THE HAUSDORFF DIMENSION OF CERTAIN SETS OF NONNORMAL NUMBERS

C. M. Colebrook

1. THE GENERATION OF MEASURES

Let C[0, 1) denote the collection of continuous, periodic functions (with period 1) on the reals, and let s be a fixed integer (s \geq 2). We say that a real number x is ν -normal (to the base s) if the sequence $\{s^n x\}$ has the distribution ν in the sense that

(1.1)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(s^k x) = \int_0^1 f d\nu = \nu(f) \quad \text{for each } f \in C[0, 1).$$

Here, ν denotes a probability measure on [0, 1) that is invariant under the transformation T: y \rightarrow Ty = sy - [sy]. In other words, ν is the weak* limit of the measures μ_n defined by the relations

(1.2)
$$\mu_{n}(f) = \mu_{n,x}(f) = \frac{1}{n} \sum_{k=0}^{n-1} f(T^{k}x).$$

We say that x *generates* ν (to the base s). The space of all these T-invariant probability measures, together with the weak* topology, is denoted by I(s). Observe that for each positive integer n we have the inclusion I(s) \subset I(sⁿ). One measure in I(s) is the ordinary Lebesgue measure λ , and x is normal to the base s in the classical sense precisely when x is λ -normal to the base s.

Consider a measure ν in I(s), and let x generate ν (to the base s). As is well known (see for instance [5]), relation (1.1) also holds when f is bounded and the set of discontinuities of f has ν -measure 0. In particular, the relation (1.1) holds when f is the characteristic function of an interval $[\alpha, \beta)$. That is,

$$\lim_{n\to\infty}\frac{1}{n} \text{ (number of k } (0\leq k\leq n-1), \text{ for which } T^k \ge [\alpha,\beta))$$

$$\equiv \lim_{n\to\infty}\mu_n([\alpha,\beta))=\nu([\alpha,\beta)),$$

provided $\nu(\{\alpha\}) = 0 = \nu(\{\beta\})$. Also, it is known that if the relation (1.3) holds for some point x and for all choices of α and β such that $\nu(\{\alpha\}) = 0 = \nu(\{\beta\})$, then x is ν -normal (to the base s) (see [5]). In fact, for x to be ν -normal, it suffices to require that condition (1.3) hold only for intervals of the form $[as^{-n}, (a+1)s^{-n})$,

Received February 15, 1969.

This work was supported in part by a Faculty Research Fellowship from the State University of New York.

Michigan Math. J. 17 (1970).

where a and n are positive integers (1 \leq a \leq sⁿ - 2). In this connection, we mention that for each T-invariant measure ν and each positive integer n, the relations

$$\nu(\{as^{-n}\}) = 0$$
 $(a = 1, 2, \dots, s^{n} - 1)$

hold. To see this, we observe that the sets $T^{-i}\left\{as^{-n}\right\}$ (i = 0, 1, ...) are disjoint; therefore

$$\nu(\{as^{-n}\}) = \frac{1}{m} \nu \left(\bigcup_{i=0}^{m-1} T^{-i} \{as^{-n}\} \right) \leq \frac{1}{m}$$

for $m=1, 2, \cdots$. (However, $\nu(\{0\})$ may be positive or 0.) We conclude that ν -normality of x to the base s is equivalent to the validity of condition (1.3) with $[\alpha, \beta) = [as^{-n}, (a+1)s^{-n})$, where $a=1, 2, \cdots, s^n-2$ $(n=1, 2, \cdots)$. If $\nu(\{0\}) = 0$, then we may also include 0 and s^n-1 among the values of a.

Let c be a positive integer, and let f_a denote the characteristic function of the interval $[as^{-c}, (a+1)s^{-c})$ $(a=0, 1, \cdots, s^c-1)$. We shall write W(c) for the collection of the s^c characteristic functions f_a $(a=0, 1, \cdots, s^c-1)$, and we shall denote $\bigcup_{c=1}^{\infty}$ W(c) by W. From the discussion above we see that we can obtain the distribution properties of the number x by considering the behavior of the sequence $\{\mu_{n,x}(f)\}$ for $f \in W$ instead of $f \in C[0,1)$.

2. SOME TYPES OF NONNORMALITY: REGULARITY AND SIMPLE REGULARITY

Let ν be a measure in I(s). The number x is said to be $simply \ \nu$ -regular (to the base s) if condition (1.3) holds for the intervals

$$[\alpha, \beta) = [as^{-1}, (a+1)s^{-1})$$
 $(a = 0, 1, \dots, s-1),$

or equivalently, if condition (1.1) holds for $f \in W(1)$. We denote the set of all such x by $F(\nu, s)$. The number x is said to be ν -regular (to the base s) if

$$x \in \bigcap_{c=1}^{\infty} F(\nu, s^c) = G(\nu, s).$$

Obviously, one can also define simple ν -regularity and ν -regularity in terms of the digits in the expansion of x to the base s (see [1] for example). We observe that a number that is ν -regular to the base s is also ν -normal to the base sⁿ (n = 1, 2, \cdots). The converse holds if $\nu(\{0\}) = 0$.

