A CATEGORY SLIGHTLY LARGER THAN THE
METRIC AND CW-CATEGORIES

D. M. Hyman

1. INTRODUCTION

A number of attempts have been made recently to construct a category suitable
for algebraic topology. The class Mg of metric spaces, despite its nice topological
properties, is unsuitable because mapping cylinders cannot in general be formed in
Mg, and M, does not contain all the CW-complexes. Both of these difficulties stem
from the fact that M is not closed under adjunction and weak union. In this paper
we study the smallest category M that contains M and is closed under adjunction
and weak union. M-spaces can be constructed from metric spaces by a process
analogous to the way CW-complexes are built up from cells. Many of the convenient
separation properties of metric spaces, such as paracompactness, are shared by M-
spaces.

Our work is related to that of Borges [1], Michael [10], and Steenrod [12]. In
fact, M is a subcategory of Steenrod’s CG-category; finite products and subspaces
in M are exactly those of CG. In addition, every M-space is a stratifiable space of
Borges, and every separable M-space is an 8-space of Michael.

One of the main reasons for introducing the category M is that it provides a na-
tural setting for Hanner’s generalization of Whitehead’s extension of a theorem due
to Borsuk. Hanner’s result states roughly that a space obtained by adjoining an
ANR (M) to an ANR (M) along an ANR (Mg) is itself an ANR (Mg), provided that it
is metrizable. In M, this result holds without qualifications: a space obtained by
adjoining an ANR (M) to an ANR (M) along an ANR (M) is itself an ANR (M). This
is the main result of the last section of the paper.

After stating some preliminary definitions and results in Section 2, we define the
category M in Section 3 and show that M is closed under adjunction and weak union
in Section 4. In Section 5, we discuss the category CG of compactly generated
spaces (k-spaces) and show that M is a subcategory of CG. We consider sub-
spaces, product spaces, and function spaces in Sections 6 to 8. Section 9 deals with
separable M-spaces and their relation to 8p-spaces. We obtain some basic results
in the theory of retracts in M in Section 10.

2. PRELIMINARIES

By a space we shall mean a topological space. A paiv (Y, B) is a space Y to-
gether with a closed subset B. If (X, A) and (Y, B) are pairs such that X C Y and
A =XN B, then (X, A) is called a subpair of (Y, B). (Our definition of “subpair” is
more restrictive than the usual definition, which requires only that X C Y and
A c B.) I, in addition, X is closed in Y, then (X, A) is a closed subpaiv of (Y, B).
E& mc]zp is a continuous function. All neighborhoods are open. We denote the interval

0, 1{ by 1.
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Of central importance in this paper are the notions of proclusion, adjunction, and
weak union. We review them briefly in this section.

A surjection p: X — Y is called a proclusion (or identification or quotient map)
if it has the property that B C Y is closed if and only if p-1(B) C X is closed.
A CX is said to be saturated if p~1(p(A)) = A. Consequently, if p is a proclusion,
then B C Y is closed (or open) if and only if it is the image of a saturated closed (or
open) subset of X. Many results concerning proclusions can be found in the recent
book of Dugundji [4, Chapter 6], from which we take the following:

PROPOSITION 2.1 (see [4, p. 124]). Let p: X — Y be a proclusion, and let
f: X— Z beamap, If fp~l: Y — Z is single-valued, then it is continuous.

COROLLARY 2.2, If p: X— Y and q: X — Z are proclusions such that
ap~l: Y — Z and pq-l: Z —» Y are single-valued, then qp-! and pa-1 are homeo-
movphisms.,

Given spaces X and Y, denote their topological sum by X+ Y. More generally,
given a collection of spaces {Xa}, denote their topological sum by +4 Xy .

Suppose that (X, A) is a pair and that f: A — Y is a map. Let R be the equiva-
lence relation on X+ Y generated by

a~f(a) for each a € A,

and let X Uy Y be the set of equivalence classes of R with the (unique) topology such
that the natural projection p: X+Y — X U¢Y is a proclusion. X Us Y is called the
adjunction space obtained from X and Y under f. A category € is said to be
closed undey adjunction provided that X Us Y € € for each pair (X, A) with X € @,
each ¢ -space Y, and each map f: A— Y.

Suppose (X, A) isapairand f: A —Y isamap. Let q: X+Y — X Ur Y be the
natural projection. A map p: X+ Y — Z is called an adjunction map for f if there
exists a homeomorphism h: X Uy Y — Z such that the diagram

X+Y—2> X U

N/v

commutes. The quintuple (X, A, f, Y, p) is called a presentation for Z. Observe
that p is a proclusion.

PROPOSITION 2.3 (see [4, p. 128]). If (X, A, 1, Y, p) is a presentation for Z,
then p maps Y homeomorphically onto a closed subset of Z, and p maps X - A
homeomorphically onto an open subset of Z.

PROPOSITION 2.4 [4, pp. 128-129]. Let (X, A) be a closed subpair of a pair
(Xg, Ag), and let Y be a closed subset of a space Y y. Suppose that g: Ag— Y, is a
map such that g(A) C Y, and let f: A — Y be the restriction of g. If

p: Xo+ Yo = XgUg Yo

is the natuval projection, then p(X +Y) is closed in XoUg Yo and p(X +Y) is ho-
meomorphic to X U, Y,
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Let J* denote the set of nonnegative integers. Suppose that {X,| ne J'} isan
increasing closed cover of a space X, in other words, that X,, C X4 for all n, X,

e o]
is closed in X for all n, and Un:o Xn = X. If the topology on X is such that a set
A C X is closed if and only if A N X, is closed for all n, then we say that X is the

weak union of {Xn} (in symbols: X = 20 Xn). A category % is said to be closed
under weak union if X € ¢ whenever X = Z‘/Xn, where X, € € for all n.

Suppose that {Xn] ne J+} is an increasing closed cover of a space X. For
each n, let g, X, — X be the inclusion. Then the collection { gn} defines a map
g: +5 X, — X. The following two propositions are immediate consequences of the
definition of weak union.

PROPOSITION 2.5. X = 2J Xn if and only if g is a proclusion,.
PROPOSITION 2.6. If X = 22 X, , then a function f: X — Y is continuous if and
only if £ ] X, is continuous for all n.
We shall also need the following result [12, Lemma 9.3].
/
PROPOSITION 2.7. If X = EXn is a Ti-space and C is a compact subset of
X, then there exists an index n such that C C X,,.

Remarks, 1. Although we have defined weak union with J* as the index set, it
will sometimes be notationally convenient to use the positive integers as the index
set.

2. I {X,| ned"} isa sequence of spaces such that X, is a closed subset of
X,+1 for all n, then we can topologize the set X = Un X, by defining A C X to be
closed if and only if A N X, is closed in X, for all n. With this topology, X = EXH.

Before defining the category M, we formulate a definition of CW-complexes.
Our approach will provide the motivation for the definition of M.

Definition 2.8. Let K be a space, and suppose that 7 is a collection of pairwise
disjoint open n-cells (n > 0) such that K = Ut€ + t. For each n > 0, let
K" = U{t € 7|dim t <n}. Suppose that

(1) KO is a discrete space (with topology inherited from K);

(2) for each n > 0 there exists a presentation (X, Ap, fn, Yn, pn) for K such
that

(a) X,, is a free union of closed n-cells,
(b) A, is the union of the boundaries of the cells in X,
(c) pp(Y,) =K2"1; and

(3) K = 22K,

then K (more properly, K together with 7) is called a CW-complex. 7 is called a
triangulation for K, and K" is the n-skeletorn of K.

