A CLASSIFICATION OF HYPERELLIPTIC RIEMANN
SURFACES WITH AUTOMORPHISMS BY MEANS
OF CHARACTERISTIC RIEMANN MATRICES

John Schiller

It has been shown [5] that a hyperelliptic Riemann surface S of even genus g
has an automorphism (conformal self-homeomorphism) ¢ of order 2 other than the
interchange t of sheets if and only if S has a Riemann matrix of the form

~

M I M+M M-M
1 or, equivalently 1
2 -1 ’ q ’ 2 ~ ~ ~ ~ i

I -M M-M M+M

where all the entries are submatrices of order g/2, and where I is the multiplica-
tive identity matrix. Furthermore, M and M are Rlemann matrices for the quotient
surfaces S/o and S/ to, respectlvely, which are elliptic or hyperelliptic; in the lat-
ter case, the natural projections map the hyperelliptic branch points (Weierstrass
points) of S over the Riemann sphere P to the hyperelliptic branch points of the re-
spective quotient surfaces over P. A similar result holds for odd genus. The object
of this paper is to complete the classification of hyperelliptic Riemann surfaces with
automorphisms by means of characteristic Riemann matrices.

Let S be a compact Riemann surface of genus g > 0. A set of (independent) one-
cycles (a;, b;) (i=1, ---, g) satisfying the conditions

6(aj, bj) = 6335 and  O(aj, aj) = 0 = &(b;, by),

where 6 is the bilinear, skew-symmetric intersection number, is called a set of
retvosections for S, and the corresponding homology basis is said to be canonical.
If wy, **r, wg form a basis for the holomorphic differentials on §, then the g X 2g

wo-((5,%) (§,))

is called a period matrvix for S. By a change of basis for the holomorphic differen-
tials, the matrix A can be reduced to the multiplicative identity (the new basis is
said to be normalized with respect to (a;, b;)), and then B becomes A-1B, which is
symmetric, has positive-definite imaginary part, and is called the Riemann matrix
for S with vespect to (a;, b;). Torelli’s theorem says that if the Riemann matrix for
a surface S with respect to (a;, b;) is the same as the Riemann matrix for a surface
S' with respect to (a ) then some conformal homeomorphlsm from S onto S'
takes either a; to aj and b; to b;, or a; to -aj and b; to -b; (in the sense that
homologous cycles are 1dent1f1ed see [4, pp. 27-28] a.nd [3]). I s (and therefore

S) is hyperelliptic, then conformality of one map implies conformality of the other,
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since the two maps then differ by the interchange of sheets on S', which is conformal.
We note that if ¢ is an automorphism of order n on S, then S is an n-sheeted,
branched, analytic covering of the quotient surface S/o under the natural projection
7. In addition to Torelli’s theorem, we use a result due to A. Hurwitz 1, p. 257},
which says that if a hyperelliptic Riemann surface S of genus g has an automor-
phism o, then S has an equation of the form either

w2 = zf(z?), with o: (z, w) — (ez, Venw), or

w2 = f(zm), with o: (z, w) — (ez, nw),

where ¢ =1 and ==+ 1. In either case, w? is of degree 2g+1 or 2g +2 in z.
We may assume that € is a primitive nth root of unity; for if & is a primitive kth
root of unity, then k divides n, say mk = n, and we consider g(zk) = f(zmK), Note
that (Ven)® ==+ 1, sothat ¢ is of order n or 2n. When n is even, Ve = - 1, since
we assume that € is primitive. We may also assume that Vve™ =+ 1 when n is odd,
since the case Ve = -1 merely interchanges the roles of ¢ and Lo, where

t: (z, w) — (z, -w) is the interchange of sheets on S. In order to eliminate both the
identity mapping and ¢ from consideration, we assume throughout that n > 1.
Finally, we adopt the convention of denoting the case n=+1 by o, and then n=-1
corresponds to (o.

Consider first the case where w2 = zf(z"), ¢ maps (z, w) onto (¢z, vew), and
n is odd. Then o is of order n, and to is of order 2n. Two points (z;, w;) and
(z2, w2) of S are in the same orbit of ¢ if and only if

(7, 20 2w = @3, 2V 2wy,
so that the natural projection 7: S — S/¢ is given by
i (z, w) — (28, 20-1)/2w) = (Z, %),

from which it follows that S/o has the equation %2 = Zf(Z). Two points (z;, w;) and
(z,, wp) of S are in the same orbit of to if and only if

(27, z‘f'lwlz) = (z3, zrzl'lwg),
so that the projection 7 S — S/Lo is given by
7 (z, w) — (2, 2z~ 1w2) = (2, &),

and S/10 has the equation W = Z£(z), that is, S/to has genus g = 0.

The other cases are similar. We list all the possibilities in Table 1.

