact, we
shall see later that the two conditions are equivalent.

If A and B converge to zero, then by Lemma 4, Saxp is a linear subspace.
The conclusion of Lemma 5 implies that Bp is a continuous function of ap. Since
S axB is the graph of that function, it must be linear.

Proof of Lemma5. Let € > 0. Let 6 and N be chosen corresponding to € as
in (I). Let p and q be arbitrary permutations such that A, and A4 converge and

|ap - ag| < 6. We shall prove the lemma by showing that |Bp - Bq| < &.

Choose 1 > 0 sufficiently small so that Iap - aql + 2n < 6. Let K be suffi-
ciently large so that

<7 and <7 for k > K,

Kk Kk
Qp - 2 2p(j) Bp - 24 bp(5)
j=1 j=1

and so that the set Y = {p(j): 1 <j < K} contains all the integers less than or equal
to N. Let L be sufficiently large so that

r

Bq - 24 bq(j)
j=1

r
Olq - E aq(j)
j=1

<7 and <7 for r > L,

and so that the set Z = {q(j): 1 <j < L} contains Y. Let
X ={nine %z and n¢ YJ.

Then n € X =>n > N, and

> an

neX

< |ap-aq|+2n < 8,
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and therefore |2J b, | < &. Since |B, - 84| < |22 b.| + 25, it follows that
neX ®n ) q neX ®n n

pr - Bq | <& +27n. Since 5 may be arbitrarily small, we may conclude that

|Bp - Bg | <e. Lemma 5 is proved.

The next lemma allows us to show that if A does not determine B, then
SAXB = SA X SB .
LEMMA 6. Let A and B be conditionally convevgent sevies in R™ and R,

respectively. Then (NI) => (II) = (I1I), where the numevals denote the conditions
stated below. Note that (NI) is the negation of (I).

(NI) Theve exists n > 0 such that for every 6> 0 and every integer N > 0,
theve is a finite set X of integers greatev than N such that ,En €X an‘ < 6 and
I Z>r1€X bn > n-

(I1) Theve exists n > 0 such that for every & > 0, every integer N > 0, and
for u=+1 or -1, therve is a finite set X of integers greatev than N such that

| D ex 2| <0 and uZ 5 by > 1.
(1) 1If 6 >0, € >0, t # 0, and N > 0, then theve is a finite set Y of integers
greatey than N such that IEMY an’ < 6 and |EnEY b, - tl < €.

Proof that (NI) = (II). Let 1 be as in (NI). Let 6, N, and u be given as in the
hypothesis of (II). We may suppose that N is sufficiently large so that if
M M
N < m <M, then IEn:m anl < 6/2 and IEn:m bni < 7. By applying (NI) twice,
with appropriate choices of the parameters, we may find disjoint finite sets X; and

X, of integers greater than N such that for i =1 and 2, |Z)nexi aﬁl < 8/4 and
|Z)nexi bnl > q. If the two sums EnEXi b, have opposite signs, the conclusion
of (II) is satisfied by one of the sets X;. Otherwise, let m be the minimum of the
integers in X = X; U X5, and let M be the maximum. Let

Y={nm<n<M and n¢ X}.

Then |Z)n€X a | <o/2 and | Zocy anl < 8. Since lEnEXUY bnl <7 and
| 2 e x ba| > 2n, we know that |Z ey ba| >n andthat Zyey by has the oppo-
site sign from EnGX b,, so that Y satisfies the conclusion of (Ir) if X does not.

Proof that (II) = (II). Let 6, ¢, t, and N be given. Let §' < §/(2™ - 1). We
may suppose that N is sufficiently large so that Ianl < 6' and |bn| < & whenever

n > N. By repeated applications of (II), we may with appropriate choices of the pa-
rameters obtain a finite set X of integers greater than N such that

2ineX anl < 6" and 2ineX bn >t (if t is positive) or 2ipex by <t (if t is nega-
tive). By Lemma 1, there exists an enumeration X = {n(j) } jJ=l such that
k
Ej:l an(j)| <6 for 1 <k<J. Let k be the smallest integer such that
E?zl bn(j)l >t. Then E_lj(zl bn(j) evidently differs from t by no more than ¢,

and |Ejk:1 an(j)| < 8. Let Y =1{n(j): 1 <j <k}, and (Ill) is proved.

The proof of Lemma 6 is complete.
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LEMMA 7. Let A and B be conditionally convergent sevies in R™ and R,
vespectively, such that A does not determine B. Then SaxB =SaA XSB.

Proof. Let a € Sp, B € Sy. It suffices to prove that y € T, where y = (@, B)
and C = A XB. Let € >0 and N be arbitrary. Since A does not determine B, (NI)
holds, and hence (II) and (III) hold. Since « € T A, there is a finite set Z of inte-

gers greater than N such that |a - Enez anl < ¢/3. Applying (III) with
t=8- Z)ngz a,, one obtains a finite set Y of integers greater than N such that
Ynz=¢ |2 .ya|<e/3 ana |Z)n€Y b, - B+ .y b | <&/3. Then

X =Y U Z contains only integers greater than N, and I'y - Enex cnl <e¢. Lemma
T is proved.

LEMMA 8. Lelt A and B be conditionally convergent sevies in R™ and R,
vespectively. Then A determines B if and only if (I) holds.