This definition is equivalent to Spanier’s {11, p. 401].
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3. DEFINITION OF THE CATEGORY M

Having concluded with the preliminaries, we are now ready to define M-spaces
and obtain some of their elementary properties.

Definition 3.1. A space Z is called an M-space if there exist subspaces
Zo, 2y, - of Z such that

(1) Zo is metrizable;

(2) for each n > 0 there exists a presentation (X,, A, f,, Y, p,) for Z, such
that

(a) X, is metrizable,
(b) p,(Y,) =2, _;;and

n-1>
() z2=27%,.
The category M is the category of M-spaces and maps.

Observe that Definition 3.1 is obtained from Definition 2.8 simply by replacing
cells and their boundaries by arbitrary metric spaces.

COROLLARY 3.2. Every CW-complex is an M-space,

Despite its simplicity, Definition 3.1 is difficult to use in practice, because the
orderly stacked “skeleta” of 3.1(2) are difficult to manipulate. We need a somewhat
cruder and more manageable stacking, and we therefore consider an alternate de-
scription of M-spaces.

Definition 3.3. A space is called an Mg-space if it is metrizable. Recursively,
we define Z to be an M, ;] -Space if there exists a presentation (X, A, f, Y, p) for
Z such that X is metrizable and Y is an M,-space. We shall refer to

o0
(X, A, £, Y, p) as an (n + 1)-presentation. Finally, let My = U9 M,,.

Suppose that (X, A, f, Y, p) is a presentation for a space Z such that X is
metrizable. We describe this situation by saying that “Z is obtained from p(Y) by
adjoining a metric pair.” With this terminology, condition 3.1(2) states that each
Zy (n > 0) is obtained from Z,_] by adjoining a metric pair, and condition 3.3
states that every M, ;;-space is obtained from an M,-space by adjoining a metric
pair. Recall that p(Y) is closed in Z and p(Y) = Y (Proposition 2.3).

THEOREM 3.4. A space X is an M-space if and only if theve exist My -Spaces
X, Xy, *** Such that X = Z)Xn.
Proof, “Only if” is trivial. Conversely, suppose that X, 'Xl, «ee are My~

spaces such that X = Z)Xn. It follows at once from Definition 3.3 that for each
n > 0 there exists a finite sequence of closed subspaces X, g, Xn,1, ***» Xn,m(n) of
X, such that

(1) X,, ¢ is metrizable,
(2) Xn,m(n) = Xn, and
(3) X, k41 is obtained from X, i by adjoining a metric pair (0 <k < m(n)).

Order the collection {X, 1] 0 <n <, 0 <k <m(n)} by the rule Xp x < Xn! k!
if either n <n' or n=n' and k <k'. With this ordering, the set {Xn,k} is order-
isomorphic to J*. Let Y p = Xn,k, where p <> X, k under the order-isomorphism.
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Define Zp = U i<p 3% . Clearly, {Zp| p € J'} is an increasing closed cover of X.
hat {X

By (2), we see that {X_| n € J*} is a subcollection of {Z,| p € 3"}, cofinal with
respect to inclusion, and it follows at once that

|

4) 2212, = LX, = X.

We shall show that the collection {Zp} satisfies the conditions of Definition 3.1.
Observe that Zy = Yo = Xg,0, and that Xo o is metrizable, by (1), so that condition
(1) of Definition 3.1 is satisfied. Given p € J*, we shall show that Zp+1 can be ob-
tained from Zp by adjoining a metric pair. There are two cases:

Case 1. Ypi) is metrizable. Let g: Yp+1 N Zp — Zp be the inclusion. Then
Zp41 = Ypi1 Ug Zp.

Case II. Yy is not metrizable. Then, by (3), there exists a presentation
(D, B, f, E, ) for Y 41 such that D is metrizable and such that Y(E) = Y. Let
Do =D N Y~ (Ype1 0 Zy), and let h =gy | Dg: Do — Zp, where g: Ypi1 N Zp — Zp
is the inclusion. Then D Uy Zp = Zpy1, since both are images of D + E + Z, under
proclusions that satisfy the hypothesis of Corollary 2.2.

In either case, we obtain Z;;) from Z; by adjoining a metric pair. Therefore
(2) of Definition 3.1 is satisfied, and (3) of Definition 3.1 follows from (4). This com-
pletes the proof.

The arbitrarily stacked Mo -“skeleta” of Theorem 3.4 are more easily manipu-
lated than the skeleta of Definition 3.1. We shall frequently use Theorem 3.4 without
explicit reference. Observe that Mg C M C - C M, C M,

We close this section with some remarks concerning the separation properties of
M-spaces.

Two of the most useful separation properties of metric spaces are paracompact-
ness and perfect normality. (A space is perfectly normal if it is a normal Hausdorff
space and all its closed sets are of type Gg.) Both of these properties are implied
by a stronger condition called stratifiability [1]. Since all metric spaces are strati-
fiable, and since stratifiability is closed under adjunction [1], it follows by an easy
induction that all M,,-spaces are stratifiable. Since stratifiability is closed under
weak union (this is a special case of [1, Theorem 7.2]), we have the following resuit.

THEOREM 3.5. All M-spaces ave stratifiable; in particular, all M-spaces are
paracompact and perfectly normal.,

COROLLARY 3.6. All locally compact M-spaces are metrizable; in particular,
all compact M-spaces are metrizable.

Proof. All locally compact stratifiable spaces are metrizable [1].

4. CLOSURE OF M UNDER ADJUNCTION AND WEAK UNION

One serious defect of the metric category is its failure to be closed under ad-
junction and weak union. In this section, we shall prove that M is closed under
these operations.

LEMMA 4.1. Suppose that (X, A) is a pair and f: A — Y is a map. Suppose that
Xos Yo, X4, Yy, =+ are spaces such that X = EXn and Y = EYn. Suppose also
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that £(A N X)) C Y, for each n. If p: X+Y — X U Y is the natural projection, then
X Up Y = 22 p(X, + Y,).

Proof. By Proposition 2.4, p(X,,+ Y,) is closed in X Uf Y for all n. It follows
readily that {p(X, + Y,)| n € J*} is an increasing closed cover of X Us Y. Suppose
A Cc X UsY meets p(X,+ Y,) in a closed set for all n. We must show that A is
closed in X Ug Y. Since A N p(X,+ Y,) is closed, p~1(A) N X,, and p~1(A) N Y,

are closed in X, and Y, ; and since X = 27X, and Y= 27 Y,, p~!(A) is closed in
X +Y. But p is a proclusion; therefore, A is closed in X U; Y.

LEMMA 4.2. Let (X, A) be a pair, wheve X € M,,, and let f: A — Y be a map.
If Y is an M-space (or My -space), then X Us Y is an M-space (or M,,-space).

Proof. We show first that if X is metrizable and Y is an M-space, then X Us Y
is an M-space. Let d be a metric for X, and let Y, Y, *-- be M -spaces such

that Y = 25 Y,,. Without loss of generality, we may assume that f(A) N Yq # . For
each n, let A_=f-}(Y ); then A_#@. Let

{xeX|ax,A)<n-dx,A-A)} if A+A,
X if A=A,.

The sequence {Xg, Xi, ***} is an increasing closed cover of X. We shall now show
that the sequence {int (Xn)l ne J¥} is a cover of X, where int(X,) denotes the in-
terior of X, in X. I x € X, - A, then by the definition of X, x € int(X, ;). If

X € A, then there exist an ¢ > 0 and an n > 0 such that the open £-ball (in A) cen-
tered at x lies in A,, —for otherwise there would exist a point x,, such that

d(x,, x) <1/n and f(x,) ¢ Y, ; since the set {x, x;, x,, -~ } is compact, the set
{f(x), £(x1), f(xp), **+ } would be compact, in contradiction to Proposition 2.7. It fol-
lows that the open £/2-ball (in X) centered at x lies in X, ; therefore

{int (X_)| n € 3t} covers X.

