INEQUALITIES GOVERNING THE OPERATOR RADII
ASSOCIATED WITH UNITARY p-DILATIONS

John A. R. Holbrook

1. INTRODUCTION

Our purpose in this paper is to present some results concerning the operator
radii w (T) First we recall the pertinent definitions. Suppose T is an operator on
a H11bert space ¢ (in what follows, all Hilbert spaces are complex, and all opera-
tors are bounded and linear). We say the operator T belongs to the class Cp
(0 < p < =) if there exists a unitary operator U on some Hilbert space & such that
A contains o as a subspace and such that T"h = p P,,U"h for all h € &

(n=1, 2, ---). B. Sz.-Nagy and C. Foias introduced the classes Cp in [9] to provide
a unified framework for two results that we may state as follows: (i) (see Sz.-Nagy
[7]) T € C; if and only if |T| < 1; (ii) (see C. A. Berger [1]) T € C, if and only
if w(T) <1, where w(T) denotes the numerical radius of T, that is,

w(T) = sup {|(Th, h)|: h € o and |h] =

]

In our paper [5], we defined the operator radii wp( -) (0 < p <) by the equation
wp(T) = inf {furu>0and ulT e Cpl.

Independently, J. P. Williams used the same functions in [11]. The family of opera-
tor radii wp( -) includes the familiar operator norms |-} (=wy(-)) and

w( - ) (= wy( - )). We may adjoin the other well-known operator radius, namely, the
spectral radius v( - ), to this family in a natural way: the relation

lim wp(T) = p(T)

p—;oo

holds, so that we are led to define w(T) as v (T).

These and other known properties of the classes C, and the functions wpy( - )
are described carefully in Section 2. Sections 3, 4, and 5 contain results that we be-
lieve to be new. Experience suggests that wp(T) may be a convex function of p (for
fixed T) in every case. In Section 3, we obtam results in this direction. For ex-
ample, we show that if 0 < p;, pp < 2 and F(p) = (w(T)) -1, then

F((p; +p2)/2) > 2 F(p,) +(1 - N)F(py), ]
where 2= (2 - py)(2 - ,011 +2 - py)~1. From this inequality, we deduce that the
function (2 - p) (w (T))-! is increasing on (0, 1]. Combining this result with the
same inequality, we show that w (T) is indeed convex in the range (0, 1]. Section 4
contains convexity results of a less precise nature; there we simply demonstrate
the existence of certain convexity constants. In Section 5, we apply the earlier
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results to the problem of finding nontrivial multiplicative inequalities of the form
wpo(TS) < Kwp(T) wo(S), under the assumption that T and S are commuting opera-
tors.

2. BASIC PROPERTIES OF wy( ) AND C,

We list the following results for later reference. Proofs are given in [5] (a
number of the results have also appeared elsewhere; see, in particular, Williams
[11], C. A. Berger and J. G. Stampfli [2], E. Durszt [4], and Sz.-Nagy [8]).

(2.0) For p € (0, ), the inequality wp(T) <1 holds if and only if T € Cp.

(2.1) The function wy(T) is continuous for p € (0, «]; in particular,
[
V(T) = wo(T) = lim,_, wp(T).

(2.2) If 0<p<p' <, then wpi(T) < wy(T) and wp(T) < (2(p'/p) - 1) wpi(T).

(2.3) Forall p € (0, =], wy(T) >p-1|T].

(2.4) wy(T)=|T|.

(2.5)  wo(T) = w(T).

(2.6) The function wp( ) is homogeneous, that is, wp(zT) = |z| w (T) for each
complex number z. Moreover, if 0 <p <2, then w (-)is a norm on the
space B(<#) of operators on J{’ that is, we also have the inequality

wp(T +8) < wp(T) + Wp(S) (T, S € B(x)).

(2.7) For each p € (0, ], we have the inequality Wp(Tn) < (wp(T N (n=1,2, --).
Of course, there is equality if p = .

