ON EXTENSIONS OF LATTICES

H. Jacobinski

Let k be an algebraic number field of finite degree, o a Dedekind-ring with quotient field k, Γ/k a finite-dimensional semi-simple algebra over k, and R an o-order in Γ . We consider R-lattices M, N, that is, finitely generated unitary R-modules that are torsion-free as o-modules. D. G. Higman has constructed an ideal $i(R) \neq 0$ in o such that i(R) Ext $_R^1$ (M, N) = 0 for all R-lattices M and N (see Curtis and Reiner [1, p. 522]). In particular, if G is a group of order n and R = oG, then i(R) = (n). A refinement of this has been established by Reiner [3]: If kM or kN affords an absolutely irreducible representation of G of degree m, then

$$\frac{n}{m} \operatorname{Ext}_{R}^{1} (M, N) = 0.$$

In this note, by embedding R in a maximal order \mathfrak{D} , we construct an ideal F(R) in the center of R that annihilates $\operatorname{Ext}^1_R(M,N)$ for arbitrary R-lattices M and N. The corresponding o-ideal $f(R) = F(R) \cap o$ may be a proper divisor of i(R) and may even contain fewer prime ideals. An even better annihilator of $\operatorname{Ext}^1_R(M,N)$ may be constructed if kM or kN does not afford a faithful representation of Γ , that is, if eM = M or eN = N for some central idempotent $e \neq 1$ in Γ . For the case where R = oG is the group ring of a finite group, we shall derive explicit expressions for these annihilators; our expressions include the above-mentioned result of Reiner as a special case.

1. Let C be the maximal order in the center of Γ , and let $\mathfrak D$ be a maximal order in Γ that contains R. We define the central conductor to be

$$F(\mathfrak{D}/R) = \{z \mid z\mathfrak{D} \subset R, z \in C\}.$$

Since C is contained in every maximal order of Γ , the central conductor is an ideal in C. Now let $\mathfrak D$ range over all maximal orders in Γ that contain R, and let F(R) be the C-ideal generated by all the central conductors of R.

THEOREM 1. For arbitrary R-lattices M and N,

$$F(R) Ext_R^1(M, N) = 0$$
.

Proof. Let

$$0 \rightarrow A \rightarrow B \rightarrow M \rightarrow 0$$

be an exact sequence of R-lattices, where B is projective. Put $kB = k \bigotimes_{0} B$, and regard A and B as submodules of kB. Since M is a torsion-free o-module, A is a primitive o-submodule of B; that is, $kA \cap B = A$. Let $\mathfrak D$ be a maximal order containing R; then $\mathfrak DB$ is the minimal $\mathfrak D$ -lattice containing B. Now $kA \cap \mathfrak DB = \overline{A}$ is an $\mathfrak D$ -lattice and at the same time a primitive o-submodule of $\mathfrak DB$. This implies

Received December 3, 1965.

that $X = \mathfrak{D}B/\overline{A}$ is an \mathfrak{D} -lattice. But since \mathfrak{D} is hereditary, every \mathfrak{D} -lattice is a projective \mathfrak{D} -module. Therefore

$$\mathfrak{D}\mathbf{B} = \overline{\mathbf{A}} \oplus \mathbf{X}.$$

Let $z \in F(\mathfrak{D}/R)$ and $\phi \in \operatorname{Hom}_R(A, N)$. To prove the theorem, we have to show that $z\phi$ can be extended to an R-homomorphism $B \to N$. Now $z\mathfrak{D} \subset R$ implies $z\mathfrak{D}B \subset B$ and $z\overline{A} \subset B \cap kA = A$. Consequently, $z\phi$ induces an R-homomorphism $\overline{A} \to N$. Since \overline{A} is a direct summand of $\mathfrak{D}B$, $z\phi$ can be extended to an R-homomorphism $\mathfrak{D}B \to N$. Since $B \subset \mathfrak{D}B$, this proves the theorem.

THEOREM 2. Let e be a central idempotent of Γ , and define the o-ideal $f_e(R) = \{z \mid ez \in F(R), z \in o\}$. If M and N are R-lattices with eM = M or eN = N, then

$$f_e(R) Ext_R^l(M, N) = 0$$
.

