NONRETRACTABLE CUBES-WITH-HOLES
William Jaco

1. INTRODUCTION AND DEFINITIONS

A cube-with-handles of genus n is a compact, orientable 3-manifold that is the
regular neighborhood of a finite, connected graph having Euler characteristic 1 - n.
If M is a cube-with-handles of genus n embedded as a polyhedral subset of the 3-
sphere S3, then S3 - Int M is called a cube-with-holes of genus n. A cube-with-
holes N is said to be reifractable if N can be retracted onto a wedge of n simple
closed curves, where n is the genus of N. Otherwise, we say the cube-with-holes N
is nonvetractable. I N is a retractable cube-with-holes of genus n and N can be
retracted onto a wedge of n simple closed curves in Bd N, then we say N is
boundary-retractable.

In [4], Jaco and D. R. McMillan gave examples of cubes-with-holes of genus n,
for every n > 2, that are retractable but not boundary-retractable. Their examples
are the same as the examples that Lambert [5] used to show that for every n > 2
there exists a cube-with-holes N,, of genus n, such that no mapping of N, onto a
cube-with-handles H,, of genus n, takes Bd N, homeomorphically onto Bd Hy,.

The existence of such a mapping from N, to H, is equivalent to the boundary-
retractability of N,, [4, p. 153, Theorem 3]. Jaco and McMillan also gave examples
of nonretractable cubes-with-holes of genus n, for every n > 3. However, they were
unable to resolve the question in the case of genus 2.

In Section 2 we show that there exists a nonretractable cube-with-holes of genus
2. Using this example, we are able to construct nonretractable cubes-with-holes of
genus n, for each n > 2.

If G is a group and a, b € G, we denote the commutator a-'b-lab of a and b
by [a, b]. For subsets A and B of the group G, we use EA, B] to denote the sub-
group of G generated by the set of all commutators [a, b] with a € A and b € B.
Let G| = G, and define Gp,3] =[Gy, G] for each m > 1. The group G is called
the commutator subgroup of G. The series G} D G222 *** 2 Gy, 2 G+1 2 *- 18
called the lower central sevies of the group G. We use the notation

G,= [ .
m>1

In Section 3 we show that if N is a retractable cube-with-holes with fundamental
group G, then N is boundary-retvactable if and only if the natuval homomorphism

wl(Bd N) — G/Gw
is an epimorphism,
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2. NONRETRACTABLE CUBES-WITH-HOLES

THEOREM 1. For each integer n > 2, theve exisis a nonvetvactable cube-with-
holes of genus n.

Consider the graph I" having Euler characteristic -1 and embedded in S3 as
indicated in Figure 1. Let G denote the fundamental group of S3 - T

Figure 1.
The relations
c =a"lba, x = [b, a][x"1, a-1],
d=blab, y = x"![b, a]x,
e = (b-lab)x, z = [b, a],

r = [x, [a, b]]x
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can be read from Figure 1. Hence, the group G has the presentation
G = {a; b) X X= [b, a—][X—ly a—l]} .

Let N denote a regular neighborhood of I" in S3, and let M = S3 - Int N. Then
M, is a cube-with-holes of genus 2. We shall show that M, is a nonretractable
cube-with-holes of genus 2.

Let F, denote the free group of rank 2, and suppose {p, q} is a set of free
generators for F,. Then the function ¢ that takes a to p, b to q, and x to 1 ex-
tends to a homomorphism (also called ¢) of G onto F,/[F,, F;].

Let T = S! X S! denote the two-dimensional torus. A mapping f of a space X
into T is called unstable if it is homotopic to a mapping into a proper subset of T.
Otherwise, f is stable. Let W denote the wedge W = S! V Sl naturally contained in
T. We can identify 7;(W) with the free group F; in such a way that T is obtained
from W by identification of a two-cell B2 to W along Bd B2 via the word [q, pl.

Since 7,(T) = 0, there is a map f: M, — T such that f = ¢. However, we have
the following theorem (which is Theorem 4 of [4]).

