HELSON SETS IN COMPACT AND LOCALLY COMPACT GROUPS

Charles F. Dunkl and Donald E. Ramirez

We continue our investigation (begun in [1] and [4]) of the measure space $M_0(G)$, where G denotes an infinite, nondiscrete, locally compact group, not necessarily abelian. In the present paper, we show that each measure in $M_0(G)$ is continuous. We further show that if G is compact or metrizable, then a Helson set cannot support a nonzero measure in $M_0(G)$ (a *Helson set* is a compact set P in G such that every continuous function on P can be extended to a function in the Fourier algebra A(G) of the group G).

Let G denote an infinite, nondiscrete, locally compact group (not necessarily abelian) with left-invariant Haar measure m_G , and let M(G) denote the space of finite regular Borel measures on G. We use the notation and machinery developed by P. Eymard [5] as well as that in [2]. Let Σ denote the equivalence classes of the continuous unitary representations on G, and for $\pi \in \Sigma$, let \mathscr{H}_{π} denote the representation space. For $\mu \in M(G)$, we define the function $\widehat{\mu}$ on Σ by

$$\pi \mapsto \hat{\mu}_{\pi} = \int_{G} \pi(x) d\mu(x).$$

For $\mathscr{G} \subset \Sigma$, let

$$\|\mu\|_{\mathscr{S}} = \sup \{\|\hat{\mu}_{\pi}\|_{\infty} \colon \pi \in \mathscr{S} \},\$$

where $\|\hat{\mu}_{\pi}\|_{\infty}$ denotes the operator norm on \mathcal{H}_{π} . We define $C^*(G)$ to be the completion of $L^1(G)$ in $\|\cdot\|_{\Sigma}$ (see [5, p. 187]). Let $\{\rho\}$ denote the subset of Σ containing just the left-regular representation of G on $L^2(G)$. Let $C^*(G)$ denote the completion of $L^1(G)$ in $\|\cdot\|_{\rho}$ (see [5, p. 187]). If G is abelian or compact, then $C^*(G) = C^*_{\rho}(G)$.

If $\mu \in M(G)$, we let $\rho(\mu)$ denote the bounded operator defined on $L^2(G)$ by $h \mapsto \mu * h$ ($h \in L^2(G)$) with operator norm $\|\rho(\mu)\|_{\rho}$. Let $\mathscr{B}(L^2(G))$ denote the bounded operators on $L^2(G)$. Then $C^*_{\rho}(G)$ can be identified with the closure in $\mathscr{B}(L^2(G))$ of the set $\rho(L^1(G)) = \{\rho(f): f \in L^1(G)\}$. If G is abelian, then $C^*_{\rho}(G)$ is isomorphic to the space $C_0(\hat{G})$ of continuous functions on the dual group \hat{G} that vanish at infinity; and if G is compact, then $C^*_{\rho}(G) \cong \mathscr{C}_0(\hat{G})$ (see [1]).

Let VN(G) denote the von Neumann subalgebra of $\mathscr{B}(L^2(G))$ generated by the left translation operators (see [5, p. 210]). If $\mu \in M(G)$, then $\rho(\mu) \in VN(G)$. Furthermore, we have the inclusion $C^*_{\rho}(G) \subset VN(G)$. If G is abelian, then $VN(G) \cong L^{\infty}(\hat{G})$; and if G is compact, then $VN(G) \cong \mathscr{L}^{\infty}(\hat{G})$ (see [1]).

Let B(G) denote the linear subspace of $C^B(G)$ (the continuous bounded functions on G) spanned by the continuous, positive-definite functions. Then B(G) can be

Received June 4, 1970.

This research was supported in part by NSF contract GP-8981.

Michigan Math. J. 19 (1972).

identified with the dual space of $C^*(G)$ (see [5, p. 192]). For $f \in B(G)$, let $||f||_B$ denote the norm of f as a linear functional on $C^*(G)$. Now let A(G) be the closed subalgebra of B(G) generated by the continuous, positive-definite functions with compact support (see [5, p. 208]). If G is abelian, then $A(G) \cong L^1(\widehat{G})$; and if G is compact, then $A(G) \cong \mathscr{L}^1(\widehat{G})$ (see [1]).

