RIEMANNIAN MANIFOLDS OF CONSTANT NULLITY
Aaron Rosenthal

1. INTRODUCTION

Let m be a point of 2 (C*) Riemannian manifold M, and let M, denote the tan-
gent space to M at m. A vector z € M, is called a nullity vector if R,z =0 for
all x, y € M,,, where R, denotes the curvature transformation associated with the
vectors x and y. The nu},lity t(m) is the dimension of the space of nullity vectors
at m. The purpose of this paper is to prove the following theorem concerning Rie-
mannian manifolds with constant positive nullity.

THEOREM (%), Let M™ be a complete, connected, and simply connected C*®
Riemannian manifold of constant positive nullity p <n - 3, and suppose that one of
the following conditions is satisfied:

(1*) n - u is odd, and the sectional curvatures of all planes ovthogonal to the
spaces of nullity vectors ave nonzero;

(2%) the restriction of the curvature tensor to the space of bivectors genevated
by vectors orvthogonal to the space of nullity vectors at each m € M is a
positive oy negative definite bilineay form on this space.

Then M™ is a divect metric product, M® = Nt x C™-H where N* is complete and
flat, and C™-H is complete.

Nullity was defined by Chern and Kuiper [2]. Theorem (*) is a C* intrinsic-
manifold analogue of a theorem due to Hartman [4], who assumed the existence of an
immersion.

The results appearing in this paper are contained in my thesis, written at the
University of California, Los Angeles. I would like to express my gratitude to Pro-
fessor Yeaton H. Clifton, who supervised the research and generously shared his
time and ideas. I would also like to thank Professor R. Maltz for help in simplifying
several proofs.

2. PRELIMINARIES: THE NULLITY VARIETIES
AND CONULLITY OPERATORS

Throughout this paper, M will denote an n-dimensional differentiable Riemannian
manifold (of class C*). The frame bundle, solder form, connexion form, and curva-
ture form of M will be denoted respectively by F(M), 8, w, and © [1]. The natural
projection of F(M) onto M will be denoted by 7. We shall use the index convention
in which a repeated index means summation through all possible values of the index.
The subspace N, of M,, generated by the nullity vectors at m is called the nullify
space at m. A conullity vector is a vector orthogonal to Ny, and the subspace C,,
of conullity vectors at m is called the conullity space at m.

In this section we shall suppose only that the nullity is positive and constant in
some open set of M. With this assumption, we can find (locally) the flat factor of the
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product structure, and when ¢ <n - 3, we can establish a relation between the curv-
ature operators of M and a set of linear operators whose vanishing will give us the
second factor of the product structure.

THEOREM 2.1. In a vegion U of M where the nullity is positive and constant,
the distribution of nullity spaces is diffeventiable.

Proof. For m € U, let S, be the linear subspace of M,,, spanned by vectors of
the form R.XYW, where x, y, and w belong to M,,,. Then, if z € N,,, the relation
0= <nyz, w> = <nyw, z> shows that Ry, w € Cp, sothat S, CCpy. I
Sm # Cm, there is a nonzero vector z € C,, with z L Sp,. But then, for all
X,y,we M,,, 0= <nyw, z> = (nyz, w), so that z € N,. Since C,, and N,
are orthogonal, it follows that z = 0, and that S, = C,,.

For any fixed p € U, let F = (F;, *--, F,) be a frame field defined on a neigh-
borhood V of p in U, and let the vector fields E_;. be defined by the formulas

E i = RFa Fy, F.. The vector fields E_, . are differentiable in V, and using the

characterization of C,, derived in the previous paragraph, we see that the vectors
E,pc(m) span C,, for each m € V. At the point p, select a basis for C, from the
vectors E_.(p). Let us suppose that we have chosen the vectors E,pc(p) ((abc) € I,
where I is an index set). Then the vector fields E_; . ((abc) € I) are differentiable
vector fields defined on V; they are independent in some (possibly smaller) neigh-
borhood W of p, and they span C,, for each m € W, because the nullity is constant
in W. Since the nullity and conullity distributions are orthogonal, it follows that the
nullity distribution is differentiable.