THEOREM. Let M be a compact 3-manifold, possibly with boundary, and sup-
pose H1(M; Z) is a free abelian group of vank 2. Then there exists a vetvaction of
M onto a wedge of two simple closed curves if and only if every mapping of M into
the torus T = S! x 8! is unstable.

In particular, if M, were a retractable cube-with-holes, then the mapping
f: M, — T would be unstable. We shall show that the assumption that { is unstable
leads to a contradiction.

If f is unstable, then there exists a mapping g: M — W such that the diagram

is homotopy-commutative (we use i to denote the inclusion mapping of W into T). It
seems unclear whether the induced homomorphism g,: G — F; is always a surjective
homomorphism. If it were, this would make life a bit easier.

We consider the subgroup F of F,, where F = g*(G) The group F is free, and
since G/ [G G] is free Abelian of rank 2, the rank of F is at most 2.

LEMMA 1. The vank of F is 2.

Proof. Suppose the rank of F is less than 2. Since i, g, ={,, there exist ele-
ments C, , C, € [F,, F;] such that g.(a) = pC, and g*(b) = qCy. Clearly,
pC, #1 #qCy; therefore, the rank of F can only be 1. That is, F is infinite cyclic.
Let z denote a generator of F. Then there ex1st integers j and k such that
pC, = zJ and qCyp = zk. It follows that (pC,)¥ = (qCp) . Let P and § denote the
equivalence classes determined by p and q in Fz/ [Fz, F2]. Then (p)X = (§). But
F,/ [FZ, FZ] is free Abelian on the elements p and . Arriving at this contradic-
tion, we have proved Lemma 1.

If K is a group and {Xl , **, X} are elements in K, we denote the normal
closure of {x;, -, X1} in K by <x1, T xk>.
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We now consider g, as a homomorphism of G onto F. Let u= g*(a) and
v = g*(b). We shall show that u and v are associated primitive elements of F.
Consider the commutative diagram

€x
G——>F

~

"l ) l"
Bx
G/ {[a, b]) ——> F/{ [y, v])

where p and § are natural projections and g « is induced by g, . The existence of
g, follows from the inclusion relation

g, {[a,b]) < {lu, vl).

LEMMA 2. G/{[a, b]) is Abelian.

Proof. It is sufficient to show that the generators p(a), p(b), and p(x) of
G/ <[a, b]) commute. The relation [a, b] € ([a, b]> implies that [p(a), p(b)] = 1.
Furthermore,

p(x) = p([b, allx~1, a-1]) = p(x)p(a) p(x~1)p(a=1).

Hence, p(a) p(x~1)p(a-!) = 1, and it follows that p(x) = 1. This completes the proof
of Lemma 2.

Since g, is surjective, the homomorphism §* is surjective and the quotient
group F/ ( [, v]> of F is Abelian. Let r and s be associated primitive elements
for F. Then < [u, v]> c ([r, s]) , and the argument above shows that
([r, s]> - <[u, V]> . Therefore, F/{[u, v]) is free Abelian of rank 2. By the
remark on page 266 of [6], [u, v] is a conjugate of [r, s] or [s, r]. By statement
(11) on page 293 of [7], the elements u, v are associated primitive elements of F.

LEMMA 3. Theve exists no element w € F such that w=[v, u][w-1, u-1].
— — 6
Pyoof. Each word w in F has the form w = u81 v 1. uanvﬁn, where g; #0
(1<i<n)and § #0 (1 <i<n) are integers. If €) #0 # 6,, we say w has length
W) =2n;if € #0 and 6,=0 or £¢; =0 and 6, #0, £(w)=2n - 1; and if
g, =0=20,_, &w)=2(n - 1). The length of a word w is a well-defined function of w.

Suppose that w = u°l vl o 80y ig an element of F such that each g; and
each &; satisfies the conditions above. Furthermore, suppose that
w = [v, uj[w-1, u-1].