We show next that X = 2J X,- Suppose Y C X meets each X, in a closed set,
and let x be a limit point of Y in X. Choose an index n such that x € int(X,); then
x is a limit point of Y N X,,, and because Y N X, is a closed subset of X, x € Y.

Therefore Y is closed in X; hence X = 27 X

For each n, let f: A, — Y , be the restriction of f. Since X,, € My and
Y, € M,, X, Ufn Y, € M, by Definition 3.3. By Proposition 2.4,

(Xn Ufn Yn) = 7T(Xn + Yn):

where 7: X+ Y — X Us Y is the natural projection, and, by Lemma 4.1,
XU Y =20 m(X, +Y,);

therefore, X U;Y € M, by Theorem 3.4.

Suppose we have shown that the adjoining of any M,-space to an M-space always
yields an M-space, and suppose that X is an M, ,;-space. Let (Z, B, g, E, p) be an
(n + 1)-presentation for X. Define a map h: E Np-1(A) = Y by

h(x) = fp(x) forall xe Enp-l(A).



A SLIGHTLY LARGER CATEGORY 199

By the induction hypothesis, E U, Y € M. Let q: E+Y — E Uy, Y be the natural
projection, and define a map j: BU (Z N p~1(A)) » E Uy Y by

qg(x) if x € B,
i) =
afp(x) if x€ Znp-l(a).

The map j is well-defined; for, if x belongs to both B and Z N p~!(A), then

afp(x) = afpg(x) = qhg(x) = qg(x).

Since Z € My and E Uy, Y € M, it follows from the first part of this proof that
ZU;j (EUnY) e M. But Z U; (EUp Y) and X Us Y are homeomorphic, since both
spaces are images of Z + E + Y under proclusions that satisfy the hypothesis of
Corollary 2.2, Therefore, X U; Y € M.

Suppose now that Y € M. If X € Mg, then X Us Y € My, by Definition 3.3.
Arguing as in the preceding paragraph, we see that X Urf Y € M,,, where X is any
M ~-space. This completes the proof.

Remark. Suppose that X and Y are spaces such that X N Y is closed in each.
If we topologize X UY with the union fopology, that is, if A C X U Y is closed if
and only if A NX and A NY are closed in X and Y, respectively, then
XUY=XU;Y, where i: XN Y — Y is the inclusion. Consequently, if X and Y
are M_ -spaces, then X UY is an M -space, by Lemma 4.2.

LEMMA 4.3. If X = 2 X, where Xy, X1, -+ are M-spaces, then X is an M-
space.

Proof. For each n, let X, o, X1, - be M, -spaces such that X, = Zm Xnm-
For each k € J*, let Y, = Un,m<k Xam+. X A C X meets Yy in a closed set for
each k, then A meets X, in a closed set for all n and m. Since X, = Em Xnm

and X = EXn, it follows that A is a closed subset of X; therefore, X = 20 Y. By
the remark above, Y, is an M, -space; therefore, X is an M-space, by Theorem
3.4.

LEMMA 4.4. Suppose (X, A) is a paiv and f: A —> Y is a map. If X and Y are
M-spaces, then X Ug Y is an M-space.

Proof. Let Xg, X;, **» be Me-spaces such that X = 27X,. For each n, let
f,: AN X, —Y be the restriction of f. Taking Y, =Y in Lemma 4.1, we see that

XUsY = 27 p(X,+Y), where p: X+ Y — X Us Y is the natural projection. By
Proposition 2.4, p(X, +Y) ~ X, U Y, and, by Lemma 4.2, X, Ufn Y is an M-space;
n

the result now follows from Lemma 4.3.

COROLLARY 4.5. If X and Y are M-spaces and X NY is closed in each, then
X UY, under the union topology, is an M-space.

Combining Lemmas 4.3 and 4.4 and Definition 3.1, we have the main result of
this section.

THEOREM 4.6. The category M
(1) is a full subcategory of the topological category,
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(2) is closed under adjunction and weak union, and
(3) contains My ;
if M' is any category possessing properties (1) to (3), then M' contains M.

5. COMPACTLY GENERATED SPACES

A Hausdorff space X is said to be compactly generated, or to be a k-space, if it
has the property that a set A C X is closed if it meets every compact set in a closed
set. The category CG of compactly generated spaces has been studied in [12].

Let 7 be a Hausdorff topology on a set X. Define a topology k7 on X by defin-
ing a set to be closed if it meets each compact subset of (X, 7) in a closed set. The
assignment (X, 7) — (X, k7) defines a functor (in fact, a retraction) k from the
category of Hausdorff spaces and maps onto CG [12].

PROPOSITION 5.1 [4, p. 248]. If X is compactly genevated and Y is a Hausdorff
space, and if f: X — Y is a proclusion, then Y is compactly genervated.

THEOREM 5.2. Every M-space is compactly generated.

Proof. Since the natural projection in an adjunction is a proclusion, and since
the composite of two proclusions is a proclusion, it follows by induction that every
M,,-space is the image of a metric space under a proclusion. It now follows from
Proposition 2.5 and Theorem 3.4 that every M-space is the image of a metric space
under a proclusion. Since every metric space is compactly generated [12], the
theorem follows from Proposition 5.1.

In conjunction with k-spaces, an important class of maps is the class of com-
pact-covers. A map f: X — Y is said to be compact-covering if for every compact
Yo C Y there exists a compact Xg C X such that f(Xg) = Yo [10]. The following two
propositions provide a link between k-spaces, compact-covers, and proclusions.

PROPOSITION 5.3 [10]. If Y is a k-space and f: X — Y is compact-covering,
then t is a proclusion.

PROPOSITION 5.4 [10]. If (X, A, £, Y, p) is a presentation for Z,and if X and
Y are paracompact, then p is compact-covering.

We close this section with a lemma which we shall use repeatedly in the sequel.
LEMMA 5.5. Let {X_| ne 3} be an increasing closed cover of a k-space X.
Then X = 2J X, if and only if each compact subset of X lies in some X,,.

Proof. If each compact subset of X lies in some X, , then the inclusion-induced
map g: +, X,, — X of Proposition 2.5 is compact-covering. By Proposition 5.3, g is

a proclusion; hence, X = 27 X, by Proposition 2.5.

The converse follows from Proposition 2.7.

6. SUBSPACES

Suppose that A is a subset of an M-space X. We consider two topologies on A.
The first is the classical subset topology—the inkerited topology—for A. This is de-
fined as the smallest topology under which the inclusion i: A — X is continuous.
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The disadvantage of this topology is that it may not be compactly generated (see
Example 6.4), and by Theorem 5.2 it cannot be an M-space.

We therefore consider a second topology—the subspace topology—on A. We ob-
tain it by applying the functor k to the inherited topology on A. Consequently, A
with the subspace topology is a k-space. Our next principal result (Theorem 6.2)
says even more, namely, that A is an M-space.

By a subspace of an M-space we mean a subset with the subspace topology. Un-
less it is stated othevwise, subsets will have this topology.

Because restrictions of maps in the topological category are maps and because
k is a functor, we have the following result.

PROPOSITION 6.1. If A and B ave subspaces of M-spaces X and Y, respec-
tively, and if f: X — Y is a map such that £(A) C B, then £ | A: A — B is continuous.