3. HAUSDORFF DIMENSION

Throughout this paper, dim A denotes the usual Hausdorff dimension of $A \subset [0, 1)$. Let ν be a measure in I(s). H. G. Eggleston [2] proved the relation

dim
$$F(\nu, s) = -\sum_{f \in W(1)} \nu(f) \log_s \nu(f)$$
.

(We shall always set p $\log_s p = 0$ if p = 0.) Let $h(\nu, c)$ be defined by

(3.1)
$$h(\nu, c) = -\sum_{f \in W(c)} \nu(f) \log_{s} \nu(f).$$

Then

$$\dim G(\nu, s) \leq \inf_{c} \dim F(\nu, s^{c}) = \inf_{c} h(\nu, c).$$

From well-known work on entropy (see for instance [4, page 48]), we conclude that

$$\inf_{c} h(\nu, c!) = \lim_{c \to \infty} h(\nu, c).$$

We denote this limit by $h(\nu)$. Thus

dim
$$G(\nu, s) < h(\nu)$$
.

In Section 7, we show that in fact equality holds.

Let us now choose a number x. In general, the weak* limit of $\{\mu_{n,x}\}$ does not exist, so that x fails to have a distribution to the base s. Let V'(x, s) denote the set of probability measures that are weak* accumulation points of the sequence $\{\mu_{n,x}\}$. We shall say x *generates* V'(x, s) (to the base s). Clearly $V'(x, s) \subseteq I(s)$. It is easy to show that V'(x, s) is always nonempty, closed, and connected in I(s).

Let V be any nonempty, closed, connected subset of I(s). We shall be interested in the set G(V, s), defined as the set of all points x that generate V to each base s, s^2, \cdots . In other words, $x \in G(V, s)$ if and only if

$$V'(x, s^c) = V \quad (c = 1, 2, \cdots).$$

In the case where $V = \{\nu\}$ and $\nu(\{0\}) = 0$, one easily sees that this definition of G(V, s) agrees with the definition of $G(\nu, s)$ given previously. (If $\nu(\{0\}) \neq 0$ then $G(\{\nu\}, s) \supset G(\nu, s)$.) In particular, consider the Lebesgue measure λ . It is known (see for instance [1]) that every number that is normal to the base s in the classical sense is also normal to the base s^c ($c = 2, 3, \cdots$). Hence $G(\lambda, s)$ is the set of all numbers normal to the base s. This set is known to have Lebesgue measure 1 (see [1]). Thus the Lebesgue measure of G(V, s) is 0 unless $V = \{\lambda\}$.

The following questions now arise. If V is some nonempty, closed, connected subset of I(s), is G(V, s) nonempty? Further, can we obtain an estimate of the size of G(V, s)?

In Section 6, we construct a nonempty subset of G(V, s). Further, in Section 7, we show that the Hausdorff dimension of G(V, s) is given by $\inf_{v \in V} h(v)$.

4. AN UPPER BOUND ON THE HAUSDORFF DIMENSION OF G(V, s)

Let c be a positive integer, and suppose $x \in [0, 1)$. We define $\mu_n^{(c)}$ by the condition

$$\mu_{n}^{(c)}(f) \equiv \mu_{n,x}^{(c)}(f) = \frac{1}{n} \sum_{i=0}^{n-1} f(T^{ic} x)$$
 (f \in W).

For each set $V \subset I(s^c)$, we define $F(V, s^c)$ as the set of all points $x \in [0, 1)$ for which the set

$$\{(\nu(f), f \in W(c)), \nu \in V\}$$

regarded as a subset of $[0, 1]^{s^{c}}$, is the set of accumulation points of

$$\{(\mu_{n,x}^{(c)}(f), f \in W(c))\}$$
.

We note that the relations

$$\mu_{\rm cn,x} \equiv \mu_{\rm cn} = \frac{1}{c} (\mu_{\rm n}^{(c)} + T\mu_{\rm n}^{(c)} + \dots + T^{c-1}\mu_{\rm n}^{(c)})$$

hold, where $T\mu$ is defined by $T\mu(f) = \mu(Tf)$ and Tf is given by Tf(y) = f(Ty) (y $\in [0, 1)$). Also, we see that

$$\lim_{j \to \infty} T^{i} \mu_{n_{j}}^{(c)} = T^{i} \lim_{j \to \infty} \mu_{n_{j}}^{(c)}$$

whether either limit exists. From these equations, we obtain the relation

(4.1)
$$\lim_{j\to\infty}\mu_{\text{cn}_j} = \frac{1}{c}\sum_{i=0}^{c-1}T^i\lim_{j\to\infty}\mu_{\text{n}_j}^{(c)}.$$

Equation (4.1) implies the inclusion $V'(x, s) \supset V'(x, s^c) \cap I(s)$. Further, an application of (4.1) to the case where $x \in F(V, s^c)$ and $V \subset I(s)$ shows that $x \in F(V, s)$. In other words, $F(V, s) \supset F(V, s^c)$ if $V \subset I(s)$. We can now prove the following lemma.