Since w € [F, F], we see that ¢(w) > 4.
Case 1. If ¢(w) = 2n, then n>2 and

- -61_ -leq+l
w = (v-1 A R L e (e+1)y

If e #-1 or n > 2, we readily obtain a contradiction to the uniqueness of o(w).
Suppose, therefore, that € = -1 and n = 2. Then
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w = (v-lu-lvy) (Vﬁl u®2 v62) (uv %2y 7€2y 01

).
Cancellation is maximized if 6; = -1, €2 =1, and 6, = 1. But in this case

u-lv-luy = uwv-ltu-ly,

and this contradicts the fact that F is a free group on the elements u, v.
Case 2. If ¢(w)=2n-1 and €] #0, then n > 2 and

+1) 6 6 -6 -87 -(gg+l1
w = (V—lu-lv)(u(Sl )V 1... v n-lu)(v n-1 ey 51u (81 )).

If ¢ #1, it is again easy to obtain a contradiction to the uniqueness of ¢(w). Sup-
pose, therefore, that €7 = -1. Then

0 -6 -
w = (V‘lu‘lv)(v(51 eyl el ey 01

) .

If n > 3, then the minimum length of the word on the right-hand side of the equation
is 2n. If n = 3, then the cancellation is maximized if 6; = -1, €2 =1, and 62 =1.
But in this case the length of the right-hand side of the equation is 4, whereas

2(w) = 5, by hypothesis.

Case 3. If ¢(w)=2n- 1 and 8, #0, then n> 2 and

w = (v‘lu'lvu)(v61 eyt v61")u(v_61“u“$n v_él)u’l.

This gives an immediate contradiction.
Case 4. If ¢(w)=2(n - 1), then n> 2,

u-lyw) (701 oo vOn-lyy (v On-1 e 0Ly -1

and the length of the right-hand side of the equation is at least 2n.
This completes the proof of Lemma 3.

If a homomorphism g, of G onto F were to exist, with g (x) = w, then it would
be necessary that

w = [v, u]fw-1, u-1].
This contradiction completes the proof that M, is a nonretractable cube-with-holes
of genus 2.

If K is a group, we define the inner vank of K to be the upper bound of the
ranks of free homomorphic images of K. We denote the inner rank of a finitely
generated group K by IN(K). The free product of the groups G; and G, is denoted
by Gi *Gz. The following is Theorem 3.2 of [3].

THEOREM. Suppose G, and G, are finitely presented groups. Then
IN(G; *G,) = IN(G]) +IN(G>) .

Let M and N be orientable 3-manifolds with nonvoid boundary. Let Djpg and
D denote disks in Bd M and Bd N, respectively. Let h: Dy; — Dy denote an
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orientation-reversing homeomorphism. The 3-manifold obtained by identification of
Dy with Dy via the homeomorphism h is called a disk sum of M and N. We
usually denote a disk sum of M and N by M A N.

Suppose H_ _, is a cube-with-handles of genus n - 2 (n >2). Let
M,=M,; AH,_,. Then M, is a cube-with-holes of genus n. Clearly, such a disk
sum M, A H,_, can be embedded in S3. However, by [1], any compact 3-manifold
with connected boundary embedded in S3 is a cube-with-holes.

Consider the cube-with-holes M, = M, A H,,_», if n > 3. We have shown that
M, is nonretractable. We shall show that M, (n > 3) is nonretractable.

Suppose M, (n > 3) were retractable. We have as a corollary to Theorem 2 of
[4] the following result.

THEOREM. Let M denote a cube-with-holes, and let K denote the fundamental
grvoup of M. Let F be a free group of vank n. Then theve exists a homomorphism
of K onto F if and only if theve exists a vetvaction of M onto a wedge of n simple
closed curves.

Let K = 7;(M,); then IN(K) = n. However, K =~ 71(M3) * 7;(H,_2). Since M; is
nonretractable, IN(7,(M;)) = 1. The group 7;(H,_») is a free group of rank n - 2;
hence, IN(7;(H,,_5)) =n - 2. Since inner rank is summable over a free product,
IN(K) =n - 1. This contradiction completes the proof of Theorem 1.

