ON PERIODICALLY PERTURBED CONSERVATIVE SYSTEMS
A. C. Lazer and D. A. Sanchez

1. INTRODUCTION
The main result of this paper concerns the differential equation

dzx

.1' —
(1.1) e

+ grad G(x) = p(t),

where p € C(R, R"), p is 27-periodic, and G € C%(R™, R). The equation (1.1) can
be interpreted physically as the Newtonian equations of motion of a mechanical sys-
tem subject to conservative internal forces and periodic external forces.

Specifically, we show that if there exist an integer N and numbers [y and [py
such that

(1.2) N2 < py < pygg < (N+1)2
and

9%G(a)
(1.3) pnly < (a_xl—a;J) < B I

for all a € R®, where I, is the n X n identity matrix, then (1.1) has a 27-periodic
solution. This extends results of D. E. Leach [3] and W. S. Loud [4] in the one-
dimensional case. Leach and Loud use polar coordinates in the plane, and their
method is not applicable to higher dimensions, but they are able to establish unique-
ness, which we do not consider here.

In the final section we are able to show both existence and uniqueness for a two-
point boundary-value problem for (1.1). Both results depend on a preliminary lem-
ma concerning Hammerstein operators; the lemma is a mild extension of a well
known result of C. L. Dolph [1]. In the periodic case we also need an extension of
Brouwer’s fixed point theorem.

2. A PRELIMINARY LEMMA

Let H be a real Hilbert space, and let K: H — H be a completely continuous,
linear symmetric, positive semidefinite operator. Let :

0<)L1§)\2_<_"'_§7\n5'“

denote those values of A for which the null space of AK - I (I denotes the identity
operator on H) has positive dimension, and let the number of times each A, occurs
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in this sequence be equal to the dimension of the null space of A,K -1. Let £t H — H
have a symmetric Gateaux derivative f'(x) at each x € H.

LEMMA. If there exist numbers py and o, Such that
(2.1) AN < BN S Bne1 < ANl
for some integer N and
(2.2) pnI < f'(x) < punppl

Jor all x € H, then the function F: H — H defined by the equation F(x) = x - Kf(x) is
bijective and has a continuous inverse.

Proof. Let
1 1
(2.3) u = 5 (UN+1 + IuN): Y = E(“N-!-l - IJN),

and define G{x) = f(x) - ux. The key point in the proof is that the inequality
(2.4) latx) - Gty < viix- vl

holds for all x, y € H. After this is established, the remainder is essentially the
same as Dolph’s proof [1] for integral operators on L2 .

To prove the inequality, we note that at each x € H, the function G has a Gateaux
derivative G'(x) = f'(x) - pI, and by Lemma 3.3 of [7],

letx) - 6| < 6@ - = - v,
where z is a point on the line segment from y to x. Since G'(z) is symmetric,
(2.5) |c'@)] = sup{|{G'(@@)v,v)|:veH, |v]|] = 1}.
From (2.2) and (2.3) it follows that
7 [vI? < (@@ - uDv, v) < |v]®

for all v € H, and these inequalities, together with (2.5), yield (2.4).

Let w € H be arbitrary, and consider the equation
(2.6) x = w+ Ki(x),
which is equivalent to
(2.7) x = [1 - uK]"'w +[I - uK]"'KG(x) = P(x).

If {vm}of is an orthonormal sequence in H such that v, = A, Kviy
(m=1, 2, ---), and if y € H, then

\‘u<y, vm>vm:| _ § (y, Vm> Vm+ g H(Y; Vm>vm
1 Am

0

-1
K[I- uK = K| v+ 2
[1-uX]"y [y R I AnOim - 1)
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= 4? - )y, v ) v

(see for example [5, Sections 93 and 94]).
Consequently, by (2.1) and (2.3),

]

Il - el = - k] K] = sup Ay, - |t
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Since (2.1) and (2.3) imply that ¢y <1 and
IP&) - PO < @ |Gx) - GO < ar|x- v

for x, y € H, it follows that (2.7), and hence (2.6), has a unique solution.