Proof. Suppose first that eN = N. Then $(1 - e) \operatorname{Hom}_R(Q, N) = 0$ for every R-lattice Q. If in the exact sequence above, B is taken to be a projective R-module, $\operatorname{Ext}_R^1(M, N)$ is isomorphic to a factor module of $\operatorname{Hom}_R(A, N)$. This shows that $(1 - e) \operatorname{Ext}_R^1(M, N) = 0$. Since the elements of $f_e(R)$ are of the form z = ze + z(1 - e) with $ze \in F(R)$, they clearly annihilate $\operatorname{Ext}_R^1(M, N)$.

Suppose next that eM = M. We first observe that $f_e(R)$ may be defined in a slightly different way, namely as the o-ideal generated by all $z \in o$ such that $ze\mathfrak{D} \subset R$ for some maximal order $\mathfrak{D} \supset R$. Let g be this ideal; then clearly $g \subset f_e(R)$. On the other hand, let p be a prime ideal in o, and suppose that $f_e(R)$ is exactly divisible by p^t . This means that there is a maximal order $\mathfrak{D} \supset R$ such that the ideal $e F(\mathfrak{D}/R) \cap eo$ in eo is exactly divisible by ep^t . Consequently, there exists a $z \in g$ that is not divisible by p^{t+1} , and so $g = f_e(R)$. To prove the theorem, we then have to show that for every maximal order \mathfrak{D} containing R, $ze\mathfrak{D} \subset R$ with $z \in o$ implies $z \to xt^1_R(M, N) = 0$.

Consider the exact sequence above and the decomposition (*). From the relation eM = M we deduce that eX = X for $kM \cong kB/kA = k\mathfrak{D}B/k\overline{A} \cong kX$. Now $ze\mathfrak{D} \subset R$ implies $zX = zeX \subset ze\mathfrak{D}B \subset B$. Put B' = B + X; then there is an R-lattice $A' \subset \overline{A}$ such that $B' = A' \oplus X$. Further, $zX \subset B$ implies $zB' \subset B$, and so $zA' \subset B \cap kA = A$. If $\phi \in Hom_R(A, N)$, then $z\phi$ induces a homomorphism $A' \to N$, which we may extend to a homomorphism $B' \to N$ by letting $X \to 0$. Since $B \subset B'$, this proves the theorem.

2. If R = oG is the group ring over o of a group of order n, the ideals F(R) and $f_e(R)$ may be calculated explicitly. Let $\mathfrak D$ be a maximal order in kG that contains R = oG, and denote by $L(\mathfrak D/R) = \{x \mid \mathfrak D x \subset R, \ x \in \mathfrak D\}$ the left conductor of R in $\mathfrak D$. Then $L(\mathfrak D/R)$ is the maximal left $\mathfrak D$ -lattice contained in R. Obviously, $F(\mathfrak D/R) = L(\mathfrak D/R) \cap C$. We shall first determine $L(\mathfrak D/R)$, and then use this to determine F(R) and $f_e(R)$. Let

$$\Gamma = kG = \bigoplus \sum \Gamma_i$$

be the decomposition of Γ/k into simple algebras Γ_i/k , and let e_i be the corresponding central idempotents. Then there are analogous decompositions

$$C = \bigoplus \sum C_i$$
 and $\mathfrak{D} = \bigoplus \sum \mathfrak{D}_i$.

Let $s_i(x)$ be the reduced trace of Γ_i over its center kC_i , denote by \mathfrak{D}_i the different of \mathfrak{D}_i over C_i (with respect to s_i) and by D_i the different of C_i over oe_i , and put $D_i^{-1} \cap ke_i = d_i^{-1}e_i$. Then d_i is an ideal in o and d_ie_i is the intersection of all ideals in oe_i that divide D_i . Finally, let n_i^2 be the degree of Γ_i over kC_i .

THEOREM 3. If R = oG is the group ring of a group G of order n, then

$$L(\mathfrak{D}/R) = \bigoplus \sum \frac{n}{n_i} \mathfrak{D}_i^{-1} D_i^{-1}, \quad F(R) = \bigoplus \sum \frac{n}{n_i} D_i^{-1}, \quad f_e(R) = \bigcap_{ee_i \neq 0} \frac{n}{n_i} d_i^{-1}.$$

Proof. Denote by T(x) the trace of the regular representation of G; then T(g) = 0 for $g \ne 1$, and T(1) = n. For an o-lattice V in kG with kV = kG, let

$$\tilde{V} = \{x \mid T(Vx) \subset o, x \in kG\}$$

be the dual of V with respect to T(xy). Since T(xy) is nonsingular, the map $V \to \widetilde{V}$ reverses proper inclusions. Moreover it takes right $\mathfrak D$ -lattices into left ones and vice versa. If V = R, then

$$\tilde{R} = \frac{1}{n} R$$
.

