PAIRS OF REAL 2-BY-2 MATRICES THAT
GENERATE FREE PRODUCTS

R. C. Lyndon and J. L. Ullman

1. INTRODUCTION

This note arose from the observation that certain results of Newman [4] follow
very simply from a theorem of Macbeath [3]. A result of Brenner [1] follows by a
similar argument.

We are concerned with the question when two real unimodular 2-by-2 matrices A
and B generate a free group ®, or a group ¢ that is the free product of the cyclic
group % generated by A and the cyclic group 8 generated by B. We obtain several
sufficient conditions for ® to be a free product. The conditions are stated in terms
of the arrangement of the fixed points of A, B, AB, and ABA -1B-1 under the action
of these matrices as linear fractional transformations on the extended real axis.

2. A LEMMA ON PERMUTATION GROUPS

We could obtain our results by applying Macbeath’s theorem directly to the action
of our matrices as linear fractional transformations acting on the open upper half of
the complex plane. In the cases that we treat, this would also enable us to show that
® operates discontinuously on the upper half-plane and is therefore discrete. But
we have preferred to recast Macbeath’s theorem in the form of a lemma that enables
us to confine attention to the action of ® on the extended real axis.

LEMMA. Let % and B be groups of permutations of a set Q, and let & be the
group genevated by U and B together. Suppose that @ contains two disjoint non-
empty sets T and A such that each nontrivial element of A maps T into A and
each nontrivial element of 8 maps A into I'. Then either & is the free product of
its subgroups A and B, or else both A and B have ovdevy 2 and ® is a dihedral

group.

Proof. Suppose that 9% has order greater than 2, hence more than one nontrivial
element. Since the images T'A of I' under the nontrivial elements A of A are dis-
joint nonempty subsets of A, it follows that each such I'A is properly contained in
A, that is, TA < A, Let W=A; B; -**A, B,, where n> 1, and where 1 # A; ¢ %4 and
1+#B; €3 forall i. Then TA; < A, whence TA; B) < AB] < T'; by a continuation of
this argument, T'W < I'. Thus W # 1. This shows that @ is the free product of U«
and B.

The same conclusion holds if ¥ has ordér greater than 2, and also (trivially) if
either % or B has order 1. The case remains where % is generated by an ele-
ment A, and 8 by B, with A2= B2 =1, Any further relations between A and B can
be reduced to the form (AB)" =1 (n > 0), and indeed to at most one such relation. If
such a relation holds, ® is a dihedral group of order 2n. If none holds, ® is the in-
finite dihedral group, a free product of % and 3.
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This lemma has a converse. Suppose that ® is the free product of its subgroups
% and 9B, and that ® acts regularly on a set Q (for example, on = & under the
regular representation). Then © contains sets T" and A, as in the hypothesis of the
lemma. Choosing any p € Q, we let T" be the set of all elements of the form pW,
where W is a nontrivial element of & with normal form ending in a factor from 3,
and we let A be the set of all elements pW, where W is a nontrivial element ending
in a factor from . If, moreover, & is a countable group of real unimodular ma-
trices acting on a real projective space E, then some point p in E is not a fixed
point for any nontrivial element of ®. Therefore ® acts regularly on the orbit
pG = ©, and we may choose I"' and A as described. These sets T" and A may have
a very complicated geometric structure. In this note we have limited attention to the
case where ® is the free product of two cyclic groups % and B of real unimodular
2-by-2 matrices, and where, under the action of & on the extended real axis R*,
the sets T" and A can be chosen so that each is an open interval or the union of two
open intervals.

COROLLARY (Newman). Lef A = (:2 2 and B = ('Z ‘lf ), where

a, -, h >0, detA=detB=1, |TrA|, |TrB|> 2.

Then A and B genevate a free group.

Proof. Let % be the group generated by A, B that generated by B, and ® that
generated by A and B together. Let ® act as a group of linear fractional transfor-
mations on R*. Let I' = (», 0) and A = (0, »). Evidently, z < 0 implies that
zA > 0, while z > 0 implies that zB < 0; that is, TA < A and AB < I". Since
|Tr A| 2> 2, A must have two real flxed pomts (poss1b1y comc1dent) and they must
lie in [0 oo] The points 0, 0A, 0A2, .-« must converge monotomcally to one of the
fixed points of A, hence all lie in [0 °°] Therefore all of TA, TA2 --- are con-
tained in A. Smce I'N TA = @ implies that T' N TA"! = ¢, we see that rAa-1 < A,
and a similar argument shows that all negative powers of A map I into A. Slm1—
larly, ABP < T for all h #0.

3. REAL, NONALTERNATING FIXED POINTS

THEOREM. Let A, B, and C = AB be veal unimodulay 2-by-2 matrices, all
with real fixed points. Suppose that the fixed points of each of these matrices, undeyr
action on R*, lie in an interval of R* containing no fixed point of the other two.
Then A and B genevate a free group.