Parity | order order
Case S ofn | of ¢ (Z, W) S/o of to (z, W) S/to
1 | w2=2z1f(z") | odd n | (z0, z(r-1)/2w) | ¥2=21(Z) | 2n | (zn, zn-lw?)| w=2z1(z)
2 w2 = zf(z") | even 2n (=, zn-1w2) w=z£2z) | 2n | (z?, zP-lw2) | w=2zf(z)
3 | wé=1i(zn) odd n (z?, w) we =1{(%) 2n (2™, w?) W = 1(z2)
4 | w?=1(zP) even n (z™, w) W= f(é)\ n (zn, 2 2w) | w2 =21(z)

Table 1.
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We note that in all cases the quolient surface is either vational, elliptic, ov hyper-
elliptic. Fuvthermore, when the quotient surface is hypevelliptic, the hyperelliptic
branch points (Weierstrass points) of S over P map by the natural projection into
the hyperelliptic branch points of the quotient suvface over P.

In Case 1, if w2 is of degree 2g + 1, then W2 is of degree (2g +n)/n, and this
is odd since n is odd. Hence W2 is of degree 2g + 1, where g is the genus of S/o,
and n = g/g. The surface S/to has genus g = 0. We refer to this possibility as
Case 1.1. If w2 is of degree 2g + 2, then W2 is of degree 28 + 2,

n = (2g +1)/(28 + 1), and again g = 0. We refer to this possibility as Case 1.2.

The other cases are similar. We list all the possibilities in Table 2.

Case | degree w? degree W n degree w n
1.1 2g +1 2g +1 g/g (g = 0) -
2.1 2g+1 (g =0) - (g =0) (2g/n even)
3.1 2g + 2 2g + 2 (g +1)/(g+1) (g=0) -
4.1 2g + 2 2g +2 (g+1)/(g+1) 28 +1 (g +1)/8
1.2 2g + 2 2g + 2 (2g + 1)/(2g + 1) (&=0) -
2.2 2g+1 (g =0) - (g =0) (2g/n odd)
3.2 2g +1 2g +1 (2g + 1)/(2g + 1) (g =0) -
4.2 2g + 2 2g +1 (2g +2)/(2g + 1) 28 + 2 (2g + 2)/(28 + 1)

Table 2.

We note that Cases 1.2 and 3.2 are equivalent. Indeed, the conformal homeomor-
phism (z, w) — (1/z, w/zg“) = (Z, W) maps a surface of Type 1.2 onto a surface of
Type 3.2.

Before determining the characteristic matrices, we introduce the following nota-
tion. A “cyclic” matrix of the form

Mo My Mz -+ Mpu.2 My
Mp.1 Mo M; -+ M,3 M,

b
M, M, M3 - My} My

where the My are p X q submatrices, will be denoted by

(1) <Mo,”',Mn-1;p><Q>-

A matrix obtained from (1) by replacing the submatrices below the main block-
diagonal by their negatives will be denoted by

(2) [Mg, -, M,_;;p%qal.
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A matrix obtained from (1) or (2) by the deletion of the rth block-column
(r =1, ---, n) will be denoted by

<M0’“.’Mn—l;pxq>r or [MO,".,Mn-l;pxq]r’

respectively. A superscript r indicates that the rth block-row has been deleted. If
the order of the submatrices is understood from the context, then p X q will be
omitted from the notation. Finally, if C, denotes the rth plock- column of a matrix
M, then M* denotes the matrix whose rth block-columnis C; +Cz + - + C,.

Case 1.1
WZ = Z(Zn - rlil) ces (Zn - rleg/n)’ n odd.
o: (z, w) — (ez, Yew) (order n), We =3%(Z - rf) - (Z - r’zlg), n=g/g.
Lo: (z, w) — (ez, - Vew) (order 2n), w = z(z - r3) -+ (2 - r‘zlg/n), g=0.

Without loss in generality, assume V& = -(cos(w/n) + i sin(r/n)). We represent
S as a two-sheeted, branched covering of the Riemann sphere P in the usual man-
ner. There are 2g circular orbits of branch points with n branch points skri
(k=0, ---, n - 1) in the ith orbit (i=1, ---, 2g). Also, 0 and « are branch points.
Let each pair

(Eeri—l ’ Seri) (i = 1, Tt g; k=0, -, n- 1)

as well as (0, ») determine a branch cut. Let b; be a loop about the cut (rp;_;, rz;),
and let a; be a loop that passes from one sheet to the other through (0, «) and

(rZi 15 rZi) (1 = 1 ) g) as in Figure 1.1.

