THE HAUSDORFF DIMENSION OF CERTAIN SETS
OF NONNORMAL NUMBERS

C. M. Colebrook

1. THE GENERATION OF MEASURES

Let C [0, 1) denote the collection of continuous, periodic functions (with period
1) on the reals, and let s be a fixed integer (s > 2). We say that a real number x is
v-normal (to the base s) if the sequence {s"x} has the distribution v in the sense
that

(1.1) lim

n -—oo

n-1

1
27 f(skx) = S fdv = v(f) for each fe C[0, 1).
k=0 0

=N

Here, v denotes a probability measure on [0, 1) that is invariant under the trans-
formation T: y — Ty = sy - [sy]. In other words, v is the weak* limit of the meas-
ures [, defined by the relations

n-1
(1.2) tn(f) = i) = = 2 H(T%x).
k=0

We say that x generates v (to the base s). The space of all these T-invariant
probability measures, together with the weak* topology, is denoted by I(s). Observe
that for each positive integer n we have the inclusion I{s) C I(s™). One measure in
I(s) is the ordinary Lebesgue measure X\, and x is normal to the base s in the
classical sense precisely when x is A-normal to the base s.

Consider a measure v in I(s), and let x generate v (to the base s). Asis
well known (see for instance [5]), relation (1.1) also holds when f is bounded and the
set of discontinuities of f has v-measure 0. In particular, the relation (1.1) holds
when f is the characteristic function of an interval [a, 8). That is,

lim % (number of k (0 <k <n - 1), for which ™ x € [, B))

n —o

(1.3)
= lim p,([e, B) = v([e, B)),

n —s oo

provided v({a})=0=v({B8}). Also, it is known that if the relation (1.3) holds for

some point x and for all choices of @ and 8 such that v({a})=0=v({B8}), then x
is v-normal (to the base s) (see [5]). In fact, for x to be v-normal, it suffices to
require that condition (1.3) hold only for intervals of the form [as ™, (a + 1)s™7),
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where a and n are positive integers (1 <a < s™ - 2). In this connection, we men-
tion that for each T-invariant measure v and each positive integer n, the relations

v({as}) =0 (a=1, 2 -, s?-1)

hold. To see this, we observe that the sets T-1{as™} (i =0, 1, ---) are disjoint;
therefore

m-1
v({as™n}) = v U T"i{as_n}) =
i=0

1 <1
m m
for m=1, 2, --. (However, v({0}) may be positive or 0.) We conclude that v-
normality of x to the base s is equivalent to the validity of condition (1.3) with
[a, B) =[as ™, (a+1)s™™), where a =1, 2, -, s - 2 (n=1, 2, =*). If »({0}) =0,
then we may also include 0 and s™ - 1 among the values of a.

Let ¢ be a positive integer, and let f; denote the characteristic function of the

interval [as ¢, (a+1)s™C) (a=0, 1, ---, s€ - 1). We shall write W(c) for the col-
lection of the s® characteristic functions f, (a =0, 1, ---, s€ - 1), and we shall de-

[~0]
note UC=1 W(c) by W. From the discussion above we see that we can obtain the
distribution properties of the number x by considering the behavior of the sequence
{pn (B} for e W instead of f € C[0, 1).

2. SOME TYPES OF NONNORMALITY: REGULARITY
AND SIMPLE REGULARITY

Let v be a measure in I(s). The number x is said to be simply v-regular (to
the base s) if condition (1.3) holds for the intervals

[@,8) = [as™!, @a+1)s™!) (@=0,1, -, s-1),
or equivalently, if condition (1.1) holds for f € W(1). We denote the set of all such x

by F(v, s). The number x is said to be v-regular (to the base s) if

[>e]

xe [ F(v, s€)=G(v, s).

c=1

Obviously, one can also define simple v-regularity and v-regularity in terms of the
digits in the expansion of x to the base s (see [1] for example). We observe that a
number that is v-regular to the base s is also v-normal to the base s"

(n=1, 2, ---). The converse holds if v({0})=0.

3. HAUSDORFF DIMENSION

Throughout this paper, dim A denotes the usual Hausdorff dimension of
Ac 0, 1). Let v be a measure in I(s). H. G. Eggleston [2] proved the relation

dim F(v, s) = - 2 v(f) logg v(f).
few(l)
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(We shall always set p loggp =0 if p=0.) Let h(v, c) be defined by

(3.1) h(v,c) =- 2 wvlf)log _ v(f).
fe W(c) s

Then
dim G(v, s) < inf dim F(v, s®) = inf h(v, c).