(2.8) If T and S are doubly commuting operators (that is, if TS = ST and
T*S = ST¥), then

WpO.(TS) < wp(T)wo(S) (p, o € (0, =]).

(2.9) If T is a normal operator, then
[Tl @p-1-1) ifo<p<i,
| Tl ifl<p<Le.

In fact, IrhllT is the case whenever T is normaloid, that is, whenever
v(T)=|T

(2.10) For all p € (0, =], wp(T) > wp(D) v(T).
(2.11) I T2 =0, then wp(T) = p~L|T| for a1l p € (0, «].

(2.12) ¥ 0< 0 <p< > and wp(T) = wy(T), then Wp:(T) = wg(T) whenever
oLp L.
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We shall also need the following criterion for membership in the class Cp
(0 < p < ).

(2.13) T € Cp<> %((I- 2Dh, h) > (1 - (p/2)) [[(1 - zT)h||* for each h € # and
each complex z such that |z| < 1.

This is the basic intrinsic characterization of elements of the class C,; it is estab-
lished in [9] under the additional assumption (for proving (<=)) that v»(T) < 1. In
[9], the authors point out that this assumption is redundant if p < 2; more recently,
C. Davis [3, Prop. 8.3] showed that it is always redundant, so that (2.13) is true as
it stands. We include a direct proof of this in the form of the following simple
lemma.

LEMMA. Suppose that %((I - zT)h, h) > K ||(I - zT)n||? for some real number
K and for all h € & and all complex z such that |z| < 1. Then v(T) <L 1.

Proof. I v(T) is greater than 1, then we can take some A € o(T) such that
|A] = »(T) > 1. Since A is in the boundary of the spectrum o(T), A must be an ap-
proximate eigenvalue for T, that is, there are h, € & such that “hn" =1 and
gn=(Thp - Ahy) =5 0. Let 0<e < |A| -1 and z=(1 +&)r"1, so that
(I- zT)h, = -¢ch, - zg,. Our inequality (with h =h,) then reads:

& - N(zgn, hy) > K(e2+29% (ehy, zg,) + |2|2 [ ga]?) .

Hence, letting n — «, we find that - & > Ke2, so that K < -¢-1 . But this becomes
false if we choose € small enough. ®

3. NEAR-CONVEXITY OF wp(T) FOR 0<p<2

In those few cases where we can compute w,(T) explicitly (see (2.9) and (2.11)),
the function turns out to be convex in p. Furthermore, the natural operations that
may be performed on these functions preserve convexity; for example, if
T, Se B(#) and T @D S is the operator acting on & @  in the obvious way, then
wp(T @S = wp(T) vV wp(S) (see Section 4). The theorems in the present section sup-
port the conjecture that Wp(T) is convex in every case. Throughout the section, T
denotes an operator in B(#). We rule out the trivial case where T = 0 (in this
case, of course, wo(T) = 0 for all p). We may assume, therefore, that wp(T) > 0
for all p € (0, =) (see (2.3)). ‘

THEOREM 3.1. Suppose 0<p, <p,<2,let p;=(p;+p,)/2, and let
g(p) = (2 - p) (wp(TN) 1 . Then glps) > (g(py) + &lp2)/2.

Proof. Since the operator radii are homogeneous, wp((wp(T)) -17) = 1, so that
(wp(T))"1T € Cp. From (2.13) we obtain the inequality

(3.1) R((I - z(wy(T))"! T)h, h) > %(2 - p) T - 2(wp(T) 1 T)n|?

whenever h € o, |z| <1, and p € (0, ©). When 2 - p > 0, (3.1) is equivalent to the
assertion

(3.2) #{((2 - p)I - zg(p) T)h, h} > %II((Z - p)I- zg(p) Th|2.
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Combining the inequalities obtained from (3.2) by putting p = p; and p = p,, and
recalling that

lal?+ [b]2 (=3(la+b]2+a-b[2)) > % [a+b]?

for all a, b € &, we find that

(3.3)  %R((2(2 - p3)I - z(glp;) + g(p2))T)h, h) > i—ll (2(2 - p3)I - z(g(p;) +glp))Th|% .