An inspection of Figure 1.1 shows that 6(a;, oca;) =1 or -1. Again by the fig-
ure, if G(al, cal) = 1, then 6(a1, oka; ;) =1, and if 8(a;, oa;) = -1, then
6(a1, o a)—( 1)k (k— 1, -, n-1). Ine1ther case, 6(a;, o™ 1 a;) =1, since n is
odd. But then 6(03. ) 1, since 0 preserves 1ntersect1on number and is of order
n. Hence, 6(a;, Oai) = -1. It can therefore be seen that

0

b

k
6(o*b;, 0™ by)

&(o*a;, 0™b;) = &; and

ij Oxm 5

G(Ukai, O'ma.j) = (1 - 6km) (—1)m+k (m Zk)

(i,j=1, -, &k m=0, -, n-1). With the notation
g n-l
ak,i = + 2 -1)80%*kp,.,
r=1 s=l
the cycles (ak,i, O kp,) (i=1, -, 8 k=0, -, n- 1) form a set of retrosections
for S, and (’ll'ao iy 11b1) (i=1, -, ¢ forma set of retrosections for S/o. Note that

Cay;= a(k+1)modn i Hence the retrosections (ay,j, o Kp; ;) are of the form

(1) (0¥ag,;, oFby)  (i=1, -, Fk=0, =, n-1).
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oQ
Figure 1.1. Orbits 1, 2, **-, 2g - 1, 28; n = 5.
Let w; (=1, ---, g) be holomorphic differentials on S satisfying the relation
5 wi = 0500k
O'ka()’j
(k=0,-,n-1; j=1, ---, §). Then the differentials ckw, (i=1, -, §;
k=0, ---, n- 1) form a basis for the holomorphic differentials on S, normalized

with respect to (1) (if w = df at P, then ow =d(fo -1) at ¢ P, so that
S W= S ocw). If My denotes the g X § matrix (m; j)k= (S wi), then the
’ k

X ox o bj
corresponding Riemann matrix for S is
(2) (Mo, "+, Mq_1),
where M = M;_k since every Riemann matrix is symmetric. Furthermore, the

n-1 -~

differentials ®; = 2J,-o 0Xw; (i=1, ---, &) are invariant with respect to ¢ and are
therefore defined on the quotient surface S/o. They are normalized there with re-
spect to (Tag ;, Thy) (i =1, ---, £), and the corresponding Riemann matrix for S/o¢

n-
is Z’k:o My . Finally, if in the process above we replace ¢ by to, then the cor-
responding Riemann matrix for S is

[WO’ Ty Wn-l]’
where Wy = (-l)kMk.
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Conversely, suppose that a hyperelliptic Riemann surface S has a Riemann

matrix of the form (2) with respect to some retrosections (ay,;, bk,:) (i=1, -, g';
k=0, --,n-1) (n>1). Then S has the same Riemann matrix With respect to
(@(k+1)mod n, is P(k+#l)mod n, ¥ (i=1, -, g% k=0, ", n-1).

Hence, by Tore111 s theorem (Wlth S S'Y), the retrosections (ak,i, bk,;) are of the
form (0 ag,i, 0 kg 1) i=1,-,g"5 k=0, - 1), where o is an automorphism
on S. Furthermore o 1nduces an automorphlsm of order n on the first homology
group of S, and therefore o is of order n [2, p. 737]. It is easily verified that the
corresponding normalized differentials are of the form okw i=1, -, g

k=0, ---, n-1). As before, the differentials ®@; = ZE (1) okw; (i=1, ---, g") are
defined and are linearly 1ndependent on the quotient surface S/o, so that S/ o has
genus g > g'. On the other hand, each holomorphic differential & on S/o can be
lifted to a holomorphic differential w on S that is invariant with respect to o.
Then

g' n-1
w=21 2 ¢ ;08 w;;
i=1 k=0
but w = cw implies that ¢y ;=cpy 3 (k, m=0, -, n-1;i=1, -, g'). Hence,

w = Elg 1 Co,i@;, sothat g'=g. An inspection of Table 2 shows that if n is odd,
then S is of Type 1.1, and if n is even, then n =2 and S is of Type 4.2 (the ex1st-
ence of such a matrix for a surface of Type 4.2, when n = 2, will be established in
the corresponding section). We summarize:

THEOREM 1.1. Let S be a hypevelliptic Riemann suvface, and let n > 1 be
odd. Then S is of Type 1.1 if and only if S has a Riemann matvix of the form

M = <M0, Tty Mn_1;§X§>,

-1
wheve My = M;_k. Furthermove, M can be chosen.so that Z}Ezo Mk is a Riemann
matrix for the quotient suvface S/o.

Case 2.1

w2 = z(zD - ry) - (2" - rleg/n), n even, 2g/n even.

o:(z, w) — (¢z, vew) (order 2n), W=2(Z-1r}) - (Z- rrzlg/n), g=0.

Lo: (z, w) — (ez, - Vew) (order 2n), w = z(z - r?) - (z - rgg/n), g=0.

Case 2.1 is similar to Case 1.1 in that there are an even number (2g/n) of
branch orbits and (0, «) is a branch cut. If we define (a;, b;) (i=1, ---, g/n) asin
Case 1.1, then again 6(a;, 0a;) =1 or -1, but the argument used previously to show

that in fact 8(a;, o0a;) = -1 now breaks down, since n is even and ¢ is of order 2n.
However, since 6(a;, 0a;) = -8(a;, toa;), we may assume (by a relabeling, if neces-

sary) tha.t 6(aj, oa;) = -1. Then, if ag ;, w;, and My (i=1, -, g/n;
k=0, , N - 1) are defined as in Case 1. 1, the correspondmg Rlemann matrix for
S is

(1) [MOs ) Mn—l] ’
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where My = -M{ . (k =1, -=-, n/2) by symmetry. The difference between (1) of the
present case and (2) of Case 1.1 is due to the fact that now o™b; = - b;, whereas
o™b; =b; in Case 1.1. If we replace ¢ by o, then the corresponding Riemann
matrix for S is

[W07 “‘! Wn—l] b
where Wy = (-1)KM,, .