[ C

From well-known work on entropy (see for instance [4, page 48]), we conclude that

inf h(v, c!) = lim h(v, c).
C C — 00

We denote this limit by h(v). Thus
dim G(v, s) < h(v).

In Section 7, we show that in fact equality holds.

Let us now choose a number x. In general, the weak* limit of { ;un,x} does not
exist, so that x fails to have a distribution to the base s. Let V'(x, s) denote the
set of probability measures that are weak* accumulation points of the sequence
{in.x}. We shall say x generates V'(x, s) (to the base s). Clearly V'(x, s) C I(s).
It is easy to show that V'(x, s) is always nonempty, closed, and connected in I(s).

Let V be any nonempty, closed, connected subset of I(s). We shall be interested
in the set G(V, s), defined as the set of all points x that generate V to each base
s, s%, ---. In other words, x € G(V, s) if and only if

Vi, s€) =V (c=1,2 ).

In the case where V= {v} and v({0}) = 0, one easily sees that this definition of
G(V, s) agrees with the definition of G(v, s) given previously. (If v({0}) # 0 then
G({v}, s) D G(v, s).) In particular, consider the Lebesgue measure A. It is known
(see for instance [1]) that every number that is normal to the base s in the classical
sense is also normal to the base s€ (c =2, 3, ---). Hence G(A, s) is the set of all
numbers normal to the base s. This set is known to have Lebesgue measure 1 (see
[1]). Thus the Lebesgue measure of G(V, s) is 0 unless V = {1}.

The following questions now arise. If V is some nonempty, closed, connected
subset of I(s), is G(V, s) nonempty? Further, can we obtain an estimate of the size
of G(V, s)?

In Section 6, we construct a nonempty subset of G(V, s). Further, in Section 17,
we show that the Hausdorff dimension of G(V, s) is given by inf,, .y h(v).

4, AN UPPER BOUND ON THE HAUSDORFF DIMENSION OF G(V, s)

Let ¢ be a positive integer, and suppose x € [0, 1). We define u;‘:) by the con-
dition
n-1

0 = ulh© = 2 D w0 @ew.

n,x )
i=0
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For each set V C I(s€), we define F(V, s€) as the set of all points x € [0, 1) for
which the set

{(v(£), f € W(c)), v € V},
regarded as a subset of [0, 1]5° , is the set of accumulation points of

{(uih), £ € We)}.

We note that the relations

1
Ben,x = Hen = E(Mf}c +Tu(°)+ -+ T (C))

hold, where Tp is defined by Tu(f) = u(Tf) and Tf is given by Ti(y) = £f(Ty)
(y € [0, 1)). Also, we see that

lim Tlu(CJ) = T lim u(c)

J——)OO J—wo

whether either limit exists. From these equations, we obtain the relation

c-1
(4.1) lim fep =3 2 T lim pie).
j—o0 1=0 J—aco

Equation (4.1) implies the inclusion V'(x, s) D V'(x, s€) N I(s). Further, an applica-
tion of (4.1) to the case where x € F(V, s€) and V C I(s) shows that x € F(V, s). In
other words, F(V, s) D F(V, s€) if V c I(s). We can now prove the following lemma.

(4.2) LEMMA. For each V C I(s), we have the inclusion

o0

G(V, s) D ﬂ F(V, s°).
c=1

Proof. Let x be a fixed point of ﬂ j=1 F(V, s J). Let c bea positive integer.
Since x € F(V, s€), it follows that VD V (x, s°). Let v be a measure in V. For
each m (m =1, 2, ---), there is a sequence {nj ,} such that

lim unJ °Nf) = v(f) (€ W(me)) .

J—)oo

Such a sequence exists, because x € F(V, s™€). Since v € I(s), we can use relation
(4.1) to obtain the relation

lim ,u( c) (f) = v(f) (f € W(me)).

J—)OO J:

We note also that each function in W(p) is the sum of functions in W(q) whenever
q > p. Thus we can use a diagonal procedure on {{mn; .}, m=1, 2, -+ } to find a
sequence {n } with the property that
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[>e]
im 0 = v @Ge U wme)).
j—)OO '] m:l
Hence v € V'(x, s€), and we have the inclusion V'(x, s€)D V.

We have proved that V'(x, s¢) =V for ¢ =1, 2, -*-. But this is precisely the
requirement for x to belong to G(V, s).