Since 2 - p; > 0, it follows that

2 ((1- 22 - p3) 2 (elor) + &(p2)T ) b, h)
(3.4)

[y

> =(2 - p3) |[(T-2(2- p3)- 1—(g(.ol) +g(p2)Th|?,

Do

whenever h € # and |z| <1. From (2.13) we conclude that

(2 - p3) ' 2(alp1) +g(P)T € C,p. .

This implies that wp3((2 - p3)'1-;-(g(p1) +8(p2))T) < 1, so that

(&(p1) + () < g(p3). W

We can rewrite the inequality of Theorem 3.1 so that it appears to be closer to
the assertion that w (T) is convex. Let F(p) = (w (T))-! ; we may interpret the fol-

lowing form of the 1nequa11ty as saying that F(p) is nearly concave in the range
(0, 2).

COROLLARY 3.2. If 0<p; <p2<2, then F(%(pl +pﬁ) > A1 Fpp) + 2, F(py),

wheve Ay = (2 - p)(2 - p1+2 - p2)~! (1=1,2).

We note that the result above yields a new proof of (2.12) in the range (0, 2]; this
argument is quite different from that given in [5].

COROLLARY 3.3. If 0<pg <2 and if w (T) = %o, (T) for some p> pg, then
w(T) = wp (T) whenever T € [po, 2]

Proof. Let Ty =max{7: w,(T) = WPO(T)}. Clearly, 74 > pg, and if we assume

that 79 <2, then p; = 7¢g - € >pg and pp = 79 + € <2 for small enough € > 0. But
then the inequality of Corollary 3.2 implies that F(7¢9) > X1 F(7g - €) + A, F(7¢ +¢),

where X} +2, =1 and X, > 0. Since F(7( - €) = F(7o) = F(py), we conclude that

A, F(pg) > A F(7g +€), so that F(pg) = F(7 +¢€) (of course, F is nondecreasing, by
(2.2)). This is contradictory, by the definition of 7o,. ®m

COROLLARY 3.4. The function g(p) = (2 - p) (Wp(T))‘l is concave on (0, 2].

Proof. By (2.1), g(p) is continuous. It follows that we need only establish mid-
point concavity. But this is the assertion of Theorem 3.1. &
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THEOREM 3.5. The function g(p) = (2 - p) (wp(T))'l is stvictly incveasing on
(0, 1].

Proof. By Corollary 3.4, g(p) is concave on (0, 1]. Thus it is sufficient to show
that g(p) < g(1) whenever 0 < p < 1. By (2.3) and (2.4),

(wo(TN™ < p|T|~! = plw (TN

It follows that g(p) < (2 - p)p(2 - 1) (WI(T))'1 = (2p - p?) g(1). But
1-(2p-p?)=(1-p)*>0. m

THEOREM 3.6. The function wp(T) is strictly convex on (0, 1].

Proof. Let f(p) denote wp(T). By (2.1), f(p) is continuous, so that it is suffi-
cient to prove strict midpoint convexity. Thus we need only show that if

1 .
0<p; <p<1 and p3 = (p; +p,)/2, then £(p3) <-2-(f(p1) +1£(pz)). Setting
F(p) = 1/f(p), we may state the desired inequality in the form

-1
(3.5) F(p3) > 2(f(py) +1£(pz)) .

By Corollary 3.2, we have the inequality

(3.6) F(p3) > A F(p)) + p F(p2),

where A=(2-p))(2-p;+2-p2)"  and p=(2-p2)(2-p; +2 - p2)"1. We con-
clude that (3.5) will follow provided we establish that

(3.7) A F(p;) + 1 Flpz) > 2(f(py) +£(p2)) L,

or, equivalently (since X + pu = 1), that

(3.8) Mt(p2)/H(p1)) + 1(f(p1)/E(p2)) > 1.