(4.2) LEMMA. For each $V \subset I(s)$, we have the inclusion

$$G(V, s) \supset \bigcap_{c=1}^{\infty} F(V, s^c)$$
.

Proof. Let x be a fixed point of $\bigcap_{j=1}^{\infty} F(V, s^j)$. Let c be a positive integer. Since $x \in F(V, s^c)$, it follows that $V \supset V'(x, s^c)$. Let ν be a measure in V. For each m (m = 1, 2, \cdots), there is a sequence $\{n_{j,m}\}$ such that

$$\lim_{j\to\infty} \mu_{n_j,m}^{(mc)}(f) = \nu(f) \qquad (f \in W(mc)).$$

Such a sequence exists, because $x \in F(V, s^{mc})$. Since $v \in I(s)$, we can use relation (4.1) to obtain the relation

$$\lim_{j\to\infty} \mu_{\min_{j,m}}^{(c)}(f) = \nu(f) \quad (f \in W(mc)).$$

We note also that each function in W(p) is the sum of functions in W(q), whenever q>p. Thus we can use a diagonal procedure on $\left\{\left\{mn_{j,\,m}\right\},\;m=1,\;2,\;\cdots\right\}$ to find a sequence $\left\{n_{\,j}\right\}$ with the property that

$$\lim_{j\to\infty} \mu_{n_j}^{(c)}(f) = \nu(f) \qquad (f \in \bigcup_{m=1}^{\infty} W(mc)).$$

Hence $\nu \in V'(x, s^c)$, and we have the inclusion $V'(x, s^c) \supset V$.

We have proved that $V'(x, s^c) = V$ for $c = 1, 2, \dots$. But this is precisely the requirement for x to belong to G(V, s).

On the other hand, suppose that $x \in G(V, s)$. Let c be a fixed positive integer. Then x also belongs to $F(V', s^c)$, where V' is some closed connected set such that $V \subset V' \subset I(s^c)$. Thus

$$G(V, s) \subset \mathbf{U} F(V', s^c),$$

where the union is taken over all closed connected sets V' with the property that $V \subset V' \subset I(s^c)$. Now, Theorem 4 of Volkmann [6] gives the Hausdorff dimension of this union of sets as

dim
$$\bigcup F(V', s^c) = \inf_{\nu \in V} h(\nu, c)$$
.

It follows that dim $G(V, s) \le \inf_{\nu \in V} h(\nu, c)$ (c = 1, 2, ...); therefore

$$(4.3) \qquad \dim G(V, s) \leq \inf_{c} \inf_{\nu \in V} h(\nu, c) = \inf_{\nu \in V} \inf_{c} h(\nu, c) \leq \inf_{\nu \in V} h(\nu).$$

In the proof of Theorem (7.2) we shall show that

(4.4)
$$\dim \bigcap_{c=1}^{\infty} F(V, s^c) \geq \inf_{\nu \in V} h(\nu).$$

By (4.2) and (4.4), we have the inequality

(4.5)
$$\dim G(V, s) \geq \inf_{\nu \in V} h(\nu),$$

and from (4.3) and (4.5) we conclude that

dim G(V, s) =
$$\inf_{\nu \in V} h(\nu)$$
.

In particular, let us examine the case where $V = \{\nu\}$. If $\nu(\{0\}) = 0$, then ν -regularity to the base s, and ν -normality to all the bases s^n ($n = 1, 2, \cdots$) are equivalent. For instance, this condition is satisfied if ν is ergodic with respect to T (except for the trivial case, where ν is the point measure ε_0 defined by $\varepsilon_0(f) = f(0)$). Let ν be ergodic ($\nu \neq \varepsilon_0$). Then $G(\{\nu\}, s)$ is the set of all numbers that are ν -normal to each base s, s^2 , \cdots . Therefore $h(\nu)$ is the Hausdorff dimension of the set of all numbers that are ν -normal to each base s, s^2 , \cdots .

Let $s \ge 2$ be a fixed integer. Let V be a fixed, closed, connected, nonempty subset of I(s). In the next section, we shall construct a subset R of G(V, s). Then, in Section 7, we show that dim $R \ge \inf_{\nu \in V} h(\nu)$.