Since w € H is arbitrary, the mapping F: H —» H, F(x) = x - Kf(x) is one-to-one
and onto. To show that F-1 is continuous, let wy = F(x}) (k = 1, 2). The results
above imply that

Xl - Xy = [I - uK]"l(wl - W2)+ [I - .U.K]—IK(G(XI) - G(Xz)),

so that
1y - %ol < JIT- eI - {lwy - wal| +ay|[x; - x2],

and hence ||x; - x| < L |w; - wz|, where L = (1 - ay)-1 ][I - pK]-1].
In Section 3 we shall need the following special case of the inequality above.
COROLLARY. If, in addition to the hypothesis of the lemma, £(0) = 0, then

x = w + Ki(x) implies ||x|| < L |w|, where L depends only on pg, Bns1s ANs AN+1
and K, but not on f.

3. A PERIODIC DIFFERENTIAL EQUATION

In this section, R® will be regarded as the set of real nX 1 matrices. If a € R™,
then a* will denote the 1 X n matrix that is the transpose of a, and |a| will denote
the usual Euclidean norm of a.

Let H denote the real linear space of functions, defined on R with values in R™,
whose components are 2m-periodic and square integrable on bounded intervals. If
for x, y € H we define

2m
(xy) =" =®Oywat,
0

then (H, < >) is a real Hilbert space. If y € H, we denote the mean value

1 2@
oP y(t)dt of y by M(y).
0 .
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Elementary considerations show that for each y € H there exists a unique
Ky € H such that Ky has an absolutely continuous derivative, such that M(Ky) = 0,
and such that

a? _
(3.1) 2= - [y - M(y)] a.e.

o
Indeed, if the Fourier series of y is Enzo (a,cos nt + b, sin nt), then

cO
a_cos nt +b_sin nt
(Ky)(t) = 20 =2 s
n=1

n

The relations

1 2m 1 27
ap =~ S y(s) cos nsds, b, = p So y(s) sin nsds =1, 2, )
0

imply that
2w
(3.2) ®)© = | k6, Oy,
0
where
(3.3) k(s, t) = 2J cosnlt-s) _ k(t, s).

n=1 n2

Since the kernel k is continuous and symmetric, it follows as in the theory of
integral equations that K: H — H is linear, completely continuous, and symmetric.

If y is a nonzero element of H such that y = AK(y), then M(y) = 0 and
d2y/dt2 + Ay = 0; therefore the periodicity of y implies that A = m?% for some posi-
tive infeger m.

We now turn to the main resuit.

THEOREM. Let p € C(R, R") be 2n-periodic. If G € C2%(R™, R) and theve exist
an integer N and numbers py and [iyy) Such that

(3.4) NZ < py < by < (N +1)%,
and if
932G
(3.5) pnl, < (a_x—.%aj)) < entiln
1

for all a € R™, then there exists a 2n-periodic solution of (1.1).

2% G(a)
9% 0Xj
be the space introduced in this section, and define f: H — H by the equation

f(x) (t) = grad G(x(t)) for x € H, t € R. If x and y are in H and s is a point in

[0, 27] such that |x(s)| and |y(s)| are bounded, then (3.5) implies that for t > 0

Proof. For convenience, let Q(a) denote the Hessian matrix ( ) Let H



ON PERIODICALLY PERTURBED CONSERVATIVE SYSTEMS 197
1
|2 ferac 6x(s) + ty(s) - erad GEx(sN] - QN ¥(E)| < 2pingr [y5)]
therefore by the chain rule and the dominated-convergence theorem,

lim "% [£(x + ty) - £(x)] - Q(X)y”2

t—0
27
= lim j‘
0

+ lgrad Glx(s) + ty(s)) - grad G(x(s))] - Qx(s)y(s)|“ds = 0.
t—0

It follows that at each x € H the mapping f has a Gateaux derivative f'(x), where
f'(x) is the linear mapping H — H defined by (f'(x)y)(t) = Q(x(t))y(t). If y € H, then
t € R. The symmetry of Q implies that {'(x) is symmetric, and by (3.5),

2T

27 27
i 1¥@12ds < § T QE 6 < iy § I as,

so that ppI <f'(x) < gy I for all x € H.

Let K: H — H be the operator introduced in this section. As we showed above,
the only values of A for which x = AKx has nontrivial solutions are squares of posi-
tive integers; therefore by (3.4), f and K satisfy the hypothesis of the preliminary
lemma. Thus for any w € H there exists a unique x € H such that x = w + Kf(x). In
particular, for each a € R™ there exists a unique x, € H such that

(3.6) x, = a - Kp + Kf(x,) = a + K[grad G(x,) - p].
The definition of K implies that if

(3.7) Fola) = M[grad G(x,) - p],

then
2 X

dt?