Let $\mathfrak D$ be a maximal order in kG with oG $\subset \mathfrak D$. Then $\widetilde{R}\mathfrak D = \frac{1}{n}\mathfrak D$ is the minimal right $\mathfrak D$ -lattice containing \widetilde{R} , and so its dual is the maximal left $\mathfrak D$ -lattice in R, which is $L(\mathfrak D/R)$. Consequently,

$$L(\mathfrak{D}/R) = n\mathfrak{D} = \bigoplus \Sigma n\mathfrak{D}_i$$
.

On the other hand, $T(x) = \sum n_i S_i(x)$, where S_i is the reduced trace of Γ_i over k. This implies that

$$\tilde{\mathfrak{D}} = \bigoplus \sum n_i^{-1} \mathfrak{D}_i^{-1} D_i^{-1}$$

and from this one obtains the expression for $L(\mathfrak{D}/R)$. (It turns out that $L(\mathfrak{D}/R)$ is in fact a two-sided \mathfrak{D} -ideal and is at the same time the right conductor of R with respect to \mathfrak{D} .)

Now $F(\mathfrak{D}/R) = L(\mathfrak{D}/R) \cap C$. Since $\frac{n}{n_i} \, D_i^{-1}$ is already in kC_i , we have to determine $\mathfrak{D}_i^{-1} \cap kC_i$. This is clearly the inverse of an ideal Q_i in C_i . Suppose that $Q_i \neq C_i$, and let P be a prime divisor of Q_i and \mathfrak{P} the indecomposable two-sided \mathfrak{D}_i -ideal dividing $P\mathfrak{D}_i$. Then $P\mathfrak{D}_i = \mathfrak{P}^\eta$, and since $\mathfrak{D}_i \subset Q_i \, \mathfrak{D}_i$, the different \mathfrak{D}_i would be divisible by \mathfrak{P}^η . This gives a contradiction, since \mathfrak{D}_i is exactly divisible by $\mathfrak{P}^{\eta-1}$ (see Deuring [2, p. 84, Satz 3, and p. 114, Satz 5]). Thus $Q_i = C_i$ and

$$F(\mathfrak{O}/R) = \bigoplus \sum \frac{n}{n_i} D_i^{-1}.$$

Since $F(\mathfrak{D}/R)$ does not depend on the choice of the maximal order \mathfrak{D} , it is equal to F(R). The expression for $f_e(R)$ now follows directly from the definition.

Remark: In the above proof, we only used the fact that R is the group ring of G over o to establish that $\tilde{R} = \frac{1}{n} R$. The same method of determining $L(\mathfrak{D}/R)$ and F(R) applies to any order R such that \tilde{R} is generated as a left R-module by elements of the center kC.

The expression for f_e(R) in Theorem 3 yields the following corollary.

COROLLARY. If e_i is a central simple idempotent of kG, and if M, N are oG-lattices with $e_i \, M = M$ or $e_i \, N = N$, then

$$\frac{\mathbf{n}}{\mathbf{n}_i} d_i^{-1} \operatorname{Ext}_{oG}^1(\mathbf{M}, \mathbf{N}) = 0.$$

This generalizes the result of Reiner mentioned above.

3. In conclusion we comment on the relation between i(R) and $f(R) = F(R) \cap o$. The ideal i(R) may be calculated by means of an invariant bilinear form on Γ (Curtis and Reiner [1, p. 526, Theorem 75.19]). As such a form we take the reduced trace $S(xy) = \sum S_i(xy)$ of Γ over k. The associated Ikeda-Gaschütz operator is then

$$\gamma(x) = \sum s_i(x) = s(x),$$

where s_i is the reduced trace of Γ_i over kC_i . This is easily seen if each Γ_i is a full ring of matrices over k, by taking the usual matrix-units $e_{\mu,\nu}$ as a k-basis for Γ_i . We can reduce the general case to this by first extending k to a splitting field of Γ . Let R^* be the dual of R with respect to S(xy), and put

$$U = \{x \mid R^*x \subset R, x \in \Gamma\}.$$

Then

$$i(R) = s(U) \cap o$$
.

