A NOTE ON FIBRATIONS AND CATEGORY

K. A. Hardie

Let cat X denote the Lusternik-Schnirelmann category of X as redefined by G.
W. Whitehead [4], and suppose cat X is renormalized to take the value 0 on con-
tractible spaces. Let p: E — B be a Hurewicz fibration, where B is arc-connected.
Using an alternative definition of cat X that is equivalent for a large class of
spaces, K. Varadarajan [3] proved the inequality

(1) cat E < cat F + cat B +cat F cat B,

where F denotes the fibre above some point * of B. Suppose that (B, *) is a closed
cofibred pair. The purpose of this note is to prove the inequality

(2) cat E < cati+ catp +caticatp,

where i: F — E denotes the injection and where the right-hand side is to be inter-
preted in the sense of the extension to maps of the (renormalized) definition of cate-
gory due to Whitehead. (See [1].) Each map f: Y — B such that cat f < cat B, con-
verted into a fibration, yields an example for which (2) is sharper than (1).

Let II™X be the n-fold product of the based space X with itself, let
Ax = A%: X — II™X be the diagonal map, and let j = jx: T?X — NI*X be the map
that injects the fat wedge. Suppose that cat p=n - 1. We recall that under these
conditions there exists a map ¢: E — T B such that

(3) iB‘¢ ~Ap -p.

Since II"(p): I™"E — NI™B is a fibration and since II"(p)-Ap = Ay - p, the homotopy
(3) may be lifted to a homotopy Ap ~ ¢': E — II"E, where

(4) n%(p)- ¢' = jg-¢.

Now suppose that cati =m - 1, and choose 6: F — T™E such that

(5) g 0 ~ Ap-i.

Since the map * — B is a closed cofibration, it follows from [2; Theorem 12] that i
is a cofibration. Hence the homotopy (5) can be extended to a homotopy

AR ~7: E — II"™E, where 7 is such that

(6) T 1= ]E - 8.

Now II" is a functor that respects homotopies; hence we have the relations
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o(r)-¢' ~ M™(AR)-¢' ~ I(AR) - AL = Ap .

Moreover, if x € E, then, in view of (4), at least one coordinate of ¢'x belongs to F.
Hence, in view of (6), at least one coordinate of II*(7)- ¢'x is the base-point of E.
Therefore II"(7) - ¢' can be factored through T™™E. It follows that

ctE<mn-1=(m-1)+m-1)+m-1)(n-1),

as required.
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