5. THE DEFINITION OF R(n, N, ν)

For each measure $\nu \in I(s)$, for each positive integer N, and for $f \in W(n)$ (n a positive integer), let

$$\Phi(f, N, \nu) = [\nu(f)N] + \xi(f).$$

Here $\xi(f)=1$ for each $f\in W(n)$ with the exception of one function \bar{f} chosen to satisfy the condition $\nu(\bar{f})=\max_{f\in W(n)}\nu(f)$. Note that $\nu(\bar{f})\geq s^{-n}$ and $\nu(\bar{f})\geq N^{-1}s^n$ if

 $N \geq s^{2n}$. We choose $\xi(\overline{f})$ so that $N = \sum_{f \in W(n)} \Phi(f, N, \nu)$. It is clear that $\Phi(f, N, \nu)$ is positive provided $N \geq s^{2n}$. Also $\Phi(\overline{f}, N, \nu) \geq [\nu(\overline{f})N] - (s^n - 1)$, thus if $N \geq s^{2n}$ then $\Phi(\overline{f}, N, \nu) \geq 1$. From now on we shall assume that $N \geq s^{2n}$.

We consider the set $\{0,1,\cdots,s^n-1\}=\{a\colon f_a\in W(n)\}$, and the permutations with repetitions of the elements of this set that we obtain by repeating each a exactly $\Phi(f_a,N,\nu)$ times. That is, each permutation is an ordering of N integers y $(0\leq y\leq s^n-1)$. Clearly, there are

$$S(n, N, \nu) = \frac{N!}{\prod \Phi(f, N, \nu)!}$$

such permutations. (Here the product is taken over all f ϵ W(n).) For each permutation (y_1, y_2, \cdots, y_n) $(0 \le y_i \le s^n - 1)$, we consider the associated interval $[y, y + s^{-nN})$, where

$$s^{nN}y = s^{n(N-1)}y_1 + s^{n(N-2)}y_2 + \cdots + y_N.$$

Obviously, different permutations are associated with disjoint intervals. We denote the union of these disjoint, half-open intervals by R(n, N, ν). Each point in R(n, N, ν) "approximately" generates ν in the sense indicated in the following lemma.

MAIN LEMMA. Let $\nu \in I(s)$ be a fixed measure, and let c, n, and N be positive integers (c divides n; $N \ge s^{2n}$). For each $x \in R(n, N, \nu)$ and each $f \in W(c)$, we have the inequality

$$\begin{vmatrix} c^{-1}nN-1 \\ \sum_{i=0}^{n} f(T^{ic}x) - c^{-1} nN \nu(f) \end{vmatrix} < 2c^{-1} ns^{n}.$$

Notation. Let $f \in W(c)$ be fixed. For all nonnegative integers i and n (c divides n), we define w(f, i, n) to be the set of all functions $g \in W(n)$ for which g(x) = 1 implies $f(T^{ic}x) = 1$. We have the relation

$$\sum_{g \in w(f,i,n)} g(x) = f(T^{ic}x) = T^{ic}f(x).$$

We note that the set $\{w(f, i, n): f \in W(c)\}$ is a partition of W(n) with the property that

(5.1)
$$\sum_{g \in w(f,i,n)} \nu(g) = \nu(T^{ic}f) = \nu(f),$$

because ν is invariant under T. Note that w(f, i, n) is empty if ic \geq n; otherwise w(f, i, n) has s^{n-c} elements.

Proof of the lemma. Let $x \in R(n, N, \nu)$ and $f \in W(c)$ be fixed. From the definition of $R(n, N, \nu)$, it follows that the number of values of j ($0 \le jc < nN$), for which $f(T^{jc}x) = 1$, is given by the sum

$$\sum_{i=0}^{c^{-1} n-1} \sum_{g \in w(f,i,n)} \Phi(g, N, \nu).$$

Now relation (5.1) implies that

$$\sum_{g \in w(f,i,n)} \Phi(g, N, \nu) = \sum_{g \in w(f,i,n)} \nu(g)N + \theta(f, i, n) = N \nu(f) + \theta(f, i, n),$$

where

$$\theta(f, i, n) = \sum_{g \in w(f,i,n)} (\Phi(g, N, \nu) - \nu(g)N).$$

The definition of $\Phi(g, N, \nu)$ implies the inequalities

$$\big|\, \theta(f,\,i,\,n) \big| \, \leq \, \sum_{g \, \in \, \mathrm{w}(f,i,n)} \big| \big[\nu(g) N \big] \, \text{-} \, \, \nu(g) N \, + \, \xi(g) \big| \, < \, 2 \, s^n \, .$$

Thus

$$\begin{vmatrix} c^{-1} \, nN^{-1} \\ \sum_{j=0}^{c-1} \, f(T^{jc} \, x) - c^{-1} \, nN \, \nu(f) \end{vmatrix} = \begin{vmatrix} c^{-1}_{n-1} \\ \sum_{i=0}^{c} \, \left(\sum_{g \in w(f,i,n)} (\Phi(g, N, \nu) - N \, \nu(g)) \right) \end{vmatrix}$$
$$= \begin{vmatrix} c^{-1}_{n-1} \\ \sum_{i=0}^{c-1_{n-1}} \, \theta(f, i, n) \end{vmatrix} < 2c^{-1} \, ns^{n},$$

and the lemma is proved.