Conversely, if a hyperelliptic Riemann surface S of genus g has a Riemann
matrix of the form (1) with respect to some retrosections (ay i, by, i)
(i=1, -, g/n; k=0, -, n-1) (n>1), then S has the same Riemann matrix with

respect to
(341,i5 Pry1,1) (=1, ", g/m k=0, ,n-2) and (-ag, -bg) -

Proceeding as in Case 1.1, we see that S has an automorphism ¢ of order 2n. If n
is even, then to is also of order 2n and S is of Type 2.1. If n is odd, then to0 is
of order n and S is of Type 1.1 (with ¢ and to interchanged). We summarize:

THEOREM 2.1. Let S be a hypervelliptic Riemann surface of genus g, and let
n> 1 be even. Then S is of Type 2.1 if and only if S has a Riemann matrix of the
Jform

[Mg, -+, My_; 5 8/nXg/n],
wheve My = —M;_k .

Case 3.1

w2 = (P - rrll) oo (gD - r?2g+2)/n)’ n odd.

o: (z, w) — (ez, w) (order n), W? = (% - r‘ll) e (2 - r§§+2), n=(g+1)/(&+1).

~

to: (z, w) — (ez, -w) (order 2n), w = (z - r‘f) e (7 - r?Zngz)/n), g =0.

If in Figure 3.1 we choose the cycles x and y so that 6(x, y) = 1, then

-1
6(ox, y) =1 or -1. However, if 6(ox, y) = 1, then Enmzo (-1)ymo™mx ~ 0, which
implies that x ~ -x, since n is odd and o is of order n. Hence &(0x, y) = -1.
We see that the pairs

(ocka;, okny) (i=1,--,8 k=0,--,n-1),
(1)
x+ox+--+0™x 0™y) (m=0, -, n-2)
form a set of retrosections for S, and the pairs (Fa;, b;) (i=1, -+, g) form a set

of retrosections for S/o. Furthermore,
(2) x+ox+--+onlx~ 0~ y+oy+--+only

on S, sothat Tx~ 0~ 7y on S/o. Let w; (i=1, ---, g) and Q be holomorphic dif-
ferentials on S satisfying the conditions

S wi = 04500k, S wi =0,
Kk

o a; x40 x+---+0 M x



176 JOHN SCHILLER

g
—T2g
g-1
Figure 3.1. Orbits 1, 2, *--, 2§+ 1, ZE +2; n=5,
S £ =0, 5‘ 2 = 6mo
ka.j x+Ooxtees+o M x
G=1,,8 k=0, -,n-1; m=0, -, n-2). Then ckw, (i=1, -, g;
k=0,--,n-1) and 0™ Q (m=0, ---, n - 2) form a basis for the holomorphic dif-

ferentials on S, normalized with respect to (1). If we define My as in Case 1.1, and

denote by X, the g X 1 matrix (x;),, = (5 “’i) and by Y, the element
oMy

S Q, then the corresponding Riemann matrix for S is
g my’

okp; oMy
(3) okw; M X
omQ ( xt ¥ )’
where

M(=Mt)=<MO:"':Mn—1>’ X=<X0"”’Xn—1>n’

Y (= Yt) = <Y0’ B Yn—l)ﬁ:
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n-1 n-1

n-1
and, by (2), Em:() Xn=0= Em:o Y,,. As before, Ekzo My is a Riemann matrix
for S/o. If in the process above we replace ¢ by to, then the corresponding

where, with the notation Wy = (-1)XMy, Uy, = (-1)™X,,, and V,, = (-1)™Y ), the

entries W, U, and V_are W =[Wg, -+, Wn_1], U=[Uq, -, Uy_1]n, and
V= [Vog, =, Vn-1ln-

Conversely, suppose that with respect to some retrosectlons (ak is bk :)
(i=1,--,g7k=0,--,n-1) and (x,,, ¥o) (m =0, -2),a hyperelliptic

Riemann surface S has a Riemann matrix of the form (3) Then S has the same
Riemann matrix with respect to

(a(k+1)mod n, i» b(k+l)mod n, i) (i= 1, -, g k=0,"",n- 1),
(Xm-XO) ym) (m=1’ ) n_z): and —(XO, yO+YJ_+"'+yn_2) .