THEOREM 6.2. If B is a subspace of an M-space (or M,-space) Z, then B is
an M-space (or Mp-space).

Proof, If Z € Mg, then B € Mg. Suppose now that every subspace of an Mp-
space is an Mp-space and that Z € Mp+1. Let (X, A, f, Y, ¢) be an {n + 1)-presen-
tation for Z. Let

Xo=XnylB), Yo=YnylB), Ag=XoNnA, g-=1|AyAg— Yo.

The restriction of ¥ to X+ Yo defines a map q: Xg + Yo — B (Proposition 6.1).
Because ¥ is compact-covering (Proposition 5.4), q is obviously compact-covering,
and since B is by definition a k-space, it follows from Proposition 5.3 that q is a
proclusion. If p: Xg+ Yo — Xg Ug Yo is the natural projection, it follows from
Corollary 2.2 that Xy Uy Yo = B. But X is metrizable, and, by the induction hy-
pothesis, Yg € M,,. Consequently, B € M, ;1. This completes the induction.

Suppose now that Z € M. Let Zy, Z;, -+ be Mw-spaces such that Z = 27 Zh.
By the paragraph above, Z,, N B € M., for each n, and an easy application of Lemma

5.5 shows that B = 27(Z, N B). Therefore B € M.

It follows from Theorems 5.2 and 6.2 that a subset of an M-space with the in-
herited topology is an M-space if and only if it is a k-space. If B is a closed sub-
set of a k-space, or an open subset of a regular k-space, then B with the inherited
topology is a k-space [12].

COROLLARY 6.3. If B is either a closed or an open subset of an M-space (or
Mp-space) Z, then B with the inherited topology is an M-space (or Mnp-space), and
it coincides with the subspace B.

We give an example of a subset B of an M-space such that B with the inherited
topology is not an M-space.

Example 6.4. S. P. Franklin [5] showed that a space Z is the image of a metric
space under a proclusion if and only if Z is sequential, that is, if U C Z is open
provided every sequence converging to a point in U is eventually in U. Consequent-
ly, if z is a limit point of Z, then there exists a sequence in Z - z converging to z.
In the course of proving Theorem 5.2, we observed that every M-space is the image
of a metric space under a proclusion; therefore, every M-space is sequential. Let

X={x y)eR? x>0, y>0}, A={(x,y)eXx|y=0}, Y={xeR!x>0]}.
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The assignment (x, 0) » x definesamap f: A— Y. Let p: X+Y — X Ur Y be the
natural projection, and let B =X Us Y - p(A). It is easily verified that p(0) is a
limit point of B, under the topology inherited from X Ur Y, but that p(0) is not the
limit of any sequence in B - p(0). It follows that B, under the inherited topology, is
not an M-space. In this example, the functor k on B isolates the point p(0), and
therefore the subspace B is the topological sum of the metrizable sets p(X - A) and

p(0).

7. PRODUCT SPACES

Because the cartesian product of two k-spaces need not be a k-space, Steenrod
has defined the product of two spaces in CG by applying the functor k to the carte-
sian product [12]. We adopt this definition of the product for M.

PROPOSITION 7.1 [12]. If p: X — X and q: Y — Y are proclusions, then
PpXq: XXY — XogXYqg is a proclusion.

THEOREM 17.2. The product of two M-spaces is an M-space.

Proof. We prove first that the product of an M,-space Z; and an Mp,-space
Z, is an M -space. This is trivial if n + m = 0, that is, if the factors are metriza-
ble. Suppose we have proved that Z; X Z, € M,, whenever n+ m < k, and let
n+m=k+1. Theneither n>0orm>0 —say m> 0. Let (X, A, f, Y, p) be an
m-presentation for Z, . By the induction hypothesis, Z; X X and Z; XY are M-
spaces. Let g=1X1f: Z; XA — Z; XY. By Lemma 4.2, (Z; XX) Uy (Z] XY) is an
M, -space, and it follows from Proposition 7.1 and Corollary 2.2 that
(Z; xX) Ug (Z1 XY)= Z1 X Z;; therefore Z| X Z € M.

Now let X and Y be arbitrary M-spaces, and let Xy, Yo, X;, Y1, *** be M-
spaces such that X = 27 X, and Y = 27 Y, . By the paragraph above, X,, XY, € My

for each n, and by an easy application of Lemma 5.5 we see that X XY = 27 (X, XYp).
Therefore X XY € M.

The product defined above satisfies the axioms for a product in the category CG
[12]. It also satisfies the axioms for a product in M; we can easily verify this di-
rectly, or by observing that M is a full subcategory of CG.

Although we can extend the definition of the product to any number of factors by
applying k to the cartesian product [12], Theorem 7.2 does not extend to infinitely
many factors. In fact, we can show that the product of infinitely many nonempty
spaces is an M-space if and only if (1) each factor is an M-space, (2) all but count-
ably many of the factors have exactly one point, and (3) all but finitely many of the
factors are metrizable.

8. FUNCTION SPACES

Given k-spaces X and Y, denote the set of all maps from X into Y by YX,
Topologize YX by applying the functor k of Section 5 to the compact-open topology.
It is not true that YX € M whenever X € M and Y € M; for example, if X is an un-
countable discrete space, then I¥ is a Tychonoff cube, which is not an M-space, by
Corollary 3.6. The main result of this section is that YX is in M whenever X is a
compact metric space and Y is a CW-complex. If is not known whether YX isin M
whenever X is a compact metric space and Y is in M.
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We review some of the vocabulary associated with CW-complexes (see also
Definition 2.8). Let 7 be a triangulation for a CW-complex K, and let K® (n > 0)
be the skeleta of K. The elements of 7 are called the cells of K. An element of
K? is called a vertex of K. If C and D are cellsand C N D # @, then D is said to
be a face of C. If 7' C 7 has the property that every face of every element of 7'
is in 7', then the union L of the elements of 7' is called a subcomplex of K. The
set L is closed in K, and L is a CW-complex in its own right with triangulation 7°'.
Unions and intersections of subcomplexes are subcomplexes; therefore, for each
subset B C K, there exist a smallest subcomplex B; of K containing B and a larg-
est subcomplex B, of K disjoint from B. We call B; the complex closure of B in
K, and we call K - B, the open star of B in K (abbreviation: st(B)). The complex
closure and open star are closed and open subsets of K, respectively, and both con-
tain B. A cell is maximal if it is not a face of any cell other than itself. It follows
that a cell C is maximal if and only if K - C is a subcomplex of K (with triangula-
tion 7 - {C}). If 7 is finite, then K is called a finite CW-complex. A CW-com-
plex is compact if and only if it is finite. Every finite CW-complex is the complex
closure of the union of its maximal cells, and every compact subset of a CW-com-
plex lies in a finite subcomplex.

LEMMA 8.1. (a) If X is a compact metric space and Y is metvizable, then YX
is metrizable,

(b) If X and Y ave M-spaces and Z is a closed subspace of Y, then the sub-
space {f € YX| f(X) € Z} is closed in YX and homeomorphic to ZX .

(c) Every finite CW-complex is metvizable.

Proof. (a) Combine [4, Theorem XII, 8.2(3)] with the facts that Mg C CG and k
is the identity on CG.

(b) This follows from [4, p. 258, 1.2(b) and Ex. 3] and the fact that every closed
set in the compact-open topology is closed in our topology.

(c) This follows from Corollary 3.6 and the fact that every finite CW-complex is
compact.

THEOREM 8.2. If K is a CW-complex and X is a compact metric space, then
KX is an M-space.