On the other hand, suppose that x € G(V, s). Let ¢ be a fixed positive integer.
Then x also belongs to F(V', s¢), where V' is some closed connected set such that
V c V' c I(s®). Thus

av, s) ¢ U rv, s,
where the union is taken over all closed connected sets V' with the property that
V c V' c I{s®). Now, Theorem 4 of Volkmann [6] gives the Hausdorff dimension of

this union of sets as

dim U F(V', s¢) = inf h(y, c).
VEV

It follows that dim G(V, s) < inf, ¢y h(v, c) (e =1, 2, ---); therefore

(4.3) dim G(V, s) < inf inf h(v, ¢) = inf infh(v, ¢) < inf h(v).
c vev veV c VEV

In the proof of Theorem (7.2) we shall show that

(4.4) gim [ F(V, s€) > inf h(v).
c=1 vev

By (4.2) and (4.4), we have the inequality

(4.5) dim G(V, s) > inf h(v),
vev

and from (4.3) and (4.5) we conclude that

dim G(V, s) = inf h(v).
vVEV

In particular, let us examine the case where V= {v}. If v({0})=0, then v-
regularity to the base s, and v-normality to all the bases s™ (n=1, 2, ---) are
equivalent. For instance, this condition is satisfied if v is ergodic with respect to
T (except for the trivial case, where v is the point measure £g defined by
eo(f) = £(0)). Let v be ergodic (v #&g). Then G({v}, s) is the set of all numbers
that are v-normal to each base s, s2, ---. Therefore h(v) is the Hausdorff dimen-
sion of the set of all numbers that are v-normal to each base s, s2, ---

Let s > 2 be a fixed integer. Let V be a fixed, closed, connected, nonempty
subset of I(s). In the next section, we shall construct a subset R of G(V, s). Then,
in Section 7, we show that dim R > inf, .y h(v).
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5. THE DEFINITION OF R(n, N, v)

For each measure v € I(s), for each positive integer N, and for f € W(n) (n a
positive integer), let

®(f, N, v) = [v(E)N] + £(f).

Here £(f) = 1 for each f € W(n) with the exception of one function f chosen to satisfy
the condition v(f) = max¢e yy(,) v(f). Note that v(f) > s™ and v(f) > N-1s™ if

N> s?". We choose &(f) so that N = 2igc () ®(f, N, v). Itis clear that (i, N, v)
is positive provided N > s2n, Also &(f N, v) > [V(f)N] - (sn - 1), thus if N> sZn
then &(f, N, ») > 1. From now on we shall assume that N > sén,

We consider the set {0, 1, -+, s? - 1} = {a: f, € W(n)}, and the permutations
with repetitions of the elements of this set that we obtain by repeating each a
exactly ®(f,, N, v) times. That is, each permutation is an ordering of N integers
y (0 <y < s™- 1), Clearly, there are

N!
II (¢, N, v)1

Stn, N, v) =

such permutations. (Here the product is taken over all f € W(n).) For each permu-
tation (y;, y2, ***, ¥n) (0 <y; < s™- 1), we consider the associated interval
[y, y + s-8N) where

n(N-1) n(N-2)

Ny =s yi+s ya+ o+ yN-

Obviously, different permutations are associated with disjoint intervals. We denote
the union of these disjoint, half-open intervals by R(n, N, v). Each point in

R(n, N, v) “approximately” generates v in the sense indicated in the following

lemma.

MAIN LEMMA. Let v € I(s) be a fixed measure, and let c, n, and N be posi-
tive integers (c divides n; N > s2m). For each x € R(n, N, v) and each £ € W(e),
we have the inequality

c'lnN-l
27 f(Tix)-c!noNv@)| < 2¢!nst.
i=0

Notation. Let f € W(c) be fixed. For all nonnegative integers i and n (c
divides n), we define w(f, i, n) to be the set of all functions g € W(n) for which
g(x) = 1 implies f(T1¢x) = 1. We have the relation

27 glx) = f(Ti%x) = Ti®f(x).
g€ w(f,i,n)

We note that the set {w(f, i, n): f € W(c)} is a partition of W(n) with the property
that

(5.1) 27 v(g) = v(Tf) = v(f),

ge wif,i,n)
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because v is invariant under T. Note that w(f, i, n) is empty if ic > n; otherwise
w(f, i, n) has s™ ¢ elements.