The reader familiar with the abelian or compact case will not be surprised to find that the dual of A(G) is VN(G); that is, A(G)* \cong VN(G) (see [5, p. 210]). Also, A(G) is a VN(G)-module; that is, for T \in VN(G) and f \in A(G), we define T*f \in A(G) by \langle T*f, S \rangle = \langle f, TS \rangle , where \langle ···· \rangle denotes the pairing of A(G) with its dual space VN(G), and where T is given by \langle g, T \rangle = \langle g, T \rangle (here g denotes the element of A(G) defined by g(x) = g(x^{-1}); see [5, p. 212]). If G is abelian, then L\(^1\)(G) is an L\(^\infty(G)-module by pointwise multiplication, and if G is compact, then \(\mathcal{P}^1(G) is an \(\mathcal{P}^\infty(G)-module by coordinatewise multiplication. If μ \(\infty M(G) and f \(\infty A(G), then $\rho(\mu)$ *f is precisely μ *f [5, p. 215]. The basic inequality that we shall need is the relation $\|$ T*f $\|_A \leq \|$ T $\|_{VN}$ $\|$ f $\|_A$ (T \(\infty VN(G), f \(\infty A(G)) (see [5, p. 213]).

Let $B_{\rho}(G)$ denote the functions $f \in B(G)$ for which

$$\sup \left\{ \left| \int_G f(x) g(x) dm_G(x) \right| \colon g \in L^1(G), \|g\|_{\rho} \le 1 \right\} < \infty.$$

Then $B_{\rho}(G)$ can be identified with the dual space of $C_{\rho}^{*}(G)$ (see [5, p. 192]).

In our paper [1], we introduced the notation $M_0(G) = \{ \mu \in M(G) : \rho(\mu) \in C^*_{\rho}(G) \}$. This notation differs by a dash from that of one of our other papers [4]. For measures supported on compact sets, the notational differences disappear (see Proposition 3). We have chosen to define the larger space to prove a slightly stronger result. In particular,

$$L^{1}(\overline{G})^{\rho} \supset L^{1}(\overline{G})^{\Sigma} \supset L^{1}(G), \quad \text{since } \|\mu\|_{\rho} \leq \|\mu\|_{\Sigma} \leq \|\mu\|_{\epsilon} (\mu \in M(G)).$$

THEOREM 1. Let $\mu \in M_0(G)$. Then μ is continuous.

Proof. Define the map $E: M(G) \to C$ by $E(\mu) = \mu(\{e\})$ ($\mu \in M(G)$). We begin by showing that E is continuous on M(G) with the norm $\|\cdot\|_{\rho}$. Let $\{\alpha\}$ be a neighborhood basis of e in G. Let $\{f_{\alpha}\}$ be a collection of functions from A(G) with the following properties: $f_{\alpha}(e) = 1$, $\|f_{\alpha}\|_{A} = 1$, f_{α} is positive-definite, and support $(f_{\alpha}) \subset \alpha$. Now

$$\begin{aligned} |E(\mu)| &= \lim_{\alpha} \left| \int_{G} f_{\alpha} d\mu \right| &= \lim_{\alpha} |(\mu * f_{\alpha})(e)| \leq \|\mu * f_{\alpha}\|_{A} \leq \|\rho(\mu)\|_{VN} \|f_{\alpha}\|_{A} \\ &= \|\rho(\mu)\|_{VN} = \|\mu\|_{\rho}. \end{aligned}$$

Since we can extend E to ρ $\overline{(M(G))}$ VN (closure in VN(G)), it is easy to see that $E(\mu * \mu^*) = \sum_{x \in G} |\mu(\{x\})|^2$, and this implies that E = 0 on $L^1(G)$.

Let $\mu \in M_0(G)$. Then $\mu * \mu^* \in C^*_{\rho}(G)$, since $C^*_{\rho}(G)$ is a *-algebra. Since E = 0 on $L^1(G)$, E = 0 on $L^1(G)^{VN} = C^*_{\rho}(G)$. Thus $E(\mu * \mu^*)$, which is $\sum_{x \in G} |\mu(\{x\})|^2$, has the value zero. Thus μ is continuous.

COROLLARY 2. If $\mu \in M(G)$ and $\rho(\mu)$ is unitary, then $\sum_{x \in G} |\mu(\{x\})|^2 = 1$. Proof. Observe that $E(\mu * \mu^*) = E(\delta_e) = 1$.