Hence, as before, S has an automorphism o of order n. It can be seen that if we

denote the cycle xg by X, then the retrosections (X, yy,) (m =0, -+, n - 2) are of

the form (1), where (2) holds, so that 7x,,, ~ 0 on S/0. Furthermore, the subspace

of holomorphic differentials generated by the corresponding normalized differentials
Qn (0™8y) (m =0, -+, n - 2) is invariant with respect to ¢. However, if

-2
Z} n- 0d,, 2, is invariant with respect to o, then @ is defined on S/0, and

then
0=1{ j Q= (r=0, -, n-2).

TrXr

It follows, as in Case 1.1, that the genus of S/0 is equalto g' If n is odd, then to
is of order 2n, so that (by Table 2) S is of Type 3.1. If n is even, then to is also
of order n, and S is of Type 4.1 (the existence of such a matrix for a surface of
Type 4.1 is established in the next section). We summarize:

THEOREM 3.1. Let S be a hyperelliptic Riemann surface, and let n be odd
(n>1). Then S is of Type 3.1 if and only if S has a Riemann matvix of the form

(M X)
xt v/’

M (=MY = (Mg, -+, Mq_); EXE ), X = {Xg, """, Xp_1; EX1),,

Y(=Y)={Y,, ", Y

where

1x1)7,

nl’

and Em -0 Xn=0-= Em -0 Y, . Furthermove, the matrix can be chosen so that
Ek o My is a Riemann malvix for S/o.
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Case 4.1
w2 = (2% - r}) - (2" - rl2g+2)/n)s R €VeN.
o: (z, w) — (¢z, w) (order n), W% = (% - r}) (2 - rg§+2), n=(g+1)/E+1).
to: (z, w) — (2, -w) (order n), %% = (2 - r}) - (2 - r§§+2), n=(g+1)/g.

The case n=2 (g odd) of [5] is contained in this case. Case 4.1 is similar to
Case 3.1 in that there are an even number (2g + 2) of branch orbits and neither 0
nor « is a branch point. If we adjust Figure 3.1 so that each orbit contains an even
number n of branch points, we see that 8(0x, y) has one of the values 1 and -1. If
&(ox, y) = 1, then

n-1 n-1
0~ 2 (-1)™o™x = 25 (to)Mx,
m=0 m=0

which implies that 7x ~ 0. But an inspection of the adjusted Figure 3.1 shows that
(x, Ty) = (2a, B), where 8(a, 8) =1 on S/to. Hence, 6(0x, y) = -1. Proceeding
exactly as in Case 3.1, we again see that with respect to the retrosections

(Uka' Ukbi) (i-:l) Ty g;k=05 .."n—l)ﬁ

i

x+ox+--+0™x,0™My) (m=0, -, n-2)

S has a Riemann matrix of the form

O'kbi O'my
okwi M X
' TG
c™Q xt Y
where
M(=Mt)= <M0’“"Mn-1>; X=<X0,'“;Xn—l>n’

t n
Y(=Y) = <Y0, "y Yn—l)n:
-1 -1 -1
and 27 ?n=o Xm=0-= Z};:o Ym. Also, Z;E:o My is a Riemann matrix for S/c
with respect to (Ta;, 7hy) (i=1, ---, 8).
If in the process above we replace ¢ by (g, then the corresponding Riemann
matrix for S is

w U
W)
U Vv

where, if Wy, Uy, and Vo, are defined as in Case 3.1, then

W = <WO’.“:Wn-1>’ U = <U0,”"Un-l>n, vV = <V0;"':Vn—l>rr‘1-
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We again note that (7x, 7y) = (2¢, B), where 6(c, B) =1 on S/to. In fact, the pairs
(3) (Tai, #bi) (i=1,-,§-1) and (a,§)

form a set of retrosections for S/to. The differentials

n-1 n-1
;=2 (to)kw; (i=1, -, -1 and &= 2 (o)mQ
k=0 m=0

are invariant with respect to to. They form a basis for the holomorphic differen-
tials on S/to, normalized with respect to (3). The corresponding Riemann matrix
for S/iLo is

n

A -1 -1 A n-1
where W = Ekzo Wi, 0= Enmzo U,,and V= 21}'1=0 V- We note that ¥ 0,
since V has positive-definite imaginary part, and U # 0 by a result of H. H. Martens
[3, p. 109]. Hence, (2) does not have the same properties as (1).

Conversely, if a hyperelliptic Riemann surface S has a Riemann matrix of the
form (1), then the technique of Case 3.1 shows that S has an automorphism ¢ of
order n. If n is even, then S is of Type 4.1, and if n is odd, then S is of Type 3.1.
We have established the following result.

THEOREM 4.1. Let S be a hypevelliptic Riemann suvface, and let n > 1 be
even. Then S is of Type 4.1 if and only if S has a Riemann matvix of the form

H
xt v
M (= M) = <MO’ T Mn-l;gx-§>: X = <X0: 5 Xpo1s §X1>n,

n
Y(=Yt) = <Y0; ey Ynons 1X1>n,

whevre

n-1 n-1 .
and Em=0 Xm=0= Emzo Y. Furthevrmovre, the malrix can be chosen so that

n-1
Ek:O M, is a Riemann matvix fov S/o, and
( . 5()
~ -~ ’
X ¥

A -1 - -1 -1
where M = 2o (-1)EM,, X = E;zo (-1)"X_,and Y = ) (-1)™Y,,,isa
Riemann matvix for S/Lo.
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Case 1.2 (3.2)

w2 = z(z® - r}) - (2" - r?zgﬂ)/ ).

o: (z, w) — (ez, vew) (order n), W2 =

2z - r]) - (Z - r35,0),
n=(2g+1)/28+1).