Proof. 1t is convenient to change notation by replacing B by B-1. The hypothe-
sis now asserts that C = AB-! has real fixed points, that is, points p such that
pA = pB. If A has distinct fixed points, one is a source a~ and one a sink a’; if A
is parabolic, we take a”~ = at to be its sole fixed point. We employ a 31m11ar nota—
tion b~ and bt for the fixed points of B. The points a~, a*, b™, and b" divide R*
into four open intervals (some possibly empty). The hypothesis requires that both
fixed points (possibly coincident) of C lie in the same one of these intervals, and not
in one bounded by two fixed points of A or by two fixed points of B.

If pe (at, b*), then pA € (a¥, p) and pB € (p, b*). Since (at, p) n (p, b™) = @,
it is impossible that pA = pB. Thus no fixed point of C lies in an interval (at, b*),
or, similarly, in an interval (b*, at).
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Suppose that (a~, b™) is one of the four intervals. Then the fixed points occur in
cyclic order a~, b*, b~, a*. Evidently, both A and B map [a~, b*] into [a~, at].
Now a~ A = a~ precedes a” B, in the natural order of elements of [a~, a*]. Also,
bt B =b' precedes bt A. Thus the number of solutions p (counting multiplicity) of
the equation pA = pB in the interval (a”, b") must be odd. Thus C cannot have both
its fixed points in this interval, and hence it has no fixed point in (a7, b*). A similar
argument applies to (b™, at), (b*, a~), and (a*, b™).

It follows that C has both its fixed points in an interval (a~, b~) or both in an in-
terval (b-, a~). By symmetry, we may suppose that C has a fixed point p in
(a=, b”). Let q = pA = pB. The fixed points of A and B must occur in the cyclic
order a~, b~, b', at. Since pA € (p, a*) and pB € (b", p), we find that

q = pA = pB € (p, at) N (b, p) = (b*, at).

Let "= (p, q) and A = (q, p). We have the cyclic order 27, p, b™, b™, q, at. Since
pA = q, it follows that TAh < (q, at) < A for all h > 0. Also, gA-! = p implies that
TAh < (a-!, p) < A for all h < 0. Similarly, ABK < T for all k #0. The lemma
applies, and the theorem is proved.

The following result, for the case where m = n, was obtained by Brenner.
COROLLARY. If m and n ave veal and |mn| > 4, then A = ((1) T) and
B= (111 (1)) generate a free gvoup.

Proof. Replacing A by A-l = ((1) —;n

mn < -4. A has a single fixed point *, and B a single fixed point 0. The matrix
C=AB= (1 +nmn T) has trace 2 + mn < -2; hence C has real fixed points.

These are the roots of the equation zC = z, that is, of the equation

nz? - mnz - m = 0, and since - m/n > 0, they have the same sign. The fixed points
of C thus lie in an interval containing neither 0 nor <, and the preceding theorem
applies.

), if necessary, we may suppose that

However, this result (without the restriction that m and n be real) can be ob-
tained from the following stronger result of Brenner. We note that Brenner’s result
was improved by Chang, Jennings, and Ree [2], and that the present authors have
strengthened it further, in a paper that will appear later. The corollaries below are
due to Chang, Jennings, and Ree.

PROPOSITION. If m € € and |m| > 2, then A=((1J ‘f) and B = (;1 (1’)

freely generate a free grvoup.

Proof. Let C = ((1) '(1)). Then C2=1 and CAC=B"!. Let ® be the group

generated by A and C, and let 4 and € be the cyclic subgroups with generators A
and C. The lemma applies, if we let I" be the interior of the unit circle and A its
exterior. Thus @ is the free product of % and €. It follows that A and B freely
generate a free subgroup of .

COROLLARY. If m,n € C with |mn| > 4, the”Az((l) nf) “”dP’:(:ll 2)

genevate a free group.
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Proof. For 0 #d € C, conjugation by D = (g 1%) replaces m and n by

m'=d%m and n'= d'zn, leaving lmnl unchanged. Choosing d so that m'=n', we
see that |m'2] > 4 and hence |m'] > 2.

COROLLARY. Let A and B be 2-by-2 complex unimodular matvices. If A and |
B are parabolic and ITr AB - 2] 2> 4, then A and B generate a free group. |

Proof. The fixed points a of A and b of B are distinct, since otherwise
|Tr ABI = 2. After conjugation we may suppose that a =« and b = 0, whence
A= ((1) T) and B = (rl1 (1)) for some m and n in €. Now Tr AB = 2 + mn, and
it follows that Imnl 2> 4.

4., REAL, ALTERNATING FIXED POINTS

THEOREM. Let A and B be two hyperbolic linear fractional transformations
with distinct fixed points such that every intevval containing both fixed points of one
lransformation contains also a fixed point of the other. Suppose that the commutator
C = ABA-1B-1 nas a real fixed point, Then A and B genevate a free group.