Now, for x > 0, the inequality A(1/x) + ux > 1 is equivalent to the inequality
px% - x + A > 0. But the roots of uxz -Xx+Ax=0 are 1 and A/u; note that
A =(2-p1)/(2 - pp) > 1. It follows that (3.8) holds, provided that

£(p1)/£(p2) > (2 - p1)/(2 - py), that is, provided that g(pz) > g(p1). This is a con-
sequence of Theorem 3.5. &

The final result of this section provides a near-convexity inequality for the
range (1, 2). We shall use a modified form of the criterion (2.13): if 1 <p < 2, then

T € C; <> ||zl - T|| < |z| +1 for all complex z such that

lz| > (0 - 1/(2 - p).
For the proof we refer to the book of Sz.-Nagy and Foias [10, p. 47].
THEOREM 3.7. Suppose that 1 < p; < pp <2, and let ¢(p) = (p - 1)/(2 - p) for
p € (1.2). Then wp(T) < ';-(Wpl(T) + WpZ(T)) whenever p 2,¢‘1(A1 ¢(p;) + 2, ¢(py)),
wheve X; = wp (T) (w,, (T) +wp (T (=1, 2).

(3.9)

Proof. Let a; =w, (T) (i =1, 2). From (3.9) it follows that
1 P; ’
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(3.10) lz;I-a7'T| < |z;] + 1 whenever |z;] > ¢(py) (i=1,2).
Now suppose that |z| > A1 é(p1) + A, ¢(pz). Then |z| = A b; + A;b, for some b

and by such that b; > ¢(py) (i =1, 2). Let z; =b;z/|z| (i=1,2). From the in-
equalities of (3.10), it follows that

(311)  [ryzT-nal Tl + |hpzaI- 2003 T < Ay 2| 422 za] 1.
Using the triangle inequality for the operator norm and (3.11), we see that
(3.12) |21 - 2(a; +a) IT| < |z| +1.

Let p = ¢>'1(7\1 #(p;) + 2, ¢(p,)); we have shown that (3.12) holds whenever |z| > o(p).
By (3.9), 2(a; +a2)’1T € Cp, so that wp(T) < (aj +a,)/2. Since w,(T) is a nonin-
creasing function of 7, the theorem is proved. ®

COROLLARY 38.8. If 1 <p) <p; <2, then wy(T) < (wpl(T) + wpz(T))/Z, pro-
. - 1 -
vided (Pz - p) (Pz - Pl) 1 < 5(2 - 92)2(2 - Pl) 2,
Proof. We use the notation of Theorem 3.7. By (2.2), A} > A,, so that
A olpy) + 2, d(p,) < %(cﬁ(pl) + ¢(p,)), since ¢ is increasing in (1, 2). Let p; be such

that ¢(p5) = %(qﬁ(pl) +¢(p,)). Since ¢'(t) = (2 - t)~2 and is increasing,

%(qﬁ(ﬂz) - ¢(p) (pp - p3)"t < (2 - pp)2

and
(¢(p2) - ¥p1) (b2 - Pt > (2 - py) 72,

so that (p, - p3) (p, - Pl)'l 2%(2 - p2)2(2 - p1) 2. Thus, if our hypothesis con-
cerning p is satisfied, then p > p3. It follows that

#p) > #p3) = 3(eo1) +9(02) > A16(p1) +229(02)

This implies that p > qb'l(?\l #(p1) + 2, ¢(p;)), so that Theorem 3.7 applies. W

4. EXISTENCE OF CONVEXITY CONSTANTS FOR Wp( )

Outside the range (0, 2), the only general result hinting at convexity of the func-
tion w,(T) appears to be (2.12). In this section, however, we deduce stronger re-
sults of this type by combining (2.12) with some observations concerning direct sums
of operators (Theorems 4.1, 4.2, and 4.3).