A ~

Lo: (z, w) — (ez, -Vew) (order 2n), w = z(Z - r}) - (2 - r?2g+1)/n)’ g=0.

/ \s
/ <§
Tag+l

Figure 1.2, Orbits 1, 2, ++», 25, 2g + 1; n = 5,

Let the branch cuts and homology cycles for S over P be chosen as in Figure
1.2. The argument used in Case 1.1 to determine 6(a;, oca;) can be applied here to
show that 6(x, 0x) = -1. We see then that the pairs

( ) (Gkai’ Ukbi) (i= 1: Ty g; k= 0; tt, - 1))
1

(x+02x+ - +crzmx, _02m+lx) (m=0, -, (n-3)/2)

form a set of retrosections for S, and the pairs (7a;, 7b;) (i=1, ---, g form a set
of retrosections for S/o. Furthermore,

(2) X+0x+--+0o0lx ~ 0

on S, sothat 7x ~ 0 on S/c. Nowlet w; (i=1, -+, g) and Q@ (m =0, -+, (n - 3)/2)
be holomorphic differentials on S satisfying the conditions
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S wi = 045 Ook, S @m = 0, S @m = O6rm
O‘kaj O‘kaj x+0‘2x+--'+0'2rx
G=1,--,8 k=0,--,n-1;r=0, ", (n - 3)/2). Then oKw; (i=1, -, &
k=0, -, n - 1) and the Q,, form a basis (not normalized) for the holomorphic dif-

ferentials on S. If M, is as in Case 1.1, and if X, denotes the g X 1 matrix

), = ( S wi) , then the corresponding period matrix for S is

ogMmx
Ukai x+0 2 x4 +o 2Mx okp; ~g2mtly
oFw; f Tz X' M X
3 (@Al]B) = :
@m N O In-1)/2x (n-1)/2 * Y
where
M = <M0’ .";Mn-—l>, X = _<XO, ’",Xn-1>l,3,---,n:

X' = (<X0, Tty Xn-l>2,4,---,n—l,n * ’

-1
and, by (2), > -0 X, = 0. By applying o to the retrosections
m=0 “m
(x+02x+-+02mx -g2mtly)  (m=0, -, (n- 3)/2)

and using (2), we see that Y is invariant under the change in retrosections
(Xm, Ym) = (Xm, Ym), where
( ) (x;n, Yli'n) = —(YO ty it tYmy Xl - Xm) (m = 0’ ) (n - 5)/2);
4
(Xm, Ym) = -(yo+y1+ " +V¥m, Yo+ V1 + " +¥m - Xm) (m=(n - 3)/2).

The corresponding Riemann matrix for S is

M- X'(X - X'Y)t | X-X'Y
(5) A—lB =( )’
(x-x'v)t l Y

and, as before, the g X g matrix EE;(I) My is a Riemann matrix for S/o. We note
that in Case 3.1 (4.1) the matrix corresponding to X' is the zero matrix; in other
words, the period matrix corresponding to (3) is normalized. However, in this case
X =0 if X'=0, and then (5) reduces to a direct sum, which is impossible by the re-
sult of Martens (Case 4.1). Finally, if we replace ¢ by to, and if we again denote
(—l)kMk by Wy and (-1)™X,, by U,,, then the corresponding Riemann matrix for
S is

(W— U'(u-u'y)t ‘ U - U‘Y)
(U-u'yt | Y ’

where W=[Wo, -+, Wy_,], U= [ljko, “*, Un-1l1,3,4.0,n, and
U'= ([UO, T Un-—I] 2,4,---,n—1,n)
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Conversely, suppose that with respect to some retrosections (ak,i, bk’i)
(i=1,--,g5k=0,--,n-1) and (X, Yym) (m =0, ---, (n - 3)/2), a hyperelliptic
Riemann surface S has a Riemann matrix of the form (5). Then S has the same
Riemann matrix with respect to (a(x+1)mod n,i» P(k+1)mod n,7) A =1, -+, 8%
k=0, --,n-1) and (x;,, Y5 ) Of (4). To see this, we assume first that the Riemann
matrix in question comes from a period matrix of the form (3); this is possible, since
for each set of retrosections, any nonsingular matrix A determines a basis of holo-
morphic differentials, and B is then uniquely determined. Now let