Let $\{n_p\}$, $\{N_p\}$, and $\{t_p\}$ be sequences of integers $(N_p \ge s^{2n}p)$, and put $R_p = T^{-t_{p-1}}R(n_p, N_p, \nu_p)$, where $\{\nu_p\}$ is a sequence of measures in I(s). For convenience, we write S_p for $S(n_p, N_p, \nu_p)$. We define R to be the intersection of all R_p :

$$R = \bigcap_{p=1}^{\infty} R_p.$$

The set R is always nonempty, provided $t_p=n_pN_p+t_{p-1}$ and $t_0=0.$ If $x\in R$, then $T^{t_{p-1}}x\in R(n_p,\,N_p,\,\nu_p)$ (p = 1, 2, ...). By the Main Lemma, $T^{t_{p-1}}x$ "approximately" generates $\nu_p.$ In Section 6, we shall choose a sequence $\{\nu_p\}$ that is dense in V. Then we shall choose sequences $\{n_p\}$ and $\{N_p\}$ such that each point in R

generates just V to each base s, s^2 , \cdots . Clearly, the set R is of the form considered by Eggleston [3, Theorem 4].

Let $h \ge 0$ be prescribed. Suppose we show that the series

(5.2)
$$\sum_{p=1}^{\infty} \frac{n_p N_p s^{\alpha t_p}}{\prod_{q=1}^{p} s_q}$$

converges for all $\alpha < h$. By Eggleston's theorem, it follows that the Hausdorff dimension of R is at least h. In Section 7, we shall show that the series (5.2) converges for all $\alpha < \inf_{\nu \in V} h(\nu)$. Henceforth we denote $\inf_{\nu \in V} h(\nu)$ by h.

Let $\{n_p\}$ and $\{N_p\}$ be two unbounded, nondecreasing sequences of positive integers $(N_p \ge s^{2n_p})$ that satisfy the additional conditions (here $t_0 = 0$, $t_p = n_p N_p + t_{p-1}$)

- (i) $n_p N_p = o(t_{p-1}),$
- (ii) $n_p = m_p!$ (m_p an integer),
- (iii) n_{p+1} divides t_p .

(Such a pair of sequences can be constructed by induction on p, starting with arbitrary values $m_1! = n_1$ and $N_1 \ge s^{2n_1}$.)

The following readily established lemma will be used to show convergence properties of certain functions of $\left\{n_p\right\}$ and $\left\{N_p\right\}.$

LEMMA. If $\{u_p\}$ and $\{v_p\}$ are sequences of positive terms such that $\{v_p\}$ diverges and $\lim\limits_{p\to\infty}v_p/u_p$ = 0, then

$$\lim_{n \to \infty} \frac{v_1 + v_2 + \dots + v_n}{u_1 + u_2 + \dots + u_n} = 0.$$

6. A DENSE SEQUENCE OF MEASURES IN V

Let $\{a(n)\}$ and $\{b(n)\}$ (a(n) > b(n)) be fixed sequences decreasing to zero, and let $\{c(n)\}$ be an increasing sequence of integers. For each $\nu \in I(s)$ and each positive integer n, we define a neighborhood $U_n(\nu)$ with center ν by the formula

$$U_{n}(\nu) = \left\{ \mu \in I(s): \sum_{f \in W(c(n))} |\mu(f) - \nu(f)| < b(n) \right\}.$$

For each positive integer n, the compact set V admits a finite cover by sets of the form $U_n(\nu)$ ($\nu \in V$). Allowing repetitions, we may assume that each such cover can be written as $\{U_n(\nu(j,\,n)),\, 1\leq j\leq j_n\}$, where j_n is finite. Further, we may assume that

$$U_n(\nu(j, n)) \cap U_n(\nu(j-1, n)) \neq \emptyset \quad (j = 2, 3, \dots, j_n)$$
 and
$$U_n(\nu(j_n, n)) \cap U_{n+1}(\nu(1, n+1)) \neq \emptyset.$$

(Here we have used the connectivity of V.) For each n, we henceforth assume a fixed cover.

Let T_0 = 0, T_M = T_{M-1} + j_M . For each positive integer r, let $M \equiv M_r$ be determined by the inequalities $T_{M-1} < r \le T_M$. We choose the integer $p_r \equiv p(r)$ so that p(0) = 0 and

(6.1)
$$t_{p(r-1)}(1-b(M)) < t_{p(r)}(a(M)-b(M)) - 2 \sum_{q=p(r-1)+1}^{p(r)} n_q s^{n_q}.$$

Such a choice of p(r) is possible, because a(M) > b(M), $t_p \to \infty$, and $s^{n_q} = o(N_q)$. By the lemma, the last condition implies that $\sum_{q=1}^p n_q s^{n_q} = o(t_p)$.