Let P be a compact subset of G. We denote by $M_0(P)$ the space $M(P) \cap M_0(G)$, and by $M_{0\Sigma}(P)$ the space

$$\{\mu \in M(P): \mu \in L^{1}(\overline{G})^{\Sigma} \cong C^{*}(G)\}$$
.

We now show that the spaces $M_0(P)$ and $M_{0\Sigma}(P)$ coincide.

PROPOSITION 3. Let P be a compact subset of G. Then $M_0(P) = M_{0\Sigma}(P)$.

Proof. The inclusion $M_{0\Sigma}(P) \subset M_0(P)$ is obvious. Our results in [4] show that $M_0(P) \subset L^1(\overline{U})^\rho$, where U is some relatively compact neighborhood of P. It remains to show that the topologies on $L^1(U)$ from the norms $\|\cdot\|_\rho$ and $\|\cdot\|_\Sigma$ are equivalent. This follows from the relation $A(G) \mid U = B(G) \mid U$.

Definition. Let $P \subset G$ be a compact subset of G such that $A(G) \mid P = C(P)$ (equivalently, for $\mu \in M(P)$ suppose $\|\mu\|$ is equivalent to $\|\mu\|_{\rho}$ or $\|\mu\|_{\Sigma}$). We say then that P is a *Helson set*. Note that this is the same as saying that $B(G) \mid P = C(P)$.

We shall show (under the condition that G is compact or metrizable) that no non-zero measure supported in a Helson set can be in $M_0(G)$.

THEOREM 4. If P is a Helson set in a compact group G and $\mu \in M_0(P)$, then $\mu = 0$.

Proof. As expected, the proof is modelled on the abelian analogue due to H. Helson (see [7, p. 119]).

For a bounded Borel function ϕ on P, we let T_{ϕ} be defined on $M_0(P)$ by the relation

$$T_{\phi}(\mu) = \int_{D} \phi \, d\mu \qquad (\mu \in M_{0}(P)).$$

Now T_{ϕ} is a continuous linear functional on $M_0(P)$. Since $M_0(P)$ can be identified with a closed subspace of $\mathscr{C}_0(\hat{\mathbb{G}})$ via the Fourier transform \mathscr{F} , we can extend T_{ϕ} to $\mathscr{C}_0(\hat{\mathbb{G}})$. Thus there exists a $\psi \in \mathscr{L}^1(\hat{\mathbb{G}}) \cong \mathscr{C}_0(\hat{\mathbb{G}})^*$ (see [2, Section 8.3.9]) such that $T_{\phi}(\mu) = \mathrm{Tr}(\hat{\mu}\psi)$ for $\mu \in M_0(P)$ (Tr denotes the trace). Since the Fourier algebra A(G) of G is isomorphic to $\mathscr{L}^1(\hat{\mathbb{G}})$ via \mathscr{F} , there exists an $f \in A(G) \subset C(G)$ with

$$\int_{G} \phi \, \mathrm{d}\mu \, = \, \mathrm{Tr}(\hat{\mu}\psi) \, = \, \int_{P} \, \mathrm{f} \, \mathrm{d}\mu \qquad (\mu \in \mathrm{M}_{0}(\mathrm{P})) \, .$$

We now use the fact that $M_0(P)$ is a band [1]. This implies that if $\mu \in M_0(P)$, then so is $g \, d\mu$ ($g \in C(G)$). Hence $\int_P \phi \, g \, d\mu = \int_P fg \, d\mu$ ($g \in C(G)$). It follows that $\phi \, d\mu = f \, d\mu$.

Let $\mu \in M_0(P)$, and suppose by way of contradiction that $\mu \neq 0$. By Theorem 1, μ is continuous, and thus the support S of μ is a nonempty, perfect subset of P. We shall show that S is not extremally disconnected by proving that under our hypotheses G is metrizable.

Let \mathscr{H} denote the normal subhypergroup in $\hat{\mathbf{G}}$ generated by $\left\{\alpha \in \hat{\mathbf{G}} \colon \hat{\mu}_{\alpha} \neq 0\right\}$, and let $\mathbf{H} = \mathscr{H}^{\perp}$ be its annihilator in \mathbf{G} ; that is, let

$$H = \{x \in G: T_{\alpha}(x) = I_{n_{\alpha}} \text{ if } \alpha \in \mathcal{H} \}$$

(see [6]). Now \mathscr{H}^{\perp} is a closed (hence compact) normal subgroup of G, and $\mathscr{H}^{\perp\perp} = \mathscr{H}$ (where $\mathscr{H}^{\perp\perp} = \left\{\alpha \in \widehat{G} \colon T_{\alpha}(x) = I_{n_{\alpha}} \text{ for all } x \in \mathscr{H}^{\perp}\right\}$).