W, E=1,-,g5k=0,-,n-1) and 9, (m=0,: -, (n-3)/2)
be the differentials whose integration over the original retrosections (ay ;, by ;)
and (Xp,, Ym) gives rise to (3). Then the differentials ®(41)mod n, i, integrated
over the new retrosections (2(i41)mod n,i» P(k+1)mod n, i) 2nd (Xp,, ¥1,), keep
(IX'M X) of (3) fixed, by the properties’ of I\}I, X, and X Furthermore, since the
(Xt , Ym) are linear combinations of the original (X,,, ¥), the corresponding
normalized differentials Q;, that preserve Y must be linear combinations of the
Q,,. Hence, the Q.,, integrated over the new retrosections, keep 0 as well as I
and Y in (0 I *Y) of (3) fixed. But, since any Riemann matrix is symmetric, (*)
must be equal to (X - X'Y)t; that is, the remaining entries in the period matrix (3)
determine (%), so that all of (3), and therefore (5), is held fixed. Hence, as before, S
has an automorphism o of order n (odd). We can adapt the technique of Case 3.1 to
show that g' is equal to the genus of S/0, so that S is of Type 1.2 (3.2). We have
established the following theorem.

THEOREM 1.2 (3.2). A hyperelliptic Riemann surface S is of Type 1.2 (3.2) if
and only if S has a Riemann matvix of the form

M- X'(X-X'Y)t ‘ X-X'Y
( ®-xv¢ | ¥ )
wheve
M = (Mg, ", M, 1;EXE), X="<Xo,"',Xn-1;§X1>1,3,--~,n,

X’ = (<XO’ B ’ Xn—l ; g X 1> 2,4,"',11—1,1'1)* ’
-1
Enmzo Xm =0, and Y is invariant undev the change in vetrosections
(Xm, Ym) = (Bm, Ym), where
(Xl"n: yll’n = _(YO ty1+ -t YVms Em+l - Xm) (m =0, -, (n - 5)/2))

(X, Ym) = -Yo+y1+ - +VYm, Yo+ Y1+ +¥m - Xm) (m=(n- 3)/2).

n-1 . .
Furthevmore, the matvix can be chosen so that 2J_g My is a Riemann matvix for
S/o.
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Case 2.2

w2 = z(z®-r}) -+ (2" - rrzlg/n), n even, 2g/n odd.

I

o:(z, w) — (ez, Vew) (order 2n), W = z(Z -r)) -~ (Z - rrzlg/n), g=0.

to: (z, w) — (e¢z, -Vew) (order 2n), w = 2(z - r}) - (Z - rrzlg/n), £§=0.

4 b(2g-n)/2n

Figure 2.2. Orbits 1, 2, +-+, (2g - n)/n, 2g/n; 2g/n odd, n = 6,
An inspection of Figure 2.2 shows that 6(x, 0x) =1 or -1. Since
4(x, 0x) = -6(x, Ltox), we may assume (by a relabeling, if necessary) that
8(x, ox) = -1. Then, as in Case 1.2, the pairs
(Gka‘iiakbi) (i=1y "',(Zg—n)/2;k=0, .“!n_l);

(x+02x+ - +02myg -g2mtl 4 (m=0, -, (n-2)/2)

form a set of retrosections for S. However, (2) of Case 1.2 does not hold here.
Proceeding as in Case 1.2, we find that the corresponding Riemann matrix for S is

M- X'(X - X'Y)t | X-X'Y
(1) ( )3

(X - X'y)t l Y
here M = [MO, B Mn—l]y X = —[XOa B Xn-1]1,3,"',n-1 ’

X'=([Xo, -+, Xn-1l2,4,...,n)™, and Y is invariant under the change in retrosec-
tions (x,,, ¥, — (X1, Yi), Where
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(X;‘n’ Y!['Il) = (YO +YI + oo +Ym) Xm-l—]_ - Xm) (m = 0, Ty (n - 4)/2);

(X(n-2)/2 » Yin-2)/2) = ~(Vo +¥1 +* +¥(n-2)/2, ~X0) -

If we replace o by to, then the corresponding Riemann matrix for S is

(W— U'(U - U'Y)t l U - U'Y)
w-uyt | Y ’

where W=[Wo, -+, Wn_1], U=[Uo, -, Un-1]1,3,....,n-1, and
U' = ([Uo, =+, Un-1l3,4,...,n)
Conversely, if a hyperelliptic Riemann surface S has a Riemann matrix of the

form (1), then the technique of Case 1.2 can be adapted to show that S is of Type 2.2.
We can state our result as follows.

THEOREM 2.2. A hypevelliptic Riemann surface S is of Type 2.2 if and only if
S has a Riemann matrix of the form

M- X'(X - X'Y)t l X-X'Y
( (X - X'y | Y ) ’

where M = [Mq, ***, Mp_1; (28 - n)/2n X (2g - n)/2n],

X = -[Xo, **, Xn-1; (28 - 0)/2n X 1] 1,3,.c.n-1, X' = ([Xo, =, Xn-1]2,4,...,0 "

and Y is invariant undev the change in retvosections (X,n, Y — (Xm, Ym), Where

(Xm, y;lrn) = "(Yo +Y1 + oo +Ym) Xm+l ~ Xm) (m = 0’ "ty (n - 4)/2),

(in-Z)/z, yEn—Z)/Z) = -(yo+y1+ = +Y(n-2)/2, “X0) -

Case 4.2

w2 = (zP-r}) - (2" - rl(lngrZ)/n), n even.