Proof of the lemma. Let x € R(n, N, v) and f € W(c) be fixed. From the
definition of R(n, N, v), it follows that the number of values of j (0 < jc < nN), for
which f(T9¢x) =1, is given by the sum

1 1

E E q’(g) Ns V)‘

i=0  gewl(f,i,n)

Now relation (5.1) implies that

2, e N, v)= X v(g)N+ 0( i, n) = Nv(f) + 6(f, i, n),
gew(f,i,n) gew(f,i,n)
where
0(f,i,n) = 20 (@(g, N, v) - v(g)N).
gew(f,i,n)

The definition of ®(g, N, v) implies the inequalities

o, 1, 0] < L |[v@N]- v@E)N+ @) < 257,
gew(f,i,n)
Thus
c-lnN-1 c-ln-1
20 f(TI%) - ¢ nNv(f)] = 27 2. (®(g, N, v) - NV(g)))
=0 i=0 ge w(f,i,n)
c"ln—l
= | 2 6@ 1,n)| < 2 !ns®,
i=0

and the lemma is proved. "
n
Let {np}, {Ny}, and {t,} be sequences of integers (Np>s P), and put

-t
R,=T p'lR(np, Np, vp), where {vp} is a sequence of measures in I(s). For
convenience, we write S, for S(np, Np, vp). We define R to be the intersection of
all R: '

pt

o0
R = n an
p=1
The set R is always nonempty, provided tp=npNp+tp-1 and to=0. If x € R, then

to- tHh-

TP lxe R{np, Np, vp) (p=1, 2, ***). By the Main Lemma, T p-ly “approximate-
ly” generates v. In Section 6, we shall choose a sequence {vp} that is dense in
V. Then we shall choose sequences {np} and {Np} such that each point in R
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generates just V to each base s, s, ---. Clearly, the set R is of the form con-
sidered by Eggleston [3, Theorem 4].

Let h > 0 be prescribed. Suppose we show that the series

©0 ot
» n, N, s p
(5°2) p=1 P
Il s
q=1

converges for all @ < h. By Eggleston’s theorem, it follows that the Hausdorff
dimension of R is at least h. In Section 7, we shall show that the series (5.2) con-
verges for all @ <inf, .y h(v). Henceforth we denote inf, . h(v) by h.

Let {np} and {N p} be two unbounded, nondecreasing sequences of positive
integers (N2> San) that satisfy the additional conditions (here tg =0,
t, =n, N, + tp-l)

(1) np N, = olty_1),

(ii) ny, = my! (m, an integer),

(iii) np, divides t.
(Such a pair of sequences can be constructed by induction on p, starting with arbi-
trary values m;!=n; and N; > e )

The following readily established lemma will be used to show convergence
properties of certain functions of {np} and {Np}.

LEMMA. If {up} and {VP} are sequences of positive tevms such that {vp}
diverges and lim vy /uP =0, then

v, +tv, + - tv
2 n

1 =
uy fupy by,

lim

n —

6. A DENSE SEQUENCE OF MEASURES IN V

Let {a(n)} and {b(n)} (a(n)> b(n)) be fixed sequences decreasing to zero, and
let {c(n)} be an increasing sequence of integers. For each v € I(s) and each posi-
tive integer n, we define a neighborhood U,(v) with center v by the formula

Up(v) = { pells: 2 |p@-v@)] < b(n)}.

fe W(c(n))

For each positive integer n, the compact set V admits a finite cover by sets of the
form U,(v) (v € V). Allowing repetitions, we may assume that each such cover can
be written as {U,(v(j, n)), 1 <j <jn}, where j, is finite. Further, we may assume
that

Up(v(G, n)) N Up(v(G-1,n) # 0 (j=2,3, -, j,) and

U,(v(,, n) N Up1(v(@,n+1)) # H.
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(Here we have used the connectivity of V.) For each n, we henceforth assume a
fixed cover.

Let Ty =0, Ty =Ty +ip. For each positive integer r, let M =M, be
determined by the inequalities Ty;_; <r < Tp;. We choose the integer p, = p(r) so
that p(0) =0 and

p(r)

iq

(6.1) to (L -bM) <t @M)-bM)-2 2 ngs L.
p(r-1) p(r) q
q=p{r-1)+1

n

Such a choice of p(r) is possible, because a(M) > b(M), t, — ©, and s 1= o(Ng).
P

By the lemma, the last condition implies that qul ng s 4= o(tp).

For each r =Tp_1 +j (1 <j<Lim), set Up = Upm(v(j, M)). First we order the
centers of the neighborhoods U, , allowing repetitions. For each p (p=1, 2, --),
choose r sothat P._; <p <p,. We define vp to be the center of U,.. One can
easily verify that the sequence {vp} is dense in V.