If R' is an order containing R, then we see from the above expression that $i(R) \subset i(R')$. In particular, if D is a maximal order and $R \subset D$, then $i(R) \subset i(D)$. Now, for a maximal order, we have the relations

$$\mathfrak{D}^* = \bigoplus \sum \mathfrak{D}_i^{-1} D_i^{-1}, \quad U = \bigoplus \sum \mathfrak{D}_i D_i, \quad s(U) = \bigoplus \sum D_i s_i(\mathfrak{D}_i).$$

The dual of \mathfrak{D}_i with respect to s_i is \mathfrak{D}_i^{-2} . Thus $s_i(\mathfrak{D}_i)$ is the intersection of all ideals Q in C_i such that $Q\mathfrak{D}_i \supset \mathfrak{D}_i^2$. If $\mathfrak{P}/\mathfrak{D}_i$ is a two-sided indecomposable ideal in \mathfrak{D}_i and $P = \mathfrak{P} \cap C_i$, then $\mathfrak{P}^{\eta} = P\mathfrak{D}_i$ with $\eta > 1$, and \mathfrak{D}_i^2 is exactly divisible by $\mathfrak{P}^{2(\eta-1)} = P\mathfrak{P}^{\eta-2}$. Consequently, $s_i(\mathfrak{D}_i)$ is exactly divisible by P. This shows that $i(\mathfrak{D}) = \left\{ \bigoplus \sum s_i(\mathfrak{D}_i) \mathfrak{D}_i \right\} \cap o$ is divisible by all prime ideals \mathfrak{P}_{ν} in o that are either ramified in some C_i or else in some C_i contain a factor that is ramified in Γ_i . Thus, in general, $i(\mathfrak{D}) \neq (1)$, whereas $f(\mathfrak{D}) = (1)$. This provides an example in which i(R) contains unnecessary prime factors. Other examples may easily be constructed; for instance, let \mathfrak{P} be a prime ideal dividing $i(\mathfrak{D})$, and a be an ideal in \mathfrak{P} , not divisible by \mathfrak{P} . For $R = \mathfrak{P} + \mathfrak{P} \mathfrak{D}_i$ we have the relation $f(R) \supset a$, and so \mathfrak{P} does not divide f(R).

I do not know whether f(R) is always a divisor of i(R). If, however, for some maximal order $\mathfrak D$ with $R \subset \mathfrak D$ the left conductor $L = L(\mathfrak D/R)$ is a two-sided $\mathfrak D$ -ideal, it is easy to show that f(R) divides i(R). We first observe that for a two-sided ideal $\mathfrak A$ in $\mathfrak D_i$

$$s_i(\mathfrak{A}) \subset \mathfrak{A} \cap C_i$$
.

We may suppose that $\mathfrak A$ has no proper factor of the form $A\mathfrak D_i$ where A is an ideal in C_i . But then $\mathfrak A$ is a product of two-sided indecomposable ideals in $\mathfrak D_i$ that are all ramified over C_i . Since $\mathfrak A^*=\mathfrak A^{-1}\,\mathfrak D_i^{-1}$, we deduce that $s_i(\mathfrak A)$ is the intersection of all ideals Q in C_i such that $Q\mathfrak D_i \supset \mathfrak A\,\mathfrak D_i$, and the assertion follows from the above-cited theorem concerning the exponent of an indecomposable ideal in $\mathfrak D_i$.

Now $\mathfrak D$ is the minimal right $\mathfrak D$ -lattice containing R, and so its dual $\mathfrak D^*$ is the maximal left $\mathfrak D$ -lattice in R^* . But then $\mathfrak D^*U\subset R^*U\subset R$, and $\mathfrak D^*U$ is a left $\mathfrak D$ -lattice in R and therefore must be contained in $L=\bigoplus \sum L_i$. Since $\mathfrak D^*\supset \mathfrak D$, this implies that $U\subset \mathfrak DU\subset L$. From the above remark we see that

$$s(U) \subset \bigoplus \sum L_i \cap C_i \subset F(R)$$

and so $i(R) \subset f(R)$.

REFERENCES

- 1. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience Publishers, New York, 1962.
- 2. M. Deuring, Algebren. Ergebnisse Math. Vol. 143, Springer, Berlin, 1935.
- 3. I. Reiner, Extensions of irreducible modules, Michigan Math. J. 10 (1963), 273-276.

University of Stockholm Department of Mathematics