Whenever we have a sequence of operators Ty € B(#,) (n=1, 2, ***) such that
o0

sup,, || T,| <, we may define an operator T on the direct sum # = @ H,, as
1

follows. An element h of o is determined by a sequence {hn}olo, where
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©0
h, € #, and 241 ||h,||> <«. We define Th to be {T,h,}7] ; it is easy to see that
T is linear and that "T” = supp || Tn“ . When T is constructed in this way, we shall
0

use the notation T =@ T,,.
1

THEOREM 4.1. If T, € B(o#,) (n=1, 2, --) and supy, |Ty| <, then

o0
wp<@ Tn) = sup,, wp(Tn) whenever 0 < p < e.
1

Pyroof. Let a = supy wp(Tn). Then, for each n, a'lTn € Cp, so that there
exists a Hilbert space < ,, containing o, as a subspace, such that some unitary
U, € B(o¢,) satisfies the condition

a-lTy)k = ppggnuﬁ on #, (k=1,2, ).

(o] ©0 > ]
Now U= @ U, is unitary on o# = @ &, and o# = @ o, is imbedded in & in
1 1 1

c0 oC > o]
the obvious way. Let T = @ T,. Clearly, T = @ TX and UX= @ U, and it fol-
1 1 1
lows that (a~! T)k=pP,, UK on o (k=1, 2, ---). Hence a~1T ¢ C,, so that
wp(T) L a.

On the other hand, it is clear (from (2.13), for example) that if S € B(s¢) and S
has an invariant subspace &, then S € Cp = S | H € Cp. Applying this comment
to (wp(T))~!T, which has each & as an invariant subspace, we see that
(Wp(T) " Ty = (wy(T) "1 T | 22, € Cp, so that wy(T,) < wp(T) for all n. It follows
that a < wp(T). [ ]

THEOREM 4.2. If T, € B(o#,) (n=1, 2, ---) and sup, ||T,| < e, then

ww(é Tn) > sup, w_(T,).
1

o]

PTObﬁ Let T= @ T,. For each n, there exists an approximate eigenvalue 2

of T, such that |A| = v(T,) (= we(T,)). Since T, is the restriction of T to an in-
variant subspace, A is also an approximate eigenvalue of T. Hence
Woo(T) (= v(T)) > |A] = w(T,). m

Note that inequality can occur in Theorem 4.2. For example, let &, be an n-
dimensional space with orthonormal basis ¢;, ¢,, -, ¢,, and let T, ¢ = ¢4

(1<k<n-1),and T ¢, =0. Clearly, T, =0, so that sup, w.(T,) = 0. However,

0
k
“ (@ Tn) ” = sup,, | TX|| = 1, for all k. By the spectral radius formula,
1

Woo(g{é Tn) =1.
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The next theorem shows that under appropriate restrictions on the dimensions
of the spaces &#,, such behavior is impossible.

THEOREM 4.3. Suppose that Ty, € B(x#y) (n=1, 2, --), that sup, | Ty| < =,
o0

and that sup, (dim(s#)) <. Then woo(@ Tn) = Sup, Weo(Ty).
1

0 o0

Proof. Let T=@® T, and # = @ #,. In view of Theorem 4.2, we need only
. 1 1
show that ¥(T) < sup, v(Ty). But, if |x]| > sup, v(Ty), then, for each n, the opera-