Proof. The “if” part is clear. It remains to show that if (NI) holds, then there
is a permutation p such that A, converges but B, does not. Let s € Ta. Let g

be a permutation defined as in the proof of Lemma 3, except that in Step 3 of that

mik+1)
procedure, the choice of m(k + 1) is further restricted so that En:l b, is close

to (-1)k (this is possible, in view of (III)). Then define p as in the proof of Lemma

2, and Ap will converge, whereas the partial sums E;l:(i) bp(j) will oscillate.

Lemma 8 is proved.

LEMMA 9. Let A and B be conditionally convevgent servies in R™ and R,
respectively, each with zevo sum. If A determines B, then theve is a surjective
linear map L: R™ — R such that Saxp = {(x, L(x)): x € Sa}.

Proof. Let r be the integer between 1 and m such that 7,.A determines B
but 7._ ;A does not. By Lemmas 8 and 5, there is a linear map L: 7 . R™ — R
such that

S;.axg = (% L)) x €S, A}
In other words
Saxp = {(x, Lo 7.(x)):x € Sa}.

All that needs to be proved is that L is surjective, that is, 0,1 Saxg = R. We
may suppose that r = m, so that L o 7, = L. Let

C=(7,1AXB=(7,,1+0,,4)(AXB).

Since 7,,_.;A does not determine B, we see that dim S = 1+ dim STm-lA and

Om+1Sc =R. Now 7,,_1A does not determine o,, A, because if it did, then it
would also determine B. Therefore

dimS; A = (dim Sp) - 1 = (dim Saxp) - 1.

-1

Therefore dim Sc = dim Sapxp, and hence C determines o,,A. Hence there is a
linear map M: (7, _, +o . )R™"! - ¢ R™"! gyuch that
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SaxB = {(, v, W) € (7,1 R X (6., R X (0,4 R™HY):
(u, w) € Scand v =M(u, w)}.

Since 0,,,18¢ =R, evidently 0 ,,Ssxg = R. Lemma 9 is proved.
Proof of the Proposition. If A determines B, let L be the linear map given by

o0
Lemma 9. Let D denote the series 2Jj_; (b - L(ay)). Since the series A deter-
mines B, it also determines D. In fact, for every p such that Ap converges, Dy,
converges to fp - L(ap), which always equals zero. Therefore Spyp =Sa X {0}.
If the convergence of D were conditional, then by Lemma 9, 0 ,,1;Saxp would be R
and not {0}. Therefore D converges absolutely.

If A does not determine B, then by Lemma 7, SaxB =S8SA XSp. Therefore, if
ap € SA and By € Sp, we know that there is a permutation q such that Qq = 0p and
Bq = Br . We shall show that for every € > 0, if we take kg sufficiently large, then
we can modify the definition of g in a finite number of places so that q(k) = p(k) for
k <kg and

r
2 g (k)
k=kq

(1) <& forall r >Kkj.

Then of course, Aq and Bgq will still converge to ap and B, respectively.
Given € > 0, let £' = ¢/(2™ - 1). Let k( be sufficiently large so that

(2) lay)| < €'/2  forall r >k,
= o]

(3) 27 ap)| <&'/4.
k=kq

Modify the definition of q(k) for a finite number of values of k, so that q(k) = p(k)
for k < kgo. For a sufficiently large k) > ko,

T
2 2q(k)
k=k

(4) <e'/4 forallr>k.

ki -1
By (2), laq(r)l <¢g'/2 for all r > kg; by (3) and (4), IEk:ko aq(k)l < g'/2. There-
fore, by Lemma 1, q(k) may be redefined for ko< k < k| so that

(5) <eg/2 for ko <r <kj.

r
2 g (k)
k=kg

Now (1) follows from (4) and (5). The proposition is proved.
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3. NULL SEQUENCES IN R®

Here again, R® denotes the countably infinite product of lines, with the product
topology.

THEOREM 2. Let {ak}ﬁzl be a sequence in R™ such that limy _, o ai = 0.

Then theve exists a sequence {ey}y_;, with each g, equal to +1 or -1, such that
o0

Ek:l Erax converges.

The finite-dimensional version of this problem is taken care of by the following
lemma, which is a simple and special case of results that appear in [3].

It will be convenient to use the ¢*-norm in R™. For x = (xy, -+, X)) € R™,
|x| will mean max {|x;]: 1<j<m}.

LEMMA 10. For every positlive integey m, theve is a constant C,, such that if
{ak}if:l is a sequence in R™ and |ak| < r for all K, then there exists a sequence

{7 k}, with vange {-1, +1}, such that IEE:I nkak| < C,,r for all n.

Proof of Theorem 2. The desired sequence {&,} may be obtained by an induc-
tive procedure. At the jth step, €1 will be defined for k(j) < k < k(j + 1), where
{k(j)};(’zo is defined as follows. Let k(0) = 1. When k(j - 1) has been chosen,
choose k(j) to be an integer greater than k(j - 1) such that the quantity
r; = sup { | Tj(ak)lz k > k(j)} is less than 2-J Crl.

Let g, = +1 (say) for k <k(1), and proceed to Step 1.

Step j (for j=1, 2, ---). By Lemma 10, there is a sequence {njk}iozk(j) with
range {-1, +1}, such that

n

27 M Ti(a) | < Cyry = 273 for every n > k(j).

k=k(j)
Let &y = nji for k(j) <k <k(j +1).
The procedure is completely described. For each j > 1,

n

22 £y T:(ay)

; < 279%1  for every n > k(j).
k=k(j)

Therefore 2J £xai converges in R®. The theorem is proved.
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