At each point m in a region U where the nullity is a positive constant, we may
restrict our attention to frames that are adapted to the nullity spaces, that is, to the
frames £ = (fy, -, £y, fu41, =, f,) whose first p vectors are nullity vectors and
whose last n - ¢ vectors are conullity vectors. Hereafter, we shall use the index
convention in which

lsa,B,-')’:'"S-u‘; ”‘+15h:i:j’"'sn, 1_§a3b,c;.”§n‘
We shall refer to (@, 8, v, +--) as nullity indices, and to (h, i, j, ***) as conullity
indices.

Let F(U) be the set of adapted frames over U, and let { be the natural injection
map of F(U) into F(M). Theorem (2.1) implies that F(U) may be given a differen-
tiable structure such that i is differentiable. F(U) thus becomes a principle fiber
bundle with structure group O(r) X O(n - ). When a form on F(M) is pulled back to
F(U) via z,b*, we denote the resulting form on F(U) by the symbol representing the
original form, but with the bar removed. Simple calculations show that the forms
62 are horizontal and independent on F(U). On the other hand, since the structure
group of F(U) is smaller than that of F(M), some of the forms that are independent
on F(M) must become dependent on the other structures when pulled back via /*,

LEMMA 2.2, The forms w and wi, ave horizontal in the sense that they ave
dependent on the hovizontal forms 02 .

Proof. ¥ v is a vertical tangent to F(U), then for every @ and i, dy(v) lies in

the kernel of ®¢, which implies that v lies in the kernel of w{ . Since the w¢ (and

similarly, the wia) annihilate vertical vectors, it follows that they are horizontal.

Lemma (2.2) implies that we may write
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o _ aa 5B o 4]
(2.1) w; = Aiﬁe + By 6”,
(2.2) wh = Al g 0P+ BL, 6,
where A and B are skew-symmetric in @ and i, because w{ = —wci,.

Definition. Let f be an adapted frame at m, and let v = v® f, be a nullity vector
at m. Then T is the linear operator on C,, whose matrix with respect to the

frame f is v® B ok - Thus
T (f) = v¢ ka k =p+1,--,n).

We shall refer to the T, as the conullity operators.

The next theorem establishes a relation between the conullity operators and the
curvature transformations.

THEOREM 2.3. Let m € U, wheve U is a vegion of M in which the nullity is
positive and constant. In addition, suppose that the nullity satisfies the inequality
L<n-3 inU. Thenif T represents any one of the conullity operators T
(v € N_), T is a solution of the equation

(2.3) & RXY(T(Z)) =0 forall x,y,z¢ Cp,
X,¥,2Z

Proof. Let f be a frame at m, and let zbfb € Ny, . Since Ryy and Q are re-

lated by the formula Ry fy, = -Szb(x y)fa, where % and ¥ project to x and y under
a7, it follows that zbﬂa = 0. For an adapted frame f{, f, m for all values of «;
thus 0 = Gb 9% = Q% . That is, Q3% = 0 whenever the lower 1ndex is a nullity index.
By skew-symmetry, Qb = 0 whenever the upper index is a nullity index. Moreover,
by the horizontality of €,

i
§;

i ko0 k ja B oY
Riig 0 0 +2R 0070 +RJB,},9 or.

But f5 € Ny, so that 0= 62 RE.q = R&cq, and by the symmetries of RE.q, both

m>s ‘

Rjkq and Rjg, vanish. Thus @ takes the simple form
i o1 k0

(2.4) Qi = Rl 070",

When we pull back the second Bianchi identity to F(U) via ™, we obtain the re-
lation dQ% = wgﬂi - ngi . In the case where a =i, and b = 8, this reduces to the
equation 0 = wh Q3. When previously determined values for w;& and Qj are substi-
tuted from (2.2) and (2.4), this equation becomes

i [ i i h k ¢ _
(2.5) Aﬁ)’Rkﬁe o< o +B&1Rjk£9 66~ =0.