Proof. Let {Kal o€ A} be the collection of all finite subcomplexes of K. For
each @, let

Y, = {fe K¥X| (X)) C Ky ).
For each positive integer n, let

T, = {Ya| the number of cells in K, is n},
and let
T" = U {Yqy| Yy € Ty for some i <n};

that is, let T™ be the set of all maps whose range lies in a subcomplex having at

most n cells. We shall show that each T™ is an M, _;-space and that KX = 2 T®
(n>1). It will follow that KX € M.

First observe that {T!, T2, ---} is a cover of KX. If f € KX, then, since X is
compact, f(X) lies in a finite subcomplex of K. Consequently, f € T™ for some n.
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We now show that T” is closed in K* for all n. Let n be fixed, and let
{fﬁ| B € B} be a net in T" converging to f € KX . We must show that f € T", Let
m be the smallest integer such that £ € T™ . We show by contradiction that m » n.
Suppose that m > n. Let Ky be the complex closure of f(X). The minimality of m
implies that Ky has exactly m cells. Let Cp, ---, C, be the maximal cells of K ;
then £(X) N C; # @ for all i. Choose a point x; such that f(x;) € C; (i=1, -+, p).
For each i, the set of maps that take x; into the open star of C; in K is open in
KX ; therefore, for each i there exists an index f; such that fg(x;) € st(C;) when-
ever B> B;. Let Bp € B be an index greater than each B; (1 <i <p). Then fﬁo(X)

meets each st(C;). Since Ky is the complex closure of Uf: 1 Ci, it follows that the
complex closure of fBo(X) contains K, ; and since m > n, we have the contradiction

fﬁo ¢ T". We conclude that m < n. Thus, we have the relations f € T™ C T";
hence T" is closed.

We show next that T" € M,,_; for all n. If Y, € T, then K, is a vertex of K.
Therefore T! is discrete. Assume that T® € M, _;, and consider T™"!, For each
Yy € Tyyp, theset 2y =Yy N T is closed in Y, by the paragraph above. Let
fyt Zy — TT™ be the inclusion. If Y is the topological sum of all the Y, in T4,
and if Z is the topological sum of the corresponding sets Z, , then (Y, Z) is a pair,
and the functions {fa define a map f: Z — T, Since each Y, € T,4] is metriz-
able (by parts (a) and (c) of Lemma 8.1), Y is also metrizable; therefore, by the in-
duction hypothesis, Y Uz T™ is an M, -space.

We shall show that Y Ug T® is homeomorphic to T?"!, Since Y, C T®'! for all
Y, € Tpy1, and since TP C T"! | there exists an inclusion-induced map
q: Y+ Tt — T+l It is compact-covering. To see this, suppose E C T2t s com-
pact. If E C T®, then, since q | T™ is an inclusion, E is the image of itself under q.
Suppose then that E ¢ T™. Since the evaluation e: X X KX — K is continuous [12],
e(X X E) is compact, and therefore it lies in a finite subcomplex L. of K. Let
{Ka1 , Kaj} be the collection of all subcomplexes of L with exactly n+ 1 cells.

(This collection is not empty, because E ¢ T™.) Then E C ngl Yy, . Since K,

1 1
is closed in K, YOzi is closed in K¥ (by part (b) of Lemma 8.1); therefore E N Yai
is compact. Moreover, Y, € T .; for all i, and therefore q | Y. is a homeo-

1 1

morphism (into). Consequently, (q | Yozi)_l (E N Yai) is compact for all i. Writing

J J j
q(U (q|Yai)'1(EﬂYai)) - U= NYq,) = En(U Yai) = E,
i=1

i=1 i=1

we see that g is compact-covering. By Proposition 5.3, q is a proclusion. Since ¢
and the natural projection p: Y + T™ — Y U; T® satisfy the hypothesis of Corollary
2.2, it follows that Totl ~Y U T™, Therefore Tt s an M,-space, and the in-
duction is complete.

Finally, we show that KX = 27 T™, We have already observed that {T"| n>1}
is an increasing closed cover of KX, and, by an argument similar to the one above
involving the evaluation map, we see that every compact subset of KX lies in some

T". By Lemma 5.5, KX = 27 T™, and the proof is complete.

COROLLARY 8.3. If K isa CW-complex and X and Y are compact metric
spaces, then (KX)Y and KXXY gre homeomorphic M-spaces.
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Proof. (KX)Y and KX*XY are homeomorphic [12]. By Theorem 8.2, K%Y is an
M-space; therefore (KX)Y is an M-space.

9. SEPARABLE M-SPACES

Among the pathological examples of topology, there are separable spaces that are
not Lindeldf spaces, nonseparable Lindeldf spaces, nonseparable subsets of separable
spaces, and non-Lindeldf subsets of Lindeldf spaces. The results of this section
show that such examples cannot occur in M.

A regular Hausdorff space Y is called an 8y-space if there exist a separable
metric space X and a compact-cover f: X — Y. (This definition differs from that
given in [10]; but it is shown in [10] that the two definitions are equivalent.)

THEOREM 9.1. The following statements concerning an M-space Z are equiva-
lent:

(a) Z is separable;
(b) Z is a Lindeldf space;
(¢) Z is an 8g-space.

Proof. (a) — (b). Combine Theorem 3.5 with the fact that every separable para-
compact space is a'Lindeldf space [4, p. 176].

(c) — (a). This follows from the fact that separability is a continuous invariant.

(b) — (¢). Let Z be a Lindelof M, -space. If Z € Mg, then Z is a separable
metric space, and therefore an 8p-space. Suppose we have shown that all Lindel6f
M, -spaces are 8g-spaces, and suppose that Z € Mp+1. Let (X, A, £, Y, p) be an
(n + 1)-presentation for Z. Since p(Y) is closed in Z (Proposition 2.3), p(Y) is a
Lindelof space; by the induction hypothesis, Y is an 8g-space. Since p(X - A) is
open in Z (Proposition 2.3), p(X - A) is an F;-set in Z, by Theorem 3.5; therefore
p(X - A) is a Lindelof space. It follows that T = (X - A) C X is a separable metric
space and hence an 8y-space. Let g=f|T N A. By [10, Theorem H], T Ug Y is an
8p-space, and, by Proposition 2.4, T Uy Y = X Ug Y. Therefore Z is an R-space,
and, by induction, all Lindeldf M, -spaces are 8;-spaces.

Now suppose that Z is an arbitrary Lindelof M-space. Let Zg, Z;, <=+ be M-

spaces such that Z = 27 Z, . Since Z, is closed in Z, Z, is a Lindeldf space. By
the paragraph above, Z,, is an 8g-space for each n. It now follows from Lemma 5.5
and [10, Proposition 7.7] that Z is an 8(-space.

COROLLARY 9.2. If Z is a separable M-space, then every subspace of Z is
separable,

Proof. By [10, Theorems E and I], a subspace A of Z is an 8g-space if A is
regular, But A is regular, by Theorem 3.5.

Remark. Every Rg-space satisfying the first countability axiom is metrizable
(10]; consequently, every separable M-space satisfying the first countability axiom
is metrizable. This leads to the question: Is every M-space that satisfies the first
countability axiom metrizable? Borges [2] has announced an affirmative answer.
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10. EXTENSIONS OF MAPPINGS

Many of the interesting results in the theory of retracts and extensions of map-
pings for metric spaces carry over to M-spaces. In this section, we shall establish
some of these results.

We recall some definitions from the theory of retracts. Let (X, A) be a pair. If
there exists a map r: X — A such that r(a) =a for all a € A, then A is said to be a
retrvact of X, and r is called a refraction of X onto A. If A is a retract of some
neighborhood U of itself in X, then A is said to be a neighborhood retract of X. A
retraction r: U — A is called a neighborhood retraction in X.