[>e]

tor AI - T, has an inverse (AI - T;)-! € B(#,). Clearly, @ (\I- T,)! is an in-
1

verse for A - T on &, provided it is well-defined, that is, provided

sup,, ||()\I -T) ! ” < e, If this is not the case, however, we may assume (by pass-
ing to a subsequence) that there exist h, € & with “h || =1 and

|1 - T h, || —, 0. Since sup, d1m(.% ) <, we may also assume that all the
o are of the same dimension. In fact, we ma.y identify each o with a single

f1mte dimensional space #,. Now sup, |T,| <« and T, € B(.%o) for each n;
therefore, by compactness, we may assume that T —_ T, (convergence in operator
norm), for some T, € B(s#;). Now

|01 - Toyhy || < [T = T ho| + [ Tn - Toll ]l —n 0,

so that A € o(T(). But then v(Ty) > sup, v(T,), which is impossible, since
T, — Ty and it is well-known that the spectrum is continuous in the operator norm
if the underlying space is of finite dimension. m

THEOREM 4.4. Suppose that 0 < p; <p <p, <« andthat 0 <a <1. Then
there exists some b < 1 such that wp(T) < b whenever T is an opevalor satisfying

the inequalities ¥p, (T) L1 and WPZ(T) La.
Proof. Let « be the class of operators T with Wp, (T) <1 and Wp, (T) L a.

Let b=sup {wy(T): T € #}. Choose T, € « so that wy(T,) T, . Note that
sup, T, | < (Zp - 1) v 1, by (2.2), since Wp, (T,) <1. Thus we may construct the

operator T = (—D T, , and it follows from Theorem 4.1 that w,(T) = b, pZ(T) < a,
1

and wp (T) < 1. But, by (2.2), w“01 (T) > wp(T), so that if b =1, then
1
wpl(T) = wp(T) = 1. But in this case, by (2.12), WPZ(T) = 1. This is not possible,

since a < 1, and we conclude that b<1. m

THEOREM 4.5. Suppose that 0 < p; < p <o, that N is an integer, and that
0<a<1. Then therve exists some b <1 such that wp(T) < b whenever T is an
operator on a space of dimension at most N and T satisfies the inequalities
wpl (T) £ 1 and w(T) < a.

Proof. We simply repeat the proof of Theorem 4.4 with p, =, except that we
appeal to Theorem 4.3 at the obvious point’ (this requires the hypothesis involving
N). =
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If T is any operator such that T? = 0, then wy(T) = p~! | T|| for all p (this is
the assertion (2.11)). We do not have an exact expression for w,(T) when we know
only that Tk = 0 for some integer k > 2. However, the next result says something
about the rate at which wp(T) converges to 0 (= »(T)) in this case.

THEOREM 4.6. Fov each integer k, theve exists a nonincveasing function Fy(p)
on (0, ©) such that limg, _, Fi(p) = 0 and Fy(p) satisfies the relation
wp(T) < Filp) |T|| whenever T is an operator such that TX = 0. On the othev hand,
if T is such an opevator, then Wp(T) 2_'0"(1/.1) " T “(I/J) , Wheve j is the smallest
integey such that 2j > k.

Proof. Let & be the class of operators T such that ||T|| =1 and Tk =0, and
set Fi(p) = sup {w,(T): T € &} (0 <p < ). Since each wp(T) is nonincreasing in
p, Fi(p) also has this property. We have only to prove that limg, _, o, Fi(p) = 0.
Otherwise, an(Tn) > ¢ > 0 for some sequence {p,} suchthat p 1 « and certain

=]
operators T, € . Let T = @ T,. By Theorem 4.1, Wp(T) >¢ forall p
1

[~ o]
(0 < p < =). Hence, by (2.1}, »(T) > €. But this is impossible, since Tk =@ Tﬁ = 0.
1

To prove the second half of the theorem, note that (Tj)_z = 0. By (2.11),
wp(T9) = p™' | TI]|. But (2.7) implies that wp(T) < (wy(T)). m

5. MULTIPLICATIVE INEQUALITIES FOR wp( )

We now apply the results and techniques of the last section to the problem of
establishing inequalities of the form wpU(TS) < Kwp(T) wg (S), under the hypothesis
that T and S are commuting operators. This seems a rather intractable problem,
although (2.8) asserts that is has a neat solution (K= 1) when T and S are doubly
commuting operators. Here we shall study only the case where ¢ =1, so that we
seek inequalities of the form wy(T8) < K wp(T) |sl|. ©Of course, regardiess of
whether T and S commute, if p > 1, then

wp(TS) < [[Ts| < [Tl sl < pwo(T) 8]

(in the last step, we have used (2.3)). In the following theorems, we improve this re-
sult by appealing to the inequality v(TS) < v(T) v(S), which does depend on com-
mutativity.