The 3-forms 07 6% £ and 6P ¢¥ ¢ are independent, and their coefficients in

(2.5) must vanish. Thus B%hRJkQ is zero when skew-symmetrized in h, k, and ¢ .

But RJkﬂ is already skew in k and £, so that the result of the skew-symmetrization
is

(2.6) © BB =0.
h,k,{
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But a simple calculation shows that
j i
Rpy 1, (Teg (fn)) = - 2Bgn Rk fi,
and a comparison with (2.6) shows that any Ty 8 satisfies the equation

& (T¢,(£,)) = 0.
-~ R, £, tg (h

Since R and T are linear operators, fB can be replaced by an arbitrary nullity vec-
tor, and the remaining vectors may be replaced by arbitrary elements of C,,. The
result is (2.3).

COROLLARY 2.4. Let U be a region of M whevre the nullity is positive and con-
stant. Then the nullity spaces ave integvable in U, and they genevate nullity varvieties
that ave totally geodesic and flat in theiv induced metric.

Remavks. We shall not give a proof, because these results are known (Theorem
6 of [2]). We mention, however, that it suffices to show that A%y =0 for all j, B, and

v; this follows from the fact that the coefficients of the 67 ok 0¥ in (2.5) must vanish.
Finally, we note that it will be a nullity variety that provides the flat factor for the
product structure in Theorem (*).

3. THE REAL EIGENVALUES OF THE CONULLITY OPERATORS

THEOREM 3.1. Let m be an arbitrary point of M,‘ where M isacomplete
Riemannian manifold of constant positive nullity p. Let v € N, so that T, is the
corvesponding conullity opevator. Then the veal eigenvalues of T., vanish.

Proof. The idea of the proof is to derive a matrix differential equation with
initial value T,,. The solution of this equation will have properties that imply the
result.

Since T, is linear in v, we may suppose that v is a unit vector. Let ¢ be the
geodesic (parametrized by arc length) starting at m with initial velocity v, and let
N be the nullity variety through m. Since N is totally geodesic, o lies in N for
some neighborhood of m. Therefore o may be extended so that it is a geodesic of
N for all real t, for otherwise we could assume that o: (r, s) — N is given as maxi-
mal. We shall show that ¢ can be extended as a geodesic of N to have the domain
(r, s + d), where 6> 0.

Since N is totally geodesic, ¢ is a geodesic of M. Since M is complete, ¢ has
an extension G that is a geodesic of M for all real t. By the continuity of the curv-
ature operator, G'(s) is a nullity vector. It follows [5, Lemma 2, p. 86] that
G(s) € N. Using again the totally geodesic character of N, we see that | (r, s+0)
is a geodesic of N, for some 6 > 0. Thus T provides the desired extension of o,
and we may assume that ¢ is defined on the whole real line and that o'(t) is a nul-
lity vector for all real t.

Let f be an adapted frame at m with f; = v, and let F be the frame field along
o obtained by parallel translation of f along o¢. Then F is an adapied frame field
on o: the first p vector fields of F are nullity fields because the nullity variety
containing ¢ is totally geodesic, while the remaining vector fields of F are conul-
lity fields because parallel translation is an isometry. Thus we may define
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a differentiable matrix-valued function C on the entire parameter space of ¢ by the
formulas

Cjt) = - By;(F(o(1)).

It follows from Lemma 1 of [6] that if p is any point on o, then there exist a neigh-
borhood U of p and a frame field E on U such that

(1) the geodesic ¢ is an integral curve of E,,

(2) the vector fields E;, ---, E;, are nullity fields,

(3) E is parallel on each integral curve of E;, and

(4) E=Fon o NU.