= p(t) - grad G(x,) + Fy(a).
To prove the theorem, it is therefore sufficient to establish the existence of

ag € R™ such that Fg(ag) = 0.

If L is the number given by the corollary to the preliminary lemma, then

lxa, - xa,ll <Lllar-ag| = Lv27]a;-azl.

Hence, by (3.5) and the Schwarz inequality,
1 2n
|Fola)) - Folay)] < 3 S |grad G(xa (s)) - grad G(xa,(s))| ds
0

bnir 7 PN+ 1
S o7 ‘S‘o IXal(S) = XaZ(S)I ds _<_ .\/2_"7 ”Xal - Xa_2” S UN+1 L ay - ay|,
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and therefore F o is continuous.

From (3.2) and (3.3) it follows that Kc = 0 for every constant function c. Con-
sequently (3.6) is equivalent to

(3.8) X, - a = v +K|[i{x,) - f(a)]

(here and in the remainder of the proof we write K[-p] =v). Let a € R™ be fixed,
and define f: H — H by f(x) = f(x +a) - f(a). Then f'(x) = £'(x + a), and therefore
un < f'x) < ipyy for all x € H. If y =x, - a, then (3.8) is equivalent to

y = v+ Ki(y).

But f and K satisfy the hypothesis of the preliminary lemma and f(0) = 0; therefore
the corollary is applicable to y. Thus if L is defined as above,

(3.9) %2 - a] < Lv],

and since L is independent of a, (3.9) is true for all a € R™.

Let F,(a) = M[grad G(a) - p] = grad G(a) - M[p]. From (3.5) and (3.7) it follows
that

1 (2"
|Fo(a) - Fifa)] < 5 S |grad G(x,(s)) - grad G(a)| ds
0

iz 2m [
< 1;;1 So |xa(s) - a] ds < \1;;—; Ixa- al,

and hence by (3.9)
(3.10) |Fola) - Fi(a)| < Llpng; /Ven)||w].

From the identity

1
F(a) = grad G(a) - M[p] = grad G(0) - M[p] +l:5 Q(sa)ds |a
0

and (3.5) we infer that
a* F(a) > py |a]? - |a] - |grad G(0) - M[p]|;

hence a* Fia) >+« as |a| — o and by virtue of (3.10), a* Fpla) » += as

al — .
Assume r to be so large that a* F(a) > 0 if |a| = r. We may choose £ > 0 so
small that for |a| =r

la - eFya)|? = |a|? - 2ea* Foa) +£2 | Fol@)| ? < |a]? = r2.

This inequality implies that if B, is the closed ball of radius r about the origin
in R™, then the continuous mapping 6: R™ — R" defined by the equation
6(a) = a - eFy(a) maps the boundary of B, into B,..



ON PERIODICALLY PERTURBED CONSERVATIVE SYSTEMS 199
By an extension of Brouwer’s fixed point theorem due to B. Knaster, K. Kura-
towski, and S. Mazurkiewicz [2] and to E. H. Rothe [6], there exists ag € B, such
that 6(ag) =ag. Hence Fylag) = 0, and by a previous remark the proof is complete.
4. A BOUNDARY-VALUE PROBLEM
In this section, we indicate a more direct application of the results of the second

section. Let H be the real H11bert space of functions defined on [0, 27] with values
in R™, with components in L2[0, 7], and with inner product

2m
(f,g) = S £*(t) g(t)at .
0
Elementary arguments show that for each f € H there exists a unique Kf € H
that is a solution of the boundary-value problem
x" = -f (a.e.), x(0) = x(n) =

A direct computation shows that
b

(4.1) K(s, t) = S k(s, t)f(s)ds
a

where

tlr-s)/m (0<t<s<w).

By standard arguments, (4.1) implies that XK: H — H is completely continuous
and symmetric. Moreover, if for some real A, u = AKu and u # 0, then A = m?2 for
some positive integer m.

Suppose G € CZ(R™, R) and p € C(R, R™); then y € H is a solution of the two-
point boundary-value problem .

(4.2) y" +grad G(y) = p(t), y(0) =a, y() =

if and only if y is a solution of the integral equation

y(t) = a+% (b-a)+ Sﬂk(s, t)[grad G(y(s)) - p(s)lds.
0

By reasoning as in the previous section, one shows that if for some integer N and
numbers py and ppy the conditions (1.2) and (1.3) are satisfied, then the integral
equation, and hence the boundary-value problem (4.2), has a unique solution.
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