We now show that with our choice of the sequences {v, }, {n,}, and {N,},
every point of R generates the prescribed set V to each base s, s, -

THEOREM.

o0

R C ﬂ F(V, s°¢).

c=1
Proof. We shall show that the following two propositions hold for each x € R and
each positive integer c.

(A) For each v € V, there exists a sequence {k;} such that

k;-1

]
20 #Tx) = v(f) (f € W(c)).
i=0

(6.2) lim kl
; j
j—
(B) If {kj} is a sequence for which (6.2) holds for some v' € I(s®), then there
exists v € V such that v(f) = v'(f), for all £ € W(c).

In other words, in (A) we show that x € F(V*, s€) for some V' D V, and in (B)
we show that in fact x € F(V, s€).

Proof of (A). Let x, v, and ¢ be fixed (x € R; v € V; ¢ a positive integer).
By construction, {U,: Ty;_; <r < Ty} isacover of V foreach M (M =1, 2, -+ ).
Thus, for each M, there exists at least one integer r in the range Ty <r < Ty
such that v € U.. Let r =r(v, M) be an integer. Let M be so large (M > Mo,
say) that ¢(M) > ¢ and that ny(r) is a multiple of ¢ when r > r(v, Mp) (here we use
the relation np = myp !). We show that the sequence

{n = c'ltp(r): r=r(v,M), M > My}

satisfies condition (6.2). Note that c¢ divides tp(r-1), because ¢ divides ny(r). For
n=c-! to(r) and f € W(c), we have the inequalities



112 C. M. COLEBROOK

n-1
c |22 £(Tix) - nu(f)
i=0
n-1
< |e ?O £(T%) - toeo1y v (O] + (tpr) = tpe-1))] Vo)) - v(0)]

el np () Np -1

t +ic

p(r-1)
+ |[c Z)O £f(T X) - np(r)Np(r) Vp(r)(f)

1=
p(r)
n
P
S -t (tp(r) - tp(r-l))b(M) + 2 22 n,s .
p=p(r-1)+1

Here we used the Main Lemma and the fact that ¢ < ¢(M). From (6.1), we obtain the
relation

n-1

27 f(Tix) - nv(f)| < .
c i:Of(T x) - nv(f) tp(r)a(M)

But nc = t,(;) and a(M) — 0 as n (and thus M) increases. Hence (A) is proved.

Proof of (B). Let x (x € R) and the integer ¢ be fixed. Suppose that {kj} is a
sequence for which the limit on the left-hand side of the equation (6.2) exists (and
equals dg, say) for all f € W(c). For each positive integer j, there exist unique in-
tegers r = r(j) and q = q(j) such that

tp(r) <tg-1 < ckj <tg < tpren).
Define M = M(j) by the condition Tys_; < r(j) < Tp;. From now on, let j be large

enough so that ¢(M(j)) > ¢ and so that ¢ divides n r) if T 2> r(j) (then c divides

p(
tp(r)). For r =r(j), we have the inequality

-1

kj-1 ° ()t
kjc|vp)® -ds| < e .EO HTHx) - Kydg| + e 120 KT %) - tp(r) ¥ p() (@)
i= =
q(j)-1
n
+ ?)H (nqs q+nqu|Vp(r)(f) - Vp(r+1)(f)|) + 1 q(;)Nq(j)-
q=pl(r

Here we have used the Main Lemma with v = v.41) = vq for
pr)+1 < q < p(r+1).

The definition of R and the hypothesis on {kj} imply that the right-hand side of
the expression above is o(kj). Thus
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11m vp(r)(f) =de (f € W(e)).
1‘-'—‘-1'(_]), J-)OO
But {Vp} is dense in V. It follows that the sequence {vp(y(j))(f), f € W(c)}, which,

C
as we have just shown, converges in [0, 1]° , has as limit the point (v(f), £ € W(c)),
where v is some measure in V.

From Lemma (4.2) and the theorem, we conclude that R C G(V, s).

7. A LOWER BOUND ON THE HAUSDORFF DIMENSION OF G(V, s)

We find a lower bound for the dimension of R by the method outlined in Sec-
tion 5.

