ON EXTENSIONS OF LATTICES
H. Jacobinski

Let k be an algebraic number field of finite degree, o a Dedekind-ring with
quotient field k, I'/k a finite-dimensional semi-simple algebra over k, and R an
o-order in I'. We consider R-lattices M, N, that is, finitely generated unitary R-
modules that are torsion-free as o-modules. D. G. Higman has constructed an ideal
i(R) # 0 in o such that i(R) Ext%{ (M, N) = 0 for all R-lattices M and N (see Curtis

and Reiner [1, p. 522]). In particular, if G is a group of order n and R = oG, then
i(R) = (n). A refinement of this has been established by Reiner [3]: If kM or kN af-
fords an absolutely irreducible representation of G of degree m, then

-;31- Extl (M, N) =

In this note, by embedding R in a maximal order O, we construct an ideal F(R)
in the center of R that annihilates Ext1 (M, N) for arbitrary R-lattices M and N.
The corresponding o-ideal f(R) = F(R) N o may be a proper d1v1sor of i(R) and may
even contain fewer prime ideals. An even better annihilator of Exi:R (M, N) may be
constructed if kM or kN does not afford a faithful representation of T, that is, if
eM =M or eN =N for some central idempotent e # 1 in I". For the case Where
R = oG is the group ring of a finite group, we shall derive explicit expressions for
these annihilators; our expressions include the above-mentioned result of Reiner as
a special case.

1. Let C be the maximal order in the center of T', and let D be a maximal
order in I' that contains R. We define the central conductor to be

F(o/R) = {z|zDCR, zeC}.

Since C is contained in every maximal order of T, the central conductor is an ideal
in C. Now let D range over all maximal orders in I" that contain R, and let F(R)
be the C-ideal generated by all the central conductors of R.

THEOREM 1. For arbitrary R-lattices M and N,
F(R) Ext}lR (M, N) = 0.
Proof. Let
0—-A—->B—-M=—-0

be an exact sequence of R-lattices, where B is projective. Put kB =k &), B, and
regard A and B as submodules of kB. Since M is a torsion-free o-module, A is
a primitive o-submodule of B; that is, kA N B=A. Let ® be a maximal order
containing R; then OB is the minimal D-lattice containing B. Now kAN DB =A
is an D-lattice and at the same time a primitive o-submodule of OB. This implies
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that X = DB/K is an O-lattice. But since O is hereditary, every ©O-lattice is a
projective ©O-module. Therefore

(x) DB =A@X.

Let z € F(D/R) and ¢ € Homg (A, N). To prove the theorem, we have to show that
z¢ can be extended to an R-homomorphism B — N. Now zO C R implies zO9BC B
and zA C BN kA = A, Consequently, z¢ induces an R-homomorphism A — N.
Since A is a direct summand of DB, z¢ can be extended to an R-homomorphism
DB — N. Since B C DB, this proves the theorem.

THEOREM 2. Let e be a central idempotent of T, and define the o-ideal
f.(R) = {zl ez € F(R), .z € o}. If M and N are R- lattzces with eM =M or eN = N,
tken

£,(R) Extg (M, N) = 0

Proof. Suppose first that eN = N. Then (1 - e)Homg (Q, N) = 0 for every R-
lattice Q. If in the exact sequence above, B is taken to be a projective R-module,

Ext1 (M, N) is isomorphic to a factor module of Homp (A, N). This shows that
(1 - e) ExtR (M, N) = 0. Since the elements of f,(R) a,re of the form z = ze + z(1 - e)
with ze € F(R), they clearly annihilate Ext1 (M N).

Suppose next that eM = M. We first observe that f.(R) may be defined in a
slightly different way, namely as the o-ideal generated by all z € o such that
zed C R for some maximal order ¥ D R. Let g be this ideal; then clearly
g C f,(R). On the other hand, let p be a prime ideal in o, and suppose that f,(R) is
exactly divisible by pt. This means that there is a mammal order ® DR such that
the ideal e F(©/R) N eo in eo is exactly divisible by ept. Consequently, there
exists a z € g that is not divisible by pt+1 and so g = f,(R). To prove the theorem,
we then have to show that for every maximal order O contammg R, zeD C R with

z € o implies z Ext} (M, N) =

Consider the exact sequence above and the decompos1t10n (*). From the relation
eM = M we deduce that eX = X for kM £ kB/kA = k9 B/kA £ kX. Now zed CR im-
plies zX = zeX C ze DB C B. Put B' = B+ X then there is an R-lattice A' C A
such that B' = A'(® X. Further, zZXC B implies zB' C B, and so zA' C BNKkA = A,
If ¢ € Homgpg (A, N), then z¢ induces a homomorphism A' — N, which we may extend
to a homomorphism B' — N by letting X — 0. Since B C B', this proves the theo-
rem.

2. If R = oG is the group ring over o of a group of order n, the ideals F(R) and
f.(R) may be calculated explicitly. Let O be a maximal order in kG that contains
R = 0G, and denote by L(D/R) = {x] DX CR, x € D} the left conductor of R in D.
Then L(D/R) is the maximal left D-lattice contained in R. Obviously,
F(D/R)=L(D/R)N C. We shall first determine L(D /R), and then use this to
determine F(R) and f (R). Let

T =kG =@ 2T,

be the decomposition of I'/k into simple algebras T';/k, and let e; be the corre-
sponding central idempotents. Then there are analogous decompositions

C=@ 2C; and D=0 2D;.
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Let s;(x) be the reduced trace of T; over its center kC;, denote by 9; the differ-
ent of D; over C; (with respect to s;) and by D; the different of C; over oe;,

and put D In ke, = d; 1e Then d; is an ideal in o and d;e; is the intersection of
all ideals 1n oe; that d1v1de D;. Fmally, let nz be the degree of T"; over kC;.