For each $r=T_{M-1}+j$ (1 $\leq j \leq j_M$), set $U_r=U_M(\nu(j,\,M)).$ First we order the centers of the neighborhoods U_r , allowing repetitions. For each p (p = 1, 2, ...), choose r so that $P_{r-1} . We define <math display="inline">\nu_p$ to be the center of U_r . One can easily verify that the sequence $\left\{\nu_p\right\}$ is dense in V.

We now show that with our choice of the sequences $\{\nu_p\}$, $\{n_p\}$, and $\{N_p\}$, every point of R generates the prescribed set V to each base s, s²,

THEOREM.

$$R \subset \bigcap_{c=1}^{\infty} F(V, s^c).$$

Proof. We shall show that the following two propositions hold for each $x \in R$ and each positive integer c.

(A) For each $\nu \in V$, there exists a sequence $\{k_i\}$ such that

(6.2)
$$\lim_{j \to \infty} \frac{1}{k_j} \sum_{i=0}^{k_j-1} f(T^{ic} x) = \nu(f) \quad (f \in W(c)).$$

(B) If $\{k_j\}$ is a sequence for which (6.2) holds for some $\nu' \in I(s^c)$, then there exists $\nu \in V$ such that $\nu(f) = \nu'(f)$, for all $f \in W(c)$.

In other words, in (A) we show that $x \in F(V', s^c)$ for some $V' \supset V$, and in (B) we show that in fact $x \in F(V, s^c)$.

Proof of (A). Let x, ν , and c be fixed (x \in R; $\nu \in$ V; c a positive integer). By construction, $\{U_r\colon T_{M-1} < r \le T_M\}$ is a cover of V for each M (M = 1, 2, \cdots). Thus, for each M, there exists at least one integer r in the range $T_{M-1} < r \le T_M$ such that $\nu \in U_r$. Let $r \equiv r(\nu, M)$ be an integer. Let M be so large (M \ge M₀, say) that $c(M) \ge c$ and that $n_{p(r)}$ is a multiple of c when $r \ge r(\nu, M_0)$ (here we use the relation $n_p = m_p!$). We show that the sequence

$${n = c^{-1} t_{p(r)}: r = r(\nu, M), M \ge M_0}$$

satisfies condition (6.2). Note that c divides $t_{p(r-1)}$, because c divides $n_{p(r)}$. For $n = c^{-1} t_{p(r)}$ and $f \in W(c)$, we have the inequalities

$$\begin{split} c & \left| \sum_{i=0}^{n-1} f(T^{ic} \, x) - n \, \nu(f) \right| \\ & \leq \left| c \sum_{i=0}^{n-1} f(T^{ic} \, x) - t_{p(r-1)} \, \nu(f) \right| + (t_{p(r)} - t_{p(r-1)}) | \, \nu_{p(r)}(f) - \nu(f) | \\ & + \left| c \sum_{i=0}^{c^{-1} n_{p(r)} N_{p(r)}^{-1}} f(T^{t_{p(r-1)}+ic} \, x) - n_{p(r)} N_{p(r)} \, \nu_{p(r)}(f) \right| \\ & \leq t_{p(r-1)} + (t_{p(r)} - t_{p(r-1)}) b(M) + 2 \sum_{p=p(r-1)+1}^{p(r)} n_{p} \, s^{np} \, . \end{split}$$

Here we used the Main Lemma and the fact that $c \le c(M)$. From (6.1), we obtain the relation

$$c\left|\sum_{i=0}^{n-1} f(T^{ic} x) - n \nu(f)\right| < t_{p(r)} a(M).$$

But $nc = t_{p(r)}$ and $a(M) \rightarrow 0$ as n (and thus M) increases. Hence (A) is proved.

Proof of (B). Let x ($x \in R$) and the integer c be fixed. Suppose that $\{k_j\}$ is a sequence for which the limit on the left-hand side of the equation (6.2) exists (and equals d_f , say) for all $f \in W(c)$. For each positive integer j, there exist unique integers r = r(j) and q = q(j) such that

$$t_{p(r)} < t_{q-1} \le ck_j < t_q \le t_{p(r+1)}$$
.

Define M=M(j) by the condition $T_{M-1}< r(j) \le T_M$. From now on, let j be large enough so that $c(M(j)) \ge c$ and so that c divides $n_{p(r)}$ if $r \ge r(j)$ (then c divides $t_{p(r)}$). For r=r(j), we have the inequality

$$\begin{split} k_{j} c \left| \nu_{p(r)}(f) - d_{f} \right| &\leq c \left| \sum_{i=0}^{k_{j}-1} f(T^{ic} x) - k_{j} d_{f} \right| + \left| c \sum_{i=0}^{c^{-1} t_{p(r)}-1} f(T^{ic} x) - t_{p(r)} \nu_{p(r)}(f) \right| \\ &+ \sum_{q=p(r)+1} \left(n_{q} s^{n_{q}} + n_{q} N_{q} \left| \nu_{p(r)}(f) - \nu_{p(r+1)}(f) \right| \right) + n_{q(j)} N_{q(j)}. \end{split}$$

Here we have used the Main Lemma with $\nu = \nu_{p(r+1)} = \nu_{q}$ for

$$p(r) + 1 \le q \le p(r + 1)$$
.