THEOREM 5.1. For each p > 1, theve is a constant K(p) < p such that
wp(T8) < K(p) wp(T) |s|| whenever T and S ave commuting operators.

Proof. Otherwise, we have commuting pairs (T,, S,), normalized so that
|| Tnll = ” Sn” = 1, and such that (W‘O(T;,,))'l wp(TnSn) =r, T, p. Butthen
[>¢]

o0
Wo(TnSp) = Wp(Tp) T > rpp !, by (2.3). Let T=@ T, and S= @ S,. Then
1 1

[

TS=ST =@ T,S,, and hence wp(TS) = sup,, wp(TnSn) > sup, rpp-! =1. But
1

wo(TS) < [Ts| < [IT|l [|s]| = 1, so that, by (2.12), »(TS) = 1. It follows that
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1 < v(T)u(8) < wp(T) [|S]| = wy(T) = sup wp(Ty).

Since wp(Tp Sy = rnwp(Tn) and r, T, p, we conclude that sup, wy(TySp) = p > 1.
This is not possible, because wp(Tn Sn) < || Th Sn" <1. m

We now turn to a result of this type that depends on the constants provided by
Theorem 4.5. Suppose that N is an integer and that 1 < p < «. It follows from

Theorem 4.5 that, for some b < 1, wp(A) < b whenever A € B(#), dim(s) <N,
lA] <1, and »(A) <p-1/2,

THEOREM 5.2. Suppose that N, p, and b ave velated as in the last paragraph.
Then wp(TS) < bpwy(T) || S| whenever T, S € B(#), dim(#) <N, and T and S
commule.

Proof. Suppose that wy(TS) > bpwp(T) ||S||. Then, by (2.3),
wp(TS) > b |T| [Is| > b|Ts|,
so that »(TS/|TS||) > p-1/2. It follows that
bpwp(T) [[S] < wy(Ts) < ||TS|| < p!/2(TS) < p!/20(T) w(8) < p*/2wy(T) |8,

so that b < p-1/2, This is impossible (in the notation of the paragraph introducing
this theorem, put A = p-1/21). m

Our last theorem shows that if we again restrict the dimension of the underlying
space, we can reduce the constant K(p) to an arbitrarily small multiple of p, pro-
vided p is large enough.

THEOREM 5.3. For each integer N and each & > 0, there exists pg < © such
that wp(TS) < epwp(T) || S| whenever T, s € B(#), dim # <N, TS=ST, and
P2 Po-

Proof. Otherwise, we have a sequence {p,} (p, 1 «©) and commuting pairs
(T,, S,) suchthat T,, S, € B(+#), | T,] =] S,ll =1, and

an(Tn S, > spnwpn(Tn) || Sn” .

(2]

o0
By (2.3), wp (T, 8) > & | T,[| [|S,] = e Let T=@ T, and 5= 619 Sn. Then
1

o)

TS=ST = @ T, S,, and, by Theorem 4.1, w, (TS) >wp (T,S,) >¢. From (2.1) it
1 n n
follows that v(TS) > ¢, so that

e < v(T)v(S) < v(T) ||s|| = v(T) = sup »(T,)

(at the last step, we invoke Theorem 4.3). Now
v(Tq) < an(Tn) < A(epy " Sn ")-l an(Tn Sa) < (€ pn)-l .

But we can assume, if we wish, that p, > £-2 for all n, and a contradiction re-
sults. =
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