THEOREM 3. If R = oG is the group ving of a group G of order n, then

L(p/R) =@ Z =o' D;*, FR) =® 2 2D, f,®) = N = a7t

ee; #0

Proof. Denote by T(x) the trace of the regular representation of G; then
T(g) =0 for g # 1, and T(1) =n. For an o-lattice V in kG with kV = kG, let

= {x| T(Vx) c o, x € kG}

be the dual of V with respect to T(xy). Since T(xy) is nonsingular, the map V — \
reverses proper inclusions. Moreover it takes right D-lattices into left ones and
vice versa. If V =R, then

R ==R.

=R

Let D be a maximal order in kG with 0G C ©. Then RD = -1—11 D is the minimal

right ©-lattice containing f{, and so its dual is the maximal left D-lattice in R,
which is L(9/R). Consequently,

L(D/R) = nD = @ Z)n;:')i.

On the other hand, T(x) = 2Jn;S;(x), where S; is the reduced trace of T; over k.
This implies that

N = -1 ¢-1pn-1

and from this one obtains the expression for L(9 /R). (It turns out that L(9D/R) is
in fact a two-sided D -ideal and is at the same time the right conductor of R with
respect to D.)

Now F(D/R)=L(D/R) N C. Since — D'1 is already in kC;, we have to deter-

mine ¥ In kC; . This is clearly the 1nverse of an ideal Q; in C;. Suppose that
Q; # C;, and let P be a prime divisor of Q; and P the 1ndecomposab1e two-sided
Dj-ideal dividing PO;. Then PD;= $7, and since 9; C Q; D;, the different D,

would be divisible by 5137? This gives a contradiction, since ‘D is exactly divisible
by B"-! (see Deuring [2, p. 84, Satz 3, and p. 114, Satz 5]). Thus Q; =C; and

F(D/R) = @ Z) D'l

Since F(9/R) does not depend on the choice of the maximal order D, it is equal to
F(R). The expression for f e(R) now follows directly from the definition.
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Remark: In the above proof, we only used the fact that R is the group ring of G
over o to establish that R = % R. The same method of determining L(© /R) and

F(R) applies to any order R such that R is generated as a left R-module by ele-
ments of the center kC.

The expression for f.(R) in Theorem 3 yields the following corollary.

COROLLARY. If e; is a central simple idempotent of kG, and if M, N are oG-
lattices with e;M =M or e;N =N, then

n_.-1 1
Fidi Extog(M, N) = 0.

This generalizes the result of Reiner mentioned above.

3. In conclusion we comment on the relation between i(R) and f(R) = F(R) N o.
The ideal i(R) may be calculated by means of an invariant bilinear form on T°
(Curtis and Reiner [1, p. 526, Theorem 75.19]). As such a form we take the re-

duced trace S(xy) = ZSi(xy) of T' over k. The associated Ikeda-Gaschiitz operator
is then )

y(x) = 2rs;(x) = s(x),

where s; is the reduced trace of I'; over kC;. This is easily seen if each T'; is a
full ring of matrices over k, by taking the usual matrix-units ey, p as a k-basis for
I'; . We can reduce the general case to this by first extending k foa splitting field
of I'. Let R* be the dual of R with respect to S(xy), and put

U = {x| R*xCR, xe T'}.

Then
iR) = s(U)No.

If R' is an order containing R, then we see from the above expression that \
i(R) c i(R!). In particular, if D is a maximal order and R C O, then i(R) C i(D).
Now, for a maximal order, we have the relations

o*=@ 2 o/'p;!, U=@XZ 9,D;, sU) =@ 2 D;s(9,).

The dual of ®; with respect to s; is ©;%. Thus s;(®;) is the intersection of all

ideals Q in C; such that QD; > 9%, If $/ D; is a two-sided indecomposable ideal
in D; and P = N C;, then P77 = PD; with n > 1, and o¢ is exactly divisible by
SBZ(" -1) = P‘.Bn‘z . Consequently, si(i) i) is exactly divisible by P. This shows that

i(p) = {@ 27 si(if)i)Di} N o is divisible by all prime ideals p, in o that are either
ramified in some C; or else in some C; contain a factor that is ramified in T;.
Thus, in general, i(D) # (1), whereas f( ) = (1). This provides an example in which
i(R) contains unnecessary prime factors. Other examples may easily be constructed;
for instance, let p be a prime ideal dividing i(©), and a be an ideal in o, not divis-
ible by p. For R = o0 + a®, we have the relation f(R) D a, and so p does not divide
I(R).
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I do not know whether f(R) is always a divisor of i(R). If, however, for some
maximal order ® with R C D the left conductor L = L(D/R) is a two-sided D-
ideal, it is easy to show that f(R) divides i(R). We first observe that for a two-
sided ideal % in D;

We may suppose that % has no proper factor of the form AD; where A is an ideal
in C;. But then % is a product of two-sided indecomposable ideals in »; that are

all ramified over C;. Since u* = g1 ‘-J)'il , we deduce that s;( %) is the intersection

of all ideals Q in C; such that QD; D % D;, and the assertion follows from the
above-cited theorem concerning the exponent of an indecomposable ideal in 9.

Now © is the minimal rlght D-lattice containing R, and so its dual D* is the
maximal left D-lattice in R*. But then D*U C R*UC R, and D*U is a left D-

lattice in R and therefore must be contained in L =@ 27 L;. Since D* 5 D, this
implies that U C DU C L. From the above remark we see that

s(U) c® 2 L;N C;C F(R),

and so i(R) C f(R).
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