We now show that H is a finite subgroup of G. We need the fact that if H is a Helson set (so that A(H) = C(H)), then H is finite. Several proofs of this are known. For example, observe that A(H) is always weakly sequentially complete [3] but that C(H) is weakly sequentially complete only if H is finite.

Let m_H be the Haar measure on H. Then $\mu = m_H * \mu$, and $\mu(E) = \mu(xE)$ for each Borel set E and each $x \in H$. It follows that S is a union of cosets of H. This implies that H is a Helson set, and therefore H is finite.

Now $(G/H)^{\hat{}} = \mathcal{H}[6, p. 784]$, and this set is countable. Thus G/H is metrizable (as is H). Thus G is metrizable (by the Kakutani-Birkhoff characterization of metrizable groups).

Now we can assert the existence of a point $p \in G$ that is in the closure of each of two disjoint open subsets of S, say V_1 and V_2 . Finally, let χ_1 be the characteristic function of V_1 ; we then have the required contradiction of $\chi_1 d\mu = f d\mu$ (for some $f \in C(G)$).

Observe that every compact group has an infinite Helson set, provided the group contains an infinite abelian subgroup (see [7, p. 166]). This follows from the extension theorem for the Fourier algebra of a closed subgroup of a compact group [2, Section 8.6.4].

THEOREM 5. Let P be a Helson set in a locally compact metrizable group G. If $\mu \in M_0(P)$, then $\mu = 0$.

Proof. Let ϕ be a bounded Borel function on P. Let T_{ϕ} be defined on $M_0(P)$ by the relation $T_{\phi}(\nu) = \int_{P} \phi d\nu \ (\nu \in M_0(P))$. Now T_{ϕ} is a continuous linear functional on $M_0(P)$. Since $M_0(P)$ can be identified with a closed subspace of $C_{\rho}^*(G)$ via the map $\nu \mapsto \rho(\nu)$, we can extend T_{ϕ} to $C_{\rho}^*(G)$. Thus there exists an $f \in B_{\rho}(G) \subset C^B(G)$ (where $B_{\rho}(G)$ is the dual space of $C_{\rho}^*(G)$) such that $\int_{P} \phi d\nu = \int_{P} f d\nu \ (\nu \in M_0(P)) \ [5, p. 192]$. But $M_0(P)$ is a band, and therefore $\int_{P} \phi g d\nu = \int_{P} f g d\nu \ (g \in C^B(G), \ \nu \in M_0(P))$. Thus $\phi d\nu = f d\nu$. Now we proceed as in the abelian and compact cases. \blacksquare

COROLLARY 6. If G is a locally compact, metrizable (nondiscrete) group, then $A(G) \neq C_0(G)$.

Proof. Let U be a relatively compact open subset of G. Then $L^1(U) \neq \{0\}$. But if $A(G) = C_0(G)$, then \overline{U} is a Helson set.

REFERENCES

- 1. C. F. Dunkl and D. E. Ramirez, Translation in measure algebras and the correspondence to Fourier transforms vanishing at infinity. Michigan Math. J. 17 (1970), 311-319.
- 2. ——, Topics in harmonic analysis. Appleton-Century-Crofts, New York, 1971.
- 3. ——, Sidon sets on compact groups. Monatsh. Math. 75 (1971), 111-117.
- 4. ——, Homomorphisms on groups and induced maps on certain algebras of measures. Trans. Amer. Math. Soc. (to appear).
- 5. P. Eymard, L'algèbre de Fourier d'un groupe localement compact. Bull. Soc. Math. France 92 (1964), 181-236.
- 6. S. Helgason, Lacunary Fourier series on noncommutative groups. Proc. Amer. Math. Soc. 9 (1958), 782-790.
- 7. W. Rudin, Fourier analysis on groups. Interscience Publishers, New York, 1962.

University of Virginia Charlottesville, Virginia 22901