Let ¥ be a category of spaces and maps. A space Y (not necessarily in &) is
called an absolute extensor for € (abbreviation: AE(®)) if for each pair (X, A)
with X € € each map f: A — Y has an extension F: X - Y. A ¥-space Y is called
an absolute vetvact for % (abbreviation: AR(®)) if it is a retract of every .€-
space that contains it as a closed subset. Clearly, if Y € € and Y is an AE(%),
then Y is an AR(%). For many classes €, every AR(%) is an AE(€¥). We shall
see that every AR(M) is an AE (M) (Theorem 10.2).

A space Y is called an absolute neighborhood extensor for & (abbreviation:
ANE (%)) if for each pair (X, A) with X € € each map f: A — Y has a neighbor-
hood extension F: U — Y. A ®-space Y is called an absolute neighbovhood retract
for @ (abbreviation: ANR (%)) if it is a neighborhood retract of every #-space
that contains it as a closed subset. Remarks analogous to those above for AE’s and
AR’s hold for ANE’s and ANR’s.

THEOREM 10.1. A space S is an AE (M) if and only if it is an AE (Mp).

The theorem asserts that the classes of absolute extensors are unable to dis-
tinguish between My and M. In this sense, My is “dense” in M; in other words, M
is only “slightly larger” than Mg .

Proof. Since M contains all metric spaces, the necessity is trivial. Conversely,
assume S is an AE (M), and suppose we have proved that S is an AE (M,). Let
(Z, B) be a pair, with Z € My, and let g: B — S be a map. Let (X, A, f, Y, p) be
an (n + 1)-presentation for Z. Identifying Y with p(Y) (Proposition 2.3), we can (by
the induction hypothesis) extend g I BNY toamap h: Y—S. Let D=XN p'l(B),
and let 7;: D — B be the restriction of p. The maps hf: A — S and gm: D — S to-
gether define a map (hf U gr): A UD — S, which extends to a map y¥: X — S.
Together, ¥ and h induce a map G: X Uf Y — S [4, p. 129], which extends g. By
induction, S is an AE (M,,).

Assume now that (Z, B) is a pair, with Z € M, and let g: B — S be a map.

There exist M -spaces Zg, 4, - such that Z = 22 Z, . For each n, let
B,=BNZ,,andlet g,=g|By. Since S is an AE (M), go admits an extension
Gg: Zg — S. Assume that maps Gp: Z, — S (0 < n <k) have been defined such that
G,:1 extends both G, and gnt+) (n <k). Extend the map

Gy U 8it1? Zx UBipy — S

to a map Gyii: Zit1 — S. By induction, we obtain a sequence of maps Gp: Z, — S
(n € J*) such that G,,; extends both G, and gn;+; for all n. By Proposition 2.6,

G = UnGn: Z — S is continuous. Since G extends g, the proof is complete.
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THEOREM 10.2. An M-space is an ANR (M) (or AR(M)) if and only if it is an
ANE (M) (or AE(M)).

Proof. Since M is closed under adjunction, the theorem follows as in [7, Theo-
rem I, 3.2 Case I].

COROLLARY 10.3. A neighborhood retract of an ANR (M) is an ANR(M). A re-
tract of an AR (M) is an AR (M).

Proof. I ¥ is any category, then a neighborhood retract of an ANE (€¢) is an
ANE (%), and a retract of an AE (&) is an AE(®) [7, pp. 40-41].

Because we shall work almost exclusively with M-spaces, we shall simply write
AR in place of AR(M). The general usage of “AR” is the abbreviation of “absolute
retract for metric spaces” (AR (Mg)). Fortunately, our usage is consistent with this
for (by Theorems 10.1 and 10.2) a space is an AR (M) if and only if it is a metriz-
able AR. Therefore we are not modifying but extending the classical notion from the
metric category to the category M. We also write ANR instead of ANR (M), and we
can easily show that a space is an ANR (MO) if and only if it is a metrizable ANR.

THEOREM 10.4. If Y = Z)Yn and Y, is an AR for each n, then Y is an AR.

Proof. By Theorems 10.1 and 10.2, it is sufficient to show that Y is an AE (Mg).
Suppose then that (X, A) is a pair, with X € My, and that f: A — Y is a map. Let d
be a metric for X. Without loss of generality, we may assume that f(A) N Y, # P.
For each n, let A, = f-1(Y,); then A, # @. Let

{xeX|dlx, Ap) <n-dx, A-A)} i A#A,

X if A=A, .

Arguing as in the proof of Lemma 4.2, we see that X = 22 Xh -

Since Y is an AR and f(Ag) C Yo, there exists an extension Fg: Xg — Y of
f | Ag. Assume that maps Fn: X, — Y, (0 <n <k) have been defined such that
F,.1 extends both F, and f|A ;;: Ay — Yyp1 (0 <k). Since Xj N A = Ay, and
since F; and f agree on Ay,

Fio U (f] Agy): XU Ay = Yo

is a well-defined map; since Y, ,; is an AR, this map extends to a map
Fri1t X1 — Y1 - Repeating this argument, we obtain a sequence of maps
Fi:X, Y, ned ), each Fp:] extending both Fj and f | An+1. By Proposition

2.6, F = UnFn: X — Y is continuous. Since F extends f, the theorem is proved.

Many categories € have the property that every €-space Z can be embedded
as a closed subset in a @-space Zg, where Z; is an AR(%). We shall show that
M has this property (Theorem 10.8).

LEMMA 10.5. Let (X, A) be a pair, wheve X is metvizable, and let f: A — Y
beamap., If X, A, and Y are AR’s, then X U;Y is an AR.

Proof. By [8, Lemmas 3.1 and 3.3 and Theorem 4.2], X Us Y is an AE (Mq). The
result now follows from Theorems 10.1 and 10.2.

LEMMA 10.6. Every M,-space Z can be embedded as a closed subset in an
M, -space Zg,where Zg is an AR.
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Proof. This result is known for metrizable spaces [7, Theorems II, 14.1 and IIi,
2.1]. Assume that we have proved it for all M,-spaces, and suppose Z is an Mpy)-
space. Let (X, A, f, Y, p) be an (n + 1)-presentation for Z. Embed A as a closed
subset of a metric space Ay, where Ay is an AR. We can choose Aj so that
Ap N X = A; then Ag U X with the union topology (see Section 4) is metrizable. Em-
bed Ag U X as a closed subset in a metric space X, where Xp is an AR. By the
induction hypothesis, we may embed Y as a closed subset in an M, -space Y,
where Y, is an AR. Extend f: A - Y toa map g: Aj - Yy. By Lemma 10.5,

Xo Ug Yg is an AR, and, by Proposition 2.4, X Us Y is homeomorphic to a closed
subset of X, Ug Y,. This completes the induction.

LEMMA 10.7. If Y3, Y, **- ave subsets of an M-space Y such that Y = 22 Y,
then there exist an M-space Z containing Y as a closed subset, and M - spaces
2y, 2y, *-+ such that

1) z=22,,

(2) Z, is an AR for all n,

(3) Y, is a closed subset of Z,, for all n, and
(4) z,NY =Y, forall n.

Proof. By Lemma 10.6, we can embed Yo as a closed subset in an M. -space
Zo, where Zg is an AR. We can choose Zg so that Zg N Y = Yg. Assume that
M -spaces Zg, ***, Z; have been defined such that Z, is closed in Z,,; for all
n < k and such that (2) to (4) hold for all n <k. By the remark following Lemma
4.2, Zy U Yy ,; with the union topology is an Mc-space. Therefore, by Lemma 10.6,
we can embed Z), U Y,; as a closed subset in an M, -space Zy,;, where Z;,; is
an AR, and we can choose Zjy;] so that Zy.; N'Y = Yy;; . By induction, we obtain
an infinite sequence of My -spaces Zg, Z;, -+ satisfying (2) to (4). The result now

follows if we take Z = 2J Z_ (see Remark 2 of Section 2).