If we define the forms ¢% in U by the formulas ¢ab = E*(w%), then the properties
of the frame field E imply that in U

E, =0, Vg, Eg= ¢h(Ex)E, (@ *1),

WELE; (2 #1),

<
=1
R
i
i

Vi, Eg = $4(E;)E,, + (B} °E)E,,

<
=

=

I

k
(BY;0E)E,, + ¢;(E;)Ex,
and
(B1, Bj] = -Vg,E,.

We use these equations to calculate Ry  E; from the formula
1 Es

and after a lengthy but straightforward calculation we find that

k
-REIEj E; = El(B}’joE)Ey + (B} oE) (B, °E)E, + g Ey;

(we have not explicitly computed the coefficients gk, because they will not enter into
our discussion). Since E; is a nullity field, the symmetries of the curvature tensor
imply that RE1 E. E; = 0, so that the coefficient of each E, must vanish. Thus when

a = 1, we obtain the equation
1 1 1
El(BijoE) = (Bk_]oE) (BikoE)’

where we have used the skew-symmetry of B in y and i, This equation implies that
Fy(C)) = C%‘Ci(, because E = F on o N U. But the Fl(C}) are the derivatives of the

components of C as a function on the parameter space of 6. Thus we have the for-
mula (C})' = Cﬁ-‘ Cy, or simply C'= C?. Since there is a frame field such as E ina
neighborhood of each point of ¢, we conclude that C' = C2 on the entire real line.
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A solution of this differential equation is given by the function C(0)[I - tC(0)]~!
where I denotes the (n - p) X (n - 1) identity matrix; and by a uniqueness theorem
from the theory of ordmary differential equations [3, pp. 15-19], it follows that
C(t) = C(0)[I - tC(0)]~!. The form of the solution implies that the real eigenvalues
of C(0) vanish, for if A is a real eigenvalue of C(0), we can find a basis of M,,, with
the property that C1(0) =2 and C%(0) = C1(0) = 0 for all a # 1. But then

1(t) =2/(1 - At), and Ci is differentiable if and only if A = 0. Finally, we note that
C(O) is the negative of the matrix of T, relative to the frame f, and the result fol-
lows.

4. THE VANISHING OF THE CONULLITY OPERATORS

In this section we shall show that the conullity operators vanish when the condi-
tions of Theorem (*) are satisfied. We first discuss some notation and conventions
used exclusively in this section. If V is a subspace of M _ , where m is any point
of M, B(V) will denote the space of bivectors generated by V and P(V) will denote
the space of planes generated by V. We say that the sect1ona1 curvature function K
is nonzero on P(V) if the restriction of K to P(V) is nonzero. The curvature ten-
sor gives rise to a symmetric bilinear form R on B(M,,); that is, if a=x Ay and
b = u /A v are separable bivectors, then R(a, b) = <ny u, v,, and R is extended by

linearity to operate on all bivectors [1, p. 162]. We also write
R(ijkm) = (Rfi £ fios I >,

to simplify our notation.

When we say R is definite on B(V), we mean that the restriction of R to B(V) is
a positive or negative definite bilinear form. Finally, A(B) will denote the area of
the bivector B, and €(v, :-+, v)) will denote the linear space generated by the vec-
tors vy, -, Vk.

LEMMA 4.1. Let V be a 3-dimensional subspace of My, , wheve m is any point
of M, and let {v,, v,, v5} be a basis for V. Suppose that K is nonzevo on P(V),
and that b and ¢ are veal numbers satisfying the relation

bR(1323) = - cR(1313) + R(2323).

Then b2 + 4c > 0.

Proof. We first note that we cannot have b = ¢ = 0, for then the sectional curva-
ture of the plane 7,3 spanned by the bivector B3 = v, /A v3 would be zero. Thus,
the bivector B = (2cvl + bvz) A\ v3 is nonzero and spans a plane 7. Moreover,

A2(B)K(n) = 4c% R(1313) + 4bc R(1323) + b%R(2323)

(b? + 4c) R(2323)

]

= (b% + 4c)K(m,3) A%(B,;) -
But K(7) and K(7,3) are nonzero and have the same sign, because K is continu-
ous on P(V) and P(V) is a connected set. Thus b2+ 4c > 0.