3. RETRACTABLE AND BOUNDARY-RETRACTABLE CUBES-WITH-HOLES

Let M, denote a cube-with-holes of genus n, and suppose H, is a cube-with-
handles of genus n. A mapping '

f: (M, Bd Mp) — (Hp, Bd Hy)

is said to be boundavy-preserving if f | Bd M,, maps Bd M,, homeomorphically onto
Bd Hy, .

THEOREM 2. Let N be a cube-with-holes, and let G denote the fundamental
grvoup of N. If N is boundary-vetvactable, then the natural map

'nl(Bd N) — G/G,
is an epimovphism,

Pyoof. By Theorem 3, page 153 of [4] and the fact that N is boundary-retract-
able, there exists a boundary-preserving map f of N onto the cube-with-handles H.
Hence (f | Bd N),, is an isomorphism of 7 )(Bd N) onfo 7;(Bd H). Now let g be a
loop in G (based on Bd N). Choose y € 7;(Bd H) so that y and f,(g) are equivalent
as elements in 7;(H). This is possible, since the inclusion of Bd H into H induces
a homomorphism of 7;(Bd H) onto 7,(H). Hence, there exists a loop { € 7,;(Bd N)
such that f(¢) and y are equivalent as elements in 7,(Bd H). It follows that
f,(g¢-1) is equivalent to 1 in 7, (H).

Now f, is an epimorphism; therefore, by the corollary to Theorem 1 on page
151 of [4], ker f, = Gy, . That is, the class of g¢-! is an element in Gy, .

Let T denote a wedge at ty of n simple closed curves T;, -, T,. Suppose t
is a point of T such that t #t5. A PL map f of the compact 3-manifold M into T
is said to be transverse with vespect fo t if it satisfies the following two conditions.
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1) Each component of £-1(t) is a properly embedded, polyhedral surface in M.

2) If S is a component of f 'l(t), then there exist a closed neighborhood U(t) of
t in T - tg, a homeomorphism ¢: t X [-1, 1] onto U(t), and a homeomorphism y of
S X [-1, 1] onto the component U(S) of £-1(U(t)) containing S such that f maps each
arc Y(s x[-1, 1]) homeomorphically onto U(t), satisfying the equation
fu(s, r) = ¢t, r) (-1 <r <),

Suppose {tj, ***, tp} is a collection of points in T - {tp}. The PL map f of a
compact 3-manifold M into T is said to be transverse with vespect to {t;, ---, tp}
if f is transverse with respect to each t; (1 <i < p).

The following theorem constitutes a partial converse of Theorem 2.

THEOREM 3. Let N be a cube-with-holes, and let G denote the fundamental
group of N. If N is retractable and the natural map

7, (BAN) — G/G,

is an epimorphism, then N is boundavy-vetvactable,

Proof. Suppose n > 1 is the genus of N. Let T be a wedge at tp of n poly-
hedral, simple closed curves T;, -, T in Int N such that there exists a PL re-
traction r of N onto T. By the corollary to Theorem 1 on page 151 of [4], the fac-
tor group.G/G,, is isomorphic to the fundamental group of T, which is free of rank
n. Let i, denote the homomorphism of 7;(Bd N) into G induced by inclusion. H p
is the natural projection of G onto G/G, and r, is the isomorphism of G/ G, onto
71(T, tp) induced by r,, then the diagram

7,(T, tg)
r* A
i, )
7)(Bd N) ——> G r,
p
G/Gw

commutes. Since poi, is an epimorphism and F, is an isomorphism of G/G,, onto
71(T, tg), we see that r,oi, is an epimorphism. The homomorphism r oi, is
identical to (r | Bd N),, .