The definition of R and the hypothesis on $\{k_j\}$ imply that the right-hand side of the expression above is $o(k_j)$. Thus

$$\lim_{\mathbf{r}=\mathbf{r}(\mathbf{j}), \; \mathbf{j} \to \infty} \; \nu_{p(\mathbf{r})}(\mathbf{f}) = d_{\mathbf{f}} \quad (\mathbf{f} \in W(\mathbf{c})).$$

But $\{\nu_p\}$ is dense in V. It follows that the sequence $\{\nu_{p(r(j))}(f), f \in W(c)\}$, which, as we have just shown, converges in $[0, 1]^{s^c}$, has as limit the point $(\nu(f), f \in W(c))$, where ν is some measure in V.

From Lemma (4.2) and the theorem, we conclude that $R \subset G(V, s)$.

7. A LOWER BOUND ON THE HAUSDORFF DIMENSION OF G(V, s)

We find a lower bound for the dimension of R by the method outlined in Section 5.

(7.1) LEMMA. Let a_1 , a_2 , …, a_m and b_1 , b_2 , …, b_m be nonnegative numbers such that $a_1+a_2+\dots+a_m=b_1+b_2+\dots+b_m=k,$ where $k\geq 1.$ If $0< a_i$ - $b_i\leq 1$ (i = 2, 3, …, m) and $a_1\geq 1,$ then

$$\sum_{i=1}^{m} (a_i \log_e a_i - b_i \log_e b_i) \leq m \log_e k.$$

Proof. Let $\theta(x) = \sum_{i=1}^{m} (xa_i + (1-x)b_i)\log_e(xa_i + (1-x)b_i)$. By the Mean-Value Theorem, $\theta(1) - \theta(0) = \theta'(\xi)$ for some $\xi \in (0, 1)$. But

$$\theta'(\xi) = \sum_{i=1}^{m} (a_i - b_i) \log_e (\xi a_i + (1 - \xi) b_i) \leq \sum_{i=1}^{m} \log_e (\xi a_i + (1 - \xi) b_i),$$

where the summation extends over only those i for which $\xi a_i + (1 - \xi)b_i \ge 1$. Certainly, the inequality $\xi a_i + (1 - \xi)b_i \le k$ holds for all i (recall that

$$1 \le a_1 \le xa_1 + (1 - x)b_1 \le b_1$$
;

thus

$$\theta'(\xi) \leq m \log_e k$$
.

(7.2) THEOREM.

$$\dim R \ge \inf_{\nu \in V} h(\nu)$$
.

If $\inf_{\nu \in V} h(\nu) = 0$, the result is trivial. Suppose $h = \inf_{\nu \in V} h(\nu) > 0$. As described in Section 5, we shall show that the series $\sum u_p$ converges for $0 < \alpha < h$, where

$$\log_{s} u_{p} = n_{p} N_{p} + \alpha t_{p} - \sum_{q=1}^{n} \log_{s} S_{q}.$$

First we need a bound for S_q .

(7.3) LEMMA. Let n and N be integers $(N \ge s^{2n})$, and let $\nu \in I(s)$. Let $S = S(n, N, \nu)$ be as in Section 5. Then

$$\log_s S - nNh(\nu, n) > -\frac{3}{2} N^{1/2} \log_s 2\pi N - \frac{1}{12} \frac{s^{2n}}{N} \log_s e$$
.

Proof of lemma. Let $\Psi(x)$ be defined by the condition

$$\Gamma(x+1) = x! = x^x e^{-x+\Psi(x)}$$
 $(x>0)$.

By virtue of the well-known relation

$$\Psi''(x) = -\frac{1}{x} + \log_e (\Gamma(x+1))'' = -\frac{1}{x} + \sum_{k=1}^{\infty} \frac{1}{(x+k)^2} \le -\frac{1}{x} + \int_{x}^{\infty} \frac{1}{u^2} = 0$$

(see [7, p. 241]), $\Psi(x)$ is a convex function. Thus

$$(7.4) \qquad \sum_{f \in W(n)} \Psi(\Phi(f, N, \nu)) \leq s^n \Psi\left(s^{-n} \sum_{f \in W(n)} \Phi(f, N, \nu)\right) = s^n \Psi(s^{-n} N).$$

Clearly, the identities

$$\log_{s} S = \log_{s} N! - \sum_{f \in W(n)} \log_{s} (\Phi(f, N, \nu)!) = N \log_{s} N - (\log_{s} e) (N - \Psi(N))$$

$$-\sum_{f \in W(n)} (\Phi(f, N, \nu) \log_s \Phi(f, N, \nu) - (\log_s e) \Phi(f, N, \nu) + (\log_s e) \Psi(\Phi(f, N, \nu)))$$

hold.