THEOREM 4.2. Let m € U, where U is a vegion of M in which the nullity is
constant and 0 < p. < n - 3, and suppose that K is nonzero on P(C,,). Let T bea
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conullity opevator at m, and suppose that T has a zevo eigenvalue. Then the eigen-
values of T are real.
Proof. Let b and ¢ be real numbers, and let the roots of the polynomial

p= A% - b - ¢ be two nonreal eigenvalues of T. We can choose independent conul-
lity vectors v;, v,, and v3 such that T | 8(vy, v,, v3) has the matrix

0 c 0
1 b 0/,
0 0 0

in other words, such that T(v;) =v,, T(v,) =cv, + bv,, and T(v3) = 0. Applying
(2.3) to these three vectors, we find that

0= RV3 V1 (CVl +bVZ) + R

VZ v3 VZ *
But the result obtained by taking the inner product of this equation with v3 is
bR(1323) = - ¢ R(1313) + R(2323), and Lemma (4.1) shows that b2 + 4c > 0, which

contradicts the choice of p.

LEMMA 4.3. Let V be a k-dimensional subspace of M,, (k> 4), where m is
any point of M, and let L be a linear opevator on V that satisfies (2.3) Jor all vec-
tors in V. Suppose that K is nonzevo on P(V). Then the nonveal elementary di-
visors of L are simple,

Proof. Let b and ¢ be real numbers, and suppose that the polynomial
M -br-cisa multiple nonreal elementary divisor of L. Then there exist inde-
pendent vectors v; (i =1, 2, 3, 4) with the property that L | e(vy, vy, vs, v4) has
the form

[0 ¢ 0 07
1 b 0 0
0 1 0 ¢

| 0 0 1 b |

Applying (2.3) to the sets of vectors {v;, v5, v,} and {v,, v3, v}, we obtain
the relations

(4.1) 0= cRy vy V3 ¥ bRy o vy + Ryyv Vet RysvyVas
and
(4.2) 0= CRVZ V3V3 + bRV2V4V3 + RV4V2V4 + CRV3 V4V1 + RV3 V4V3 .

(We have used the first Bianchi identity to obtain (4.2) from a more complicated
equation.) Next we take the inner product of (4.1) with V2, V3, and v4, and the.inner
product of (4.2) with v; and v,. Making generous use of the symmetries of R, we
obtain the set of equations
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0 = -cR(1323) + bR(1342) + R(1424),

0 = -bR(1334) + R(1434) + R(2334),

0 = cR(1334) + R(2434),

0 = -cR(1323) + bR(1342) + R(1424) - R(1334),
0 = cR(2334) + bR(2434) + cR(1434) + R(3434).

From the first and fourth equations, it follows that R(1334) = 0. This simplifies
the second and third equations, which may then be substituted into the last equation,
yielding R(3434) = 0, contrary to the assumption that K is nonzero on P(V).

LEMMA 4.4. Let V be a k-dimensional subspace of M, (k > 4), where m is
any point of M, and let L. be a linear operator on V that satisfies (2.3) for all vec-
tors in V. Suppose that R is definite on B(V), and that every eigenvalue of L is
pure imaginary. Then each eigenvalue of L is zero.