(7.1) LEMMA. Let a;, a,, ***, a,, and by, by, ***, b, be nonnegative num-
bers such that aj +ap + -+ +a,, =b) +by + - +by, =k, wherve k> 1. If
0<ai—b151 (i=2, 3, ey, m) anda1_>_1, then

m

27 (a;log.a; - b;log, b;) < m log k.

i=1

m
Proof. Let 06(x) = Ei:l (xa; + (1 - x)b;)loge (xa; + (1 - x)b;). By the Mean-
Value Theorem, 6(1) - 6(0) = 6'(£) for some £ € (0, 1). But

m

6'(¢) = 22 (a; - by)log_(£a; + (1 - £)b;) < 20 log, (£a; + (1 - £)Dby)
i=1

where the summation extends over only those i for which £a; + (1 - £)b; > 1. Cer-
tainly, the inequality £a; + (1 - £)b; <k holds for all i (recall that

1 <a; <xaj+(1-x)b; <by);
thus
0'(¢) < m log k.
(7.2) THEOREM.
dim R > inf h{(v).
VEV
If inf, ¢y h(v) = 0, the result is trivial. Suppose h =inf, ¢ h(r) > 0. As de-

scribed in Section 5, we shall show that the series 2 u, converges for 0 <a <h,
where

n

logsu, = n, N, +at, - qZ}l logg Sy .

First we need a bound for Sq.
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(7.3) LEMMA. Let n and N be integers (N> s2), and let v € I(s). Let
S =8(n, N, v) be as in Section 5. Then

2n

3 ..1/2 1s
logs § - nNh(v, n) > - 5 N 210g, 27N - 13 5 logg e.

Proof of lemma. Let ¥(x) be defined by the condition
I'x+1) = x! = x X ¥+t (x) (x>0).

By virtue of the well-known relation

e 00

-—1-+Z)——1—-2—<-1+ —12—=0
X k=1 (X'I"k) - X u

(see [7, p. 241]), ¥(x) is a convex function. Thus

" (x) = —-}1;+10ge (T(x + 1))

(7.4) 27 w@E N, v)) < anf(s'“ 2 & N, u)) = s"¥(s"™N).

feW(n) feW(n)

Clearly, the identities

logs S = logsN! - 27 logg (®(f, N, v)!) = Nlogg N - (logse) (N - ¥(N))
fewW(n)

- 22 (&, N, v)log, (@, N, v) - (log ) ®(f, N, v) + (logg €)¥(a(f, N, v)))
fewW(n)

hold.

_Now we use Lemma (7.1) with m = s”, k=N. We set as = &(f, N, v)
(®(, N, v)> 1) and bs = v(f)N (f € W(n)), and we observe that

6(0) = (N logg N - nNh(y, n))log.s.
Thus

6(1)log, e = 2; & N, v)logg ®(f, N, v) < -nNh(y, n) + N logg N + s™log, N .
feW(n)

From this inequality and inequality (7.4), we obtain the condition
logs S > nNh(v, n) - s"logs N + (¥(N) - s"¥(s™™ N))logg e.

The Stirling bounds on ¥(x) are

1 1 1
3 loge 27x < ¥(x) < Tox T3 loge 27X

(see [7, page 253]). Thus (use the fact that N > s??)
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1 gn o sznlogse
logsS > nNh(v, n) - s"logg N +5 logs 27N - —— logg 278N - ————
’ 2 2 12N
> nNh(y, n) - 3 N2 10g, 2nn - L 822
nNh(v, n) - 5 ogs 27N - 75 55 logse .

Proof of Theorem (7.2). It follows from the lemma and Lemma (7.3) and the
choice of the sequences {nq} and {Nq} that

jo
n,N_ - qZ_71 (logg Sq - ngNgh(r g, ng)) = ofty).
Thus the inequality
P
logsuy < (a+ s)tp - 21 nquh(vq, nq)
q:

holds for each € > 0 and for all sufficiently large p. But nq = mq!; hence
h(vq, ng) > h(vq) for all q. (This is a well-known result from the theory of entropy,
see for instance [4, page 49).) Thus

logsup < (@ - h+¢)tp,
for all large p. We have shown that for all numbers @, ¢ (0 < a <h, € > 0) with
(o - h+¢) < -¢, the inequality logg up < - &tp holds for all sufficiently large p.
This implies that 27 up converges. It now follows from the theorem of Eggleston

[3, Theorem 4] that

dimR > h = inf h(v).
VEV

From (4.4), the theorem, and Theorem (7.2), we conclude that

dim G(V, s) = inf h(v).
VEV

I am indebted to J. H. B. Kemperman for much guidance.
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