Now we use Lemma (7.1) with $m = s^n$, k = N. We set $a_f = \Phi(f, N, \nu)$ $(\Phi(\bar{f}, N, \nu) \ge 1)$ and $b_f = \nu(f)N$ ($f \in W(n)$), and we observe that

$$\theta(0) = (N \log_s N - nNh(\nu, n))\log_e s.$$

Thus

$$\theta(1)\log_{s} e = \sum_{f \in W(n)} \Phi(f, N, \nu)\log_{s} \Phi(f, N, \nu) < -nNh(\nu, n) + N\log_{s} N + s^{n}\log_{s} N.$$

From this inequality and inequality (7.4), we obtain the condition

$$\log_s S > nNh(\nu, n) - s^n \log_s N + (\Psi(N) - s^n \Psi(s^{-n} N)) \log_s e$$
.

The Stirling bounds on $\Psi(x)$ are

$$\frac{1}{2}\log_{e} 2\pi x < \Psi(x) < \frac{1}{12x} + \frac{1}{2}\log_{e} 2\pi x$$

(see [7, page 253]). Thus (use the fact that $N \ge s^{2n}$)

$$\begin{split} \log_{s} S \ > \ & \text{nNh}(\nu, \, \text{n}) - s^{\text{n}} \log_{s} N + \frac{1}{2} \log_{s} 2\pi \, \text{N} - \frac{s^{\text{n}}}{2} \log_{s} 2\pi \, \text{s}^{-\text{n}} N - \frac{s^{2\text{n}} \log_{s} e}{12N} \\ \\ > \ & \text{nNh}(\nu, \, \text{n}) - \frac{3}{2} \, N^{1/2} \log_{s} 2\pi N - \frac{1}{12} \, \frac{s^{2\text{n}}}{N} \log_{s} e \, . \end{split}$$

Proof of Theorem (7.2). It follows from the lemma and Lemma (7.3) and the choice of the sequences $\{n_q\}$ and $\{N_q\}$ that

$$n_p N_p - \sum_{q=1}^p (\log_s S_q - n_q N_q h(\nu_q, n_q)) = o(t_p).$$

Thus the inequality

$$\log_s u_p < (\alpha + \varepsilon)t_p - \sum_{q=1}^p n_q N_q h(\nu_q, n_q)$$

holds for each $\epsilon>0$ and for all sufficiently large p. But $n_q=m_q!$; hence $h(\nu_q,\,n_q)\geq h(\nu_q)$ for all q. (This is a well-known result from the theory of entropy, see for instance [4, page 49].) Thus

$$\log_{s} u_{p} \leq (\alpha - h + \varepsilon)t_{p}$$

for all large p. We have shown that for all numbers α , ϵ (0 < α < h, ϵ > 0) with $(\alpha - h + \epsilon) < -\epsilon$, the inequality $\log_s u_p < -\epsilon t_p$ holds for all sufficiently large p.

This implies that $\sum u_p$ converges. It now follows from the theorem of Eggleston [3, Theorem 4] that

$$\dim R \ge h \equiv \inf_{\nu \in V} h(\nu).$$

From (4.4), the theorem, and Theorem (7.2), we conclude that

dim
$$G(V, s) = \inf_{\nu \in V} h(\nu)$$
.

I am indebted to J. H. B. Kemperman for much guidance.

REFERENCES

- 1. J. Cigler and G. Helmberg, Neuere Entwicklungen der Theorie der Gleichverteilung. Jber. Deutsch. Math. Verein. 64, Abt. 1, (1961), 1-50.
- 2. H. G. Eggleston, *The fractional dimension of a set defined by decimal properties*. Quart. J. Math., Oxford Ser. 20 (1949), 31-36.
- 3. ——, Sets of fractional dimensions which occur in some problems of number theory. Proc. London Math. Soc. (2) 54 (1952), 42-93.
- 4. A. I. Khinchin, *Mathematical foundations of information theory*. Dover Publications, New York, 1957.

- 5. J. C. Oxtoby, Ergodic sets. Bull. Amer. Math. Soc. 58 (1952), 116-136.
- 6. Bodo Volkmann, Über Hausdorffsche Dimensionen von Mengen, die durch Zifferneigenschaften charakterisiert sind. VI. Math. Z. 68 (1958), 439-449.
- 7. E. T. Whittaker and G. N. Watson, *A course of modern analysis*. 4th Edition. Cambridge University Press, 1946.

State University College Geneseo, New York 14454