Proof. Let ¢ and d be real numbers with ¢ < 0 and d < 0, and suppose that the
zeros of A% - ¢ and A% - d are pure imaginary eigenvalues of L. To show that
¢ =d =0, let us assume that ¢ < 0. By Lemma (4.3), the nonreal elementary divi-
sors of L are simple, so that we can find independent vectors v; (i=1, 2, 3, 4) with
the property that L | e(vy, va, V3, v,) takes the form

0 a 0 0]
1 0 0 O
0 0 0 ¢

0 0 1 0|

We apply (2.3) to the set of vectors {v;, v2, va}, {v1, va, vat, {vi, v3, va},
and v,, V3, v4 }, and obtain four equations with which we take the following inner
products: the first equation with v3, the second with v4, the third with v;, and the
last with v, . The result, after we use the symmetries of R, is the set of equations

(4.3) R(1234) = - dR(1313) + R(2323),
(4.4) -cR(1234) = -dR(1414) + R(2424),
(4.5) R(1234) = - cR(1313) + R(1414),
(4.6) -dR(1234) = - cR(2323) + R(2424).

Multiplying (4.3) by (- c), and (4.5) by (- d), and then adding the results to (4.4)
and (4.6) respectively, we find that (c - d)R(1234) = 0. But R(1234) # 0, because in
(4.3), R(1313) and R(2323) have the same sign, while -d > 0. Thus c = d, and from
(4.4) and (4.6) it follows that R(1414) = R(2323), while from (4.3) and (4.4) it follows
that R(2424) = ¢ R(1313). '

Next, we find the values that the curvature tensor assigns to the bivectors
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wip = Vi AVt vaAvy,  wy =V AVe- VA V3,

w3 = eV A V3 + VA vy, Wg=CViAV3-VA V.

After straightforward calculations we obtain the equations

(4.7) R(w,, w;) = 2R(1414)+ 2R(1423),
(4.8) R(w,, w,) = 2R(1414) - 2R(1423),
(4.9) R(ws, w3) = 2¢2 R(1313) + 2c R(1324),
(4.10) R(w,, w,) = 2¢>R(1313) - 2c R(1324).

In the positive definite case, the left-hand side of each of these equations is posi-
tive. Thus, (4.7) and (4.8) imply that

(4.11) |R(1423)| < R(1414),
while (4.9) and (4.10), after division by -c¢ > 0, lead to the inequality
(4.12) |R(1324)| < -cR(1313).
In the negative definite case, a similar analysis yields the two relations
(4.13) |R(1423)| < - R(1414),
(4.14) |R(1324)| < cR(1313).
The first Bianchi identity may be written in the form

R(1234) = R(1324) - R(1423)_;
from this we see that
(4.15) |R(1234)| < |R(1324)| + |R(1423)].
In the positive definite case, substitution of (4.11) and (4.12) into (4.15) shows
that
R(1234) < |R(1234)| < - cR(1313) + R(1414),
while in the negative definite case, substitution of (4.13) and (4.14) into (4.15) leads to
the inequality
-R(1234) < |R(1234)| < cR(1313) - R(1414),
that is,
R(1234) > -cR(1313) + R(1414).
In either case, the resulting inequality is incompatible with (4.5). Thus c = 0,
and the eigenvalues of L vanish.

THEOREM 4.5. Let m € U, where U is a region of M in which the nullity has a
constant value p (0 < p < n - 3), and suppose that R is definite on B(C,,). Then
every conullity opervator T at m has a real eigenvalue.
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Proof. Suppose that no eigenvalue of T is real. Since T has a real eigenvalue
if C,, is odd-dimensional, we can assume that the dimension of C,, is even and not
less than four. An application of Lemma (4.4) to C,, and T shows that not all of the
eigenvalues of T can be pure imaginarg. Thus we may assume that the zeros of the
polynomials p = A% - 2ax - d and q = A“ - 2bA - ¢ are nonreal eigenvalues of T,
where a, b, ¢, and d are real numbers, and where the roots of p are not pure
imaginary. Since C,, and T satisfy the hypotheses of Lemma (4.3), it follows that
the nonreal elementary divisors of T are simple, so that we can find independent co-
nullity vectors v; (i=1, 2, 3, 4) such that T | g(vy, v, v3, v4) has the form

[0 4 o0 0]

We apply (2.3) to the sets of vectors {v;, v2, v3}, {vi, v3, v4}, and
Vo, V3, v4}, and take the inner product of the resulting equations with the vectors
v3, V,, and v, respectively. This gives the equations

(4.12) R(1234) + 2aR(1323) = - dR(1313) + R(2323),
(4.13) 2bR(1324) = - cR(1323) + R(1424),
(4.14) 2aR(1234) + 2bR(1423) = - cR(1323) + R(1424).