THEOREM 10.8. Every M-space Z can be embedded as a closed subset in an
M-space Zg, where Zg is an AR.

Proof. This follows at once from Lemma 10.7 and Theorem 10.4.

We shall close this section with a result (Theorem 10.10) concerning products of
ANR’s and AR’s.

LEMMA 10.9. A Hausdorff space Y is an ANE (M) (or AE (M)) if and only if
kY is an ANE (M) (or AE (M)), where k is the functor defined in Section 5.

Proof. Let g: KY — Y be the identity, and let (X, A) be a pair, with X € M.

Assume first that Y is an ANE (M), and let f: A — kY be a map. The map
gf: A — Y has a neighborhood extension F; U — Y in X, and kF; kU=U — kY is a
neighborhood extension of f; therefore kY is an ANE (M).

Conversely, assume that kY is an ANE (M), and let f: A — Y be a map. The
map kf: kA = A — KY has a neighborhood extension F: U —KY in X, and gF: U —>Y
is a neighborhood extension of f; therefore Y is an ANE (M).

A similar argument holds for AR’s.

THEOREM 10.10. The product (as defined in Section T) of two ANR’s (o7
AR’s) is an ANR (or AR).
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Proof. The cartesian product of two ANR’s (or AR’s) is an ANE (M) (or
AE (M)) [7, pp. 39-40]. The result now follows from Lemma 10.9 and Theorem 10.2.

11. ADJUNCTIONS OF ANR’s

Let (X, A) be a pair, and let f: A — Y be a map, where X, A, and Y are metriz-
able ANR’s. If X Us Y is metrizable, then it is an ANR [7, p. 178]. This result was
obtained in successive stages by Borsuk [3], Whitehead [13], and Hanner [6]. In this
section, we shall extend the result to the category M.

THEOREM 11.1. Suppose that (X, A) is a pair and £: A > Y is a map. If X, A,
and Y arve ANR’s (or AR’s), then X U; Y is an ANR (or AR).

We shall prove this theorem in several steps. First we shall prove the statement
for AR’s (Step 4), and then we shall apply it to prove the statement for ANR’s (Step
6).

Let (X, A) be a pair. We say that (X, A) is a proper 0-pair if both X and A
are metrizable AR’s; we say that (X, A) is a proper n-pair (n > 0) if there exists
an n-presentation (Z, B, g, E, p) for X such that each of

E, Enp-la), z znpla), B, BnplA)

is an AR. We call (Z, B, g, E, p) a proper n-presentation for X with respect to A.
STEP 1. If (X, A) is a proper n-pair (n > 0), then X and A are AR’s.

Proof, If n=0, then X and A are AR'’s, by the definition of a proper 0-pair. If
n>0 and (Z, B, g, E, p) is a proper n-presentation for X with respect to A, then
Z, B, and E are AR’s; therefore, by Lemma 10.5, X~ Z Ug E is an AR. To show
that A is an AR, let

7' =Znpl), B =Bnpl(A), E =Enpl@),

and let h: B' — E' be the restriction of g. Then Z', B', and E' are AR’s, and, by
Proposition 2.4, A~ Z' U, E'. Therefore, A is an AR, by Lemma 10.5.

STEP 2. FEvery pair (X, A) with X € M, can be embedded as a closed subpair
in a proper n-pair (Xq, Aj).

Proof, Suppose that X € My. Embed A as a closed subset in a space Ag,
where A, is a metrizable AR. We can choose A so that A =AyN X. Since
Ay U X is metrizable under the union topology, we can embed it as a closed subset
in X, a metrizable AR. Thus (X, A) is a closed subpair of the proper O0-pair
(X03 AO)-

Assume that we have proved the statement for M, -spaces, and suppose
X e M, . Let (Z;, B;, h, E;, q) be an (n+ 1)-presentation for X. By the induc-
tion hypothesis, we can embed (E;, E; N q-1(A)) as a closed subpair in a proper n-
pair (Eg, Dg). By Step 1, E; and Dy are AR’s. Embed B; N q-1(A) as a closed
subset in B, , where B, is a metrizable AR such that

(1) Z), N B = B; Nq™1(a).

Under the union topology, Z; U B, is metrizable; embed B; U B, as a closed subset
in B, a metrizable AR such that
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(2) B N(Z; UBy) = By U By;

embed B, U (Z; N q-1(A)) as a closed subset in B3, a metrizable AR such that
(3) B3 N (2 UB) = By U(Z Ng™ (A));

finally, embed Z; U B U B3 (with the union topology) as a closed subset in Z, a
metrizable AR. By (1), (2), and (3) we see that

(4) B, = BN B3.

Since h(B; N q"1(A)) € Dy, and since Ey and Dy are AR’s, h admits an exten-
sion H: B — Ej such that H(B;) € Dy . Since B is metrizable, there exists a map
A: B — 1 such that
(5) A"1(0) = B, UB,.

Let E = Ej X I, and identify E, with E; X {0} C E. Define a map g: B — E by
g(b) = (H(b), A(b)) forall b e B.

Let Xo=2Z Ug E, and let Ag = p(B3 + Dg), where p: Z + E — X is the natural
projection. By Proposition 2.4, A is closed in Xy. We shall show that

(*) (z, B, g, E, p) isa proper (n+ 1)-presentation for X, with respect to Ag.
It follows from (5) that B, = g~1(D,); combining this with (4), we see that

ENp A, = D,

Z Np-la,) = B,

BNp-l@A,) = B,.

Dy, B3, By, Z, B, and E; are AR’s, by their definitions, and by Theorem 10.10,
E = Eg X1 is an AR; the assertion (*) follows.

We shall now show that (X, A) is homeomorphic to a closed subpair of (Xg, Ag).
Since (E;, E; Nq-1(A)) is a subpair of (Ey, Dg), we see that

I

El n DO E]. n q_l(A).
By (1) and (3),

Z, N By = Z; Nq-1(a).

1l

Since B, = g~1(Dy), it follows from (4) that B3 + D is saturated with respect to p;
therefore, we may write

p(Z; N q-1(A) + E; Nq~1(4)) = p(q-1(A)).

By Proposition 2.4, p(Z; + E}) is closed in Xg, and (X, A) is homeomorphic to the
pair (p(Z; + E;), plqa~1(A))). Since Ay = p(B3 + D), we conclude, by (6), that (X, A)
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is homeomorphic to a closed subpair of (XO , AO). This completes the proof of
Step 2.

In Steps 3 to6, we assume that (X, A) is a paiv and f: A - Y is a map.

STEP 3. If X is an My-space and X, A, and Y arve AR’s, then X Uz Y is an
AR,

Proof. ¥ X is metrizable, then X Us Y is an AR, by Lemma 10.5. Assume the
result for M, -spaces, and suppose that X € M,;;. If (X, A) is a proper (n+ 1)-
pair, let (Z, B, g, E, p) be a proper (n+ 1)-presentation. Define a map
h: ENp-1(A) = Y by

h(x) = fp(x) forall x € E Np~L(A).
Letting q: E+Y — E U, Y be the natural projection, define a map

TBU(ZNplQA) - Eu, Y
by

qg(x) if x € B,
ji(x) =
afp(x) if x € Z Nnp-1(A).