Choose a subdivision of T for which r is simplicial. For 1 <i <n, choose a
point t; € T; - {to} that is not a vertex in this subdivision of T. Then r is trans-
verse with respect to {t;, -+, t,}. Let F; denote the component of r-1(t;) contain-
ing t;. Each F; is a polyhedral, regularly embedded, two-sided surface in N, and

n
N - Ui=1 F; is connected.

Each F; meets Bd N, since each closed surface in Int N separates N. K it
were true that each F; met Bd N in precisely one simple closed curve, the proof

n
would proceed as follows: let J; = Bd F;. Then U i=1 J3 does not separate Bd N.
Hence, there exists a wedge B at by of n polyhedral simple closed curves
By, :»*, B, in Bd N such that B; N J; = {bi} consists of exactly one crossing point
and B; NJ5=9¢ (i #j). Let U(Fy (1 <i<n) denote the interior of a small product
neighborhood of F; in N. If U(F;) is properly chosen, then B - U(F;) is a tree.
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Hence, the projection of F; onto b; (1 <i < n) may be extended to a retraction of N
onto B. This construction is like that used in Theorem 2 on page 151 of [4].

To finish the proof of Theorem 3, we shall show that we can choose a retraction
r of N onto T such that each F; meets Bd N in precisely one simple closed curve.
That is, there exist a retraction r of N onto T and a collection {t;, ---, t,} of
points of T such that t; € T, - tg, r is transverse with respect to {t;, ---, t,},
and such that if F; is the component of r-1(t;) containing t;, then F; N Bd N = J; is
precisely one simple closed curve.

To this end, suppose that a PL retraction of N onto T is given and t; € Tj - tg
is not a vertex point of a subdivision of T for which f is simplicial. Let L; be the
component of f-1(t;) that contains t;. Let c(Lj; be one less than the number of

n
components of L; N Bd N. Then c(L;) > 0. If 2J;_; ¢(L;) =0, let r = f and F; = L; .

We shall show that if E?:l c(L;) = k > 0, then there exists a PL retraction f' of N
onto T such that

(i) £' is homotopic to f (Rel {ty}),
(ii) if Li' denotes the component of (f')‘l(ti) containing t; and if c(L}) is one
1 n
less than the number of components of L; N Bd N, then Ei:l c(Ly) =k -1, and
(iii) f' is transverse with respect to {t;, -+, t }.
Since E?:l c(L;) > 0, there is an argument similar to that in the proof of

Lemma 3 on page 369 of [2] to find a j (1 <j < n) such that L; n Bd N has distinct
components Jg and J;; such that there isan arc A in Bd N from Jg to J; with

n
AN Uizl L; = Bd A; and such that £ | A is a homotopically trivial loop in T based
at t;.
J

Let Qo and Q) be small disjoint disks in L; - {t;}, chosen so that for
m =0, 1, the set QN Bd N = A, is a small arc in J, having an end point of A in
its interior. Let Q C N - T be a regular neighborhood of A, chosen so that

n

QﬂU L; = QU Q; CBdQ,

i=1
and so that
QNBdN =D

is a disk in Bd Q for which A is a spanning arc. Then the closure of
BdQ-(QoU Q; UD)

is a disk D. The disk D meets Bd N in the disjoint arcs Ag and A; from Jg to
J1. A slight modification of Lemma 3.1 on page 361 of [2] yields a retraction f' of
N onto T such that

(i) f' is homotopic to f (Rel {T}),
(ii) the component of (f ')"l(ti) containing t; is L; (i #3j),
(iii) the component of (f')‘l(tj) containing t; is L; UD - (Qo U Q)), and

(iv) f' is transverse with respect to {tj, ---, tn}.
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Hence, if L; denotes the component of (f')-l(ti) containing t;, then c(Ly) = c(L;)
(i #j), and c(L;-;) = c(Lj) - 1. This is true since the distinct components J; and J;
of L; N Bd N have been altered to a single component

(JoUJ))U(AyUA)) - (Ay UAY).

This completes the proof of Theorem 3.
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