2

Ir

o:(z, w) — (¢z, w) (order n), W (Z -} - (2 - rge),

(2g +2)/(2g + 1) .

n
to: (z, w) — (ez, -w) (order n), W2 = Z(z -} --- (2 - rg‘gH),

(2g +2)/(2g + 1) .

n

The case n =2 (g even) of [5] is contained in this case. Case 4.2 is similar to
Case 2.2 in that there are an odd number of branch orbits (2g + 1 in this case, 2g/n
in Case 2.2) with an even number of branch points (n) in each orbit. Figure 2.2,
with the cut (0, ©) deleted, can be used for this case. Assume first that n > 2.
Then, proceeding as in Case 2.2, we see that the pairs



A CLASSIFICATION OF HYPERELLIPTIC RIEMANN SURFACES 185

k A ~
(0 aj, okbi) (1=1’ Tty g;k=0’ -“:n_l)’
(1)
(x +02%x 4 +02Mx, -g?™Fly)  (m=0, -, (n - 4)/2)
form a set of retrosections for S, the pairs (7ai, b;) (i=1, -+, g) form a set of
retrosections for S/¢, and the pairs (7a;, 7b;) (i=1, ---, § = &) form a set of retro-

sections for S/to. Furthermore,
x+02x+ - +002x ~ 0

on S, so that 7x ~ 0 on S/o and 7x ~ 0 on S/to. Now, proceeding as in Case 1.2,
we see that the corresponding Riemann matrix for S is

M- X'(X-X'Y)t l X-X'Y

(2) ( . );
(X -X'Y) ‘ Y
here M = <Mo, e, Mp_1 ),
X = —<X0’ 5 Xn-1 > 1,3,--+,n-1,n» X' = (<X03 ", Xn-l > 2,4,---,n-2,n-1,n)*,
(n-2)/2 (n-2)/2
2: Xam=0= 27 Xomel,
m=0 m=0

and Y is invariant under the change in retrosections (X, Ym) — (X, Yia), Where
(X;’ny yll'n) = _(YO +YJ_ + 0 +ym’ xm+1 - Xm) (m = 0, Ty (n - 6)/2);

(X(n-4)/2 Yin-4)/2) = -0 +Y1 + " +Y(n-4)/2, “X(n-4)/2) -

n-1
As before, the matrix Ekzo My is a Riemann matrix for S/o with respect to
(fa;, ) (i=1, ---, 8. If ¢ is replaced by to, then the corresponding Riemann
matrix for S is
W-U'(U-U'Y)! | U-U'Y
(3) - I ,
(U-1U'Y) Y
where
W = <W0) “.; Wn-l >7 U = <UO, “.’ Un-—l > 1,3,---,n-l,n,
' -_— caasn *
U' = ({Uy, -, Up1) 2,4, n-2,n-10
(n-2)/2 (n-2)/2
2 Upm =0 = 2 Uomi+l -
m=0 m=0

n-1
Also, 27 x=0 Wi is a Riemann matrix for S/Lo with respect to (7a;, 7b;)
(i=1, -+, g). ¥ n=2, then the x-retrosections of (1) do not appear. The matrix (2)
becomes simply M = (MO, M, > , and (3) becomes W = <M0, -M; >, where
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Mg + M; is a Riemann matrix for S/o, and My - M; is a Riemann matrix for S/to.
This is essentially the result for the case n =2 (g even) of [5].

Conversely, if a hyperelliptic Riemann surface S has a Riemann matrix of the
form (2), then we can adapt the technique of Case 1.2 to show that S is of Type 4.2.
Hence, our final classification theorem is as follows.

THEOREM 4.2. A hypevellipltic Riemann suvface S is of Type 4.2 if and only if
S has a Riemann matvix of the form

M- X'(X-X'Y)t l X - X'Y
<M0,M1;§X§> n=2), or ( ) (n>2),

(X-X'7)°" |y
whevre
M = <M07 A’ Mn-l; §X§>, X = -<X07 Yy Xn—l; §X1> 1,3,++-,n-1,n>
! *
X' = (<XO: I Xn—1> 2,4,°*,n-2,n-1,n/ >
(n-2}/2 (n-2)/2
Z; Xom = 0= E X2m+l’

m=0 m=0

and Y is invariant undev the change in retrosections (X, Ym) — Xm, Ym), where
Emy> Ym) = ~Go+y1+ "+ Vms Xyl ~ X)) (m=0, -, (n-6)/2),
(X(n_4)/z’ Y(n-4)/2) = -ty + Yy a2 ‘X(n_4)/2)-

n-1 .
Furthermove, the matrix can be chosen so that Ekzo My is a Riemann malvix for

Sl
S/o and Z}E:O (—1)kMk is a Riemann matvix for S/to.
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