Since (Z, B, g, E, p) is a proper (n -+ 1)-presentation for X with respect to A, the
sets E and E N p~1(A) are AR’s; hence, by the induction hypothesis, E U,, Y is an
AR. Z, Z np-1(A), B, and B n p~1(A) are AR’s, and

BN (z Nnpl(a)) = BNnpl(a);

therefore, by [7, Proposition II, 10.1], B U (Z N p~!(A)) is an AR; hence, by Lemma
10.5, Z Uj (E Un Y) is an AR. As in the proof of Lemma 4.2, we see that
Z U; (E Up Y) is homeomorphic to X Us Y; therefore X Ur Y is an AR.

If (X, A) is not proper, embed it as a closed subpair of a proper (n+ 1)-pair
(Xo, Ag). Let r: Xy — X be a retraction such that r(Ag) C A, and let
g ={r | Ag: Ag — Y. Letting p: Xg + Y — Xg Ug Y be the natural projection, define
a retraction s: X Uy Y — p(X+Y) by

X if x € p(Y),
s(x) = ‘ !
pr(p | Xo)_ (=) if xe p(Xo) .

By Proposition 2.4, p(X + Y) is homeomorphic to X Us Y. Since (Xg, Ap) is a
proper (n+ 1)-pair, and since Y is an AR, X U, Y is an AR, by the discussion in
the preceding paragraph. Therefore XUs Y is an AR, by Corollary 10.3, and the
induction is complete.

STEP 4. If X, A, and Y are AR’s, then X Uy Y is an AR.

Proof. Let X, X, - be M -spaces such that X = Z)Xn. For each n, let
A =ANX, . By Lemma 10.7, there exist an M-space B and M, -spaces
Bo, B].’ oo SuCh tha.t

(1) B= 2 B_,
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(2) B, is an AR for all n,
(3) A, is a closed subset of B, for all n, and
(4) B, " A=A for all n,
In addition, we may assume that
(5) XN B=A.
Putting the union topology on X U B, we see, by Lemma 5.5, that

XUB = 2J(X,UB,);

therefore, by Lemma 10.7, there exist an M-space Z and M, -spaces Zg, Z;, -
such that

6)z=22,

(7) Z, is an AR for all n,

(8) X, U B, is a closed subset of Z, for all n, and

(9) 2, N (XU B)=X,U B, for all n.

By (5), (X, A) is a (closed) subpair of (Z, B). Since X and A are AR’s, there exists

a retraction r: Z — X such that r(B) CA. Let g=fr|B:B— Y, and g, =¢| B, .

By Step 3, Z, Ug Y is an AR, and, by Proposition 2.4, Z, Ug Y is homeomorphic
n n

to p(Zm +Y), where p: Z+Y - Z Ug Y is the natural projection. By Lemma 4.1,
ZUg Y= Z;p(Zn + Y); hence, Z Ug Y is an AR, by Theorem 10.4. Define a retrac-
tion s: Z U, Y — p(X+Y) by

X if x € p(Y),
s(x) =
pr(p|2) ) if x € p(z).

By Corollary 10.3, p(X + Y) is an AR, and, by Proposition 2.4, p(X + Y) is homeo-
morphic to X Uy Y. Therefore X U; Y is an AR.
STEP 5. If X and A ave ANR’s and Y is an AR, then X U; Y is an ANR.

Proof. By the methods of Step 4, we can embed (X, A) as a closed subpair in a
pair (X,, Ap), where X and Ay are AR’s. Since X and A are ANR’s, there exist
a neighborhood U of X in X, and a retraction r: U — X such that r(U N A ) C A.
Since Y is an AR, the map

fr'ﬁﬂA():—ﬁﬂAoHY

admits an extension F: Ay — Y. By the perfect normality of A, there exists a map
A: Ay — I such that

A»7Y0)=A ana a7Y1) =Ay-U.
Define a map g: Ag— Y XI=Yq by

g(a) = (F(a), A(a)) for all a € Ap.
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Since X, Ay, and Y are AR’s (Y, is an AR by Theorem 10.10), we see by Step 4
that XogUg Yo is an AR. Let p: X+ Yo — X U, Y be the natural projection.
The condition A~1(1) = Ay - U guarantees that the open subset U + (Y X [0, 1)) of

Xy + Y, is saturated with respect to p; therefore E = p(U) U p(Y X [0, 1)) is open in
Xo Uy Yo. Identifying Y with Y x {0} € Yg, let 71 Yo — Y be the coordinate pro-
jection. The map s: E — p(X + Y) defined by

pr(p | Yo) ' (x)  if x € p(Y x [0, 1)),
s(x) =
pr(p | U)-1(x)  if x € p(U)

retracts E onto p(X+ Y). By Corollary 10.3, p(X + Y) is an ANR. By the formula
A(A) = 0, and by the identification Y=Y x {0} C Y, we see that g extends f;
therefore Proposition 2.4 is applicable and shows that X U; Y is homeomorphic to
p(X + Y). Consequently, X U;Y is an ANR.

STEP 6. If X, A,and Y are ANR’s, then X Us Y is an ANR.

Proof. Embed Y as a closed subset in Z, an AR, and let r: U — Y be a neigh-
borhood retraction in Z. If we consider f to be a map from A into Z and U as
well as into Y, then the inclusions Y C U C Z induce inclusions

XUfY CXUfUCXUfZ.

X Ur U isopenin X Us Z. Letting p: X+ U — X Us U be the natural projection, de-
fine a retraction s: XU U—- X UsY by

X if x € p(X),
s(x) =
prip |U)"1(x) if x € p(U).

By Step 5, X Ug Z is an ANR. Therefore X Us Y is an ANR, by Corollary 10.3, and
the proof of Theorem 11.1 is complete.

Recall that the (unreduced) cone CY over a space Y is the quotient
Y xI/Y x {1}. CY is homeomorphic to the adjunction space (Y X I) Us Z, where Z
consists of a single point and f: Y x {1} — Z is the unique map. Identifying CY
with (Y XI)Us Z, and letting p: (Y X I)+ Z — CY be the natural projection, we call
the point p(Y X {1}) the vertex of CY, and we identify Y with the base p(Y X {0}).
The results of Sections 4, 6, and 7 show that Y € M if and only if CY € M.

THEOREM 11.2. Y is an ANR if and only if CY is an AR.

Proof. ¥ Y is an ANR, then, by Theorem 10.10, Y X I is an ANR, and, by Theo-
rem 11.1, CY is an ANR. Since CY is contractible, it is an AR [7, p. 43]. Con-
versely, since Y is a neighborhood retract of CY (delete the vertex and project
vertically onto the base), we see by Corollary 10.3 that Y is an ANR if CY is an
AR.

THEOREM 11.3. If Y = 2JY,, and Y,, is an ANR for each n, then Y is an
ANR.

Proof. We can obtain this from a result of Kodama [9], but it also follows quite
simply from Theorem 11.2. By Theorem 11.2, C(Y,) is an AR; therefore 22 C(Y,)

is an AR, by Theorem 10.4. But 22 C(Y,) and CY are homeomorphic; therefore, Y
is an ANR, by Theorem 11.2,



214

D. M. HYMAN

An important result in homotopy theory is that every metrizable CW-complex is

an ANR. We conclude this paper by generalizing this result.

THEOREM 11.4. Every CW-complex K is an ANR.
Proof. By [7, Theorem II, 17.2], a free union of cells and spheres is an ANR. |

With the help of Theorem 11.1 and an easy induction, we can show that K™ is an ANR .

for all n. By Theorem 11.3, K = 2JK™ is an ANR.

1.
2.
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