Comparison of (4.13) and (4.14) together with the first Bianchi identity shows that
(a - b)R(1234) = 0. If R(1234) = 0, then (4.12) reduces to the equation
2aR(1323) = - dR(1313) + R(2323). But an application of Lemma (4.1) to
2(vy, vz, v3) leads to the inequality a2+ d > 0, which contradicts the choice of p.
Thus R(1234) # 0, and a = b.

Next, suppose that L is a linear transformation on a subspace V of M,, and
that it satisfies (2.3) for all elements of V, and let r be any real scalar. Then, if I
denotes the identity transformation of V, the transformation L'= L + rI must also
satisfy (2.3); for if x, y, and z are any vectors in V, then

& {RXY(L +rl)z} = © {RXYL(Z)} +r6® {nyz} .

But the first term on the right-hand side of this equation vanishes, by hypothesis,
and the second term is zero by the first Bianchi identity.

In our particular case, V=C,, and L =T, and we set r = - a, so that the matrix
of T'is
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The zeros of the characteristic polynomial of T' are +(a2+d)!/2 and
+(a% + c)l/ 2 These zeros are pure imaginary by hypothesis, and since T' must
also satisfy (2.3), it follows from Lemma (4.4) that they have the value 0. Thus, in
particular, a2 + ¢ = 0, which again contradicts the choice of p.

THEOREM 4.6. Let M be complete, with constant positive nullity u <n - 3, and
suppose that condition (1*) or (2*) of Theorem (*) is satisfied. Then the conullity
operators of M vanish.

Proof. Let T be a conullity operator. By Theorem (4.5), either condition im-
plies that T has a real eigenvalue, which must vanish by Theorem (3.1). Theorem
(4.2) implies that the remaining eigenvalues of T are real, and Theorem (3.1) im-
plies that these eigenvalues are zero. Thus, if T # 0, there exist independent conul-
lity vectors x, y, and z such that T I 2(x, y, z) has one of the two forms

An application of (2.3) to the vectors x, y, and z shows that the plane spanned
by y. and z has sectional curvature zero, which contradicts (1*¥) and (2*). Thus
T =0,

Remavk., The vanishing of the conullity operators implies that the distribution of
conullity spaces is integrable, and that the resulting integral manifolds (the conullity
varieties) are totally geodesic. We do not need this, but it provides information on
the second factor in the product structure of M that we shall obtain in the next sec-
tion.

5. THE GLOBAL PRODUCT STRUCTURE OF M

In this section we shall show that the vanishing of the conullity operators allows
us to apply de Rham’s decomposition theorem to give M a global product structure.
We follow the terminology found in [5, pp. 179-193].

Proof of Theorem (*). It suffices to show that M is reducible. However, the
forms wg and w‘i)‘ represent the only obstruction to the reduction of the connection

w to F(U), and the vanishing of these forms implies that the holonomy group is con-
tained in O(n) X O(n - ).

Thus the hypotheses of de Rham’s theorem are satisfied. Moreover, the parallel
distributions of de Rham’s theorem are precisely the nullity and conullity distribu-
tions of M, and if m is any point of M, the integral manifolds of de Rham’s theorem
are the nullity variety N and the conullity variety C that pass through m. It fol-
lows that M is isometric to the direct product of the nullity variety and conullity
variety passing through m; that is, M = N X C.

Final Remarks. (1) A simple calculation shows that the curvature of a conullity
variety is given by the conullity components of the curvature of M.

(2) The validity of Theorem (*) remains an open question when g =n - 2. En-
tirely different techniques are needed for this case, because (2.3) no longer holds.
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