Proof. The fixed points a~ and a’ of A, together with the fixed points b~ and
bt of B divide R* into four quarters, each with one endpoint a* and one bt This,
as well as the further hypothesis that pAB = pBA for some real p, is clearly pre-
served under interchange of A and B. Moreover, if pAB = pBA = q, then
qA"l B-l= qB'lA‘l = p, whence the hypothesis remains valid under simultaneous
replacement of A by A-! and B by B-L.

We shall now show that pAB = pBA implies that p lies in one of the two quarters
with endpoint b™. It will then follow that such p must lie in a quarter with endpoint
a”. By symmetry, we may then suppose that a quarter (a~, b~) contains p. By the
last sentence in the preceding paragraph, we conclude also that q € (a+, b).

To begin, we conjugate by a transformation carrying the fixed points of A into 0
and ©. Then A will be given by zA = kz, for some k>0 (k # 1). Now B will be

given by some matrix (2 3 ) with real entries and ad - bc = 1. We are free to

take ¢ > 0. The fixed points of B are the roots of cx%+ (d - a)z - b =0, and since
they separate the fixed points 0 and « of A, they are of opposite sign, whence
bc > 0 and b, ¢ > 0. The relation ad = bc +1 > 0 implies that ad > 0. Since A-!

satisfies the same hypotheses as A, while B-!is given by the matrix ('g _b)

with ¢ > 0, and since d < 0 implies -a > 0, we may suppose d > 0. Thus
a, b,c,d>0.

Since 0B =b/d > 0 and «B = a/c > 0, we see that (0, ©)B C (0, «), whence
b~ < 0<bt. Now, if zAB = zBA, then

akz + b _kaz+b
ckz+d T ecz+d?

(cz + d) (akz + b) = (ckz + d) (akz + bk),
ackz? + (adk + be)z + bd = ack? z% + (adk + bek?)z + bdk s

ac(k? - k)z% +be(k? - 1)z +bd(k - 1) = 0.
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Since k # 1, this is equivalent, upon division by k - 1, to the relation
ackz?2 4+ be(k +1)z+bd = 0.

Since all the coefficients of this equation are positive, the roots are negative; there-
fore pAB = pBA implies that p lies in one of the quarters with endpoint b~.

The argument given earlier now shows that we have points
- -t _ _ +
b:p)a,b,q"pAB"pBA,a
in this cyclic order on IR*. It follows further that we have the points
b~, p, a", pB, b', q, a¥, pA,
in this cyclic order. Now let
I = (pB,q =pBA) U (pA,p) and A = (p, pB)U (q = pAB, pA).

It follows immediately that the hypotheses of the lemma hold.

5. TWO ELLIPTIC ELEMENTS

If % is generated by an elliptic transformation A of infinite order, then, for any
real p, the set of images of p under % is dense in IR*, and we have no hope of ap-
plying the lemma with I' containing any open interval. Therefore we confine our at-
tention to elliptic transformations A of finite order m. We call A minimal if,
viewed as a rotation of the hyperbolic upper half-plane, it has the least positive
angular displacement of any element of %. In real terms, this means that |Tr A| is
maximal for all nontrivial elements of %, or, more explicitly, that for each real p
the points p, pA, ', pA™m-1 occur on R* in that cyclic order. Clearly, every non-
trivial cyclic subgroup of elliptic transformations has a (unique) minimal generator.

THEOREM. Let A and B be minimal elliptic transformations, If AB # 1 and
AB has real fixed points, then the group & genevated by A and B is the free
product of the subgroup U genevated by A together with the subgroup B genevated
by B.

Proof. If p is a fixed point of AB, then pA =q with qB=p. Let I' = (p, q) and
A = (g, p). Since the images of p under % occur in the cyclic order
p, PA, ---, pA™-1 it is clear that TAh < A whenever AP # 1, Similarly, whenever
Bk # 1, ABK < I'. The lemma applies, and, even if A and B are involutions, the
hypotheses ensure that AB has infinite order, whence ® is the free product of %«
and 3.

6. THE MIXED CASE

THEOREM. Let A be a minimal elliptic trvansformation, and B a transformation
with veal fixed points., Suppose that AB has a veal fixed point p such that the fixed
points of B lie in the interval (p, pA). Then the group & generated by A and B is
the free product of its subgroup N genevaled by A logether with the subgroup B
genevated by B.
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Proof. As before, pA =q and gB = p, with p, pA, -, A™-1 occurring in that
c¥lclic order. Again we take I' = (p, q) and A = (q, p). It follows as before that
A" #1 implies that TAb < A. From the assumption that the fixed points of B lie in
(p, a), and the fact that qB = p, it follows that ABK < I" for all k # 0. The lemma
applies.
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