LARGE SUBGROUPS AND SMALL HOMOMORPHISMS

Charles Megibben

1. INTRODUCTION

Unless otherwise stated, any group considered in this paper will be assumed to
be an additively written p-primary abelian group for some prime p. For the most
part, we follow the notation and terminology of{1]. All topological references will
be to the p-adic topology. In the first section, we apply the concepts of large sub-
groups and small homomorphisms to generalize results in [7] on direct decomposi-
tions. The notions introduced then lead to the construction of p-groups that are
neither transitive nor fully transitive. In the second section, the consideration of
nonsmall homomorphisms of closed p-groups provides the existence theorems that
make the results of the first section meaningful. Our methods also yield a simplified
construction of members of a most remarkable class of p-groups discovered by
Pierce [9]. Finally, in the last section, we show that a large subgroup is “large” in
the sense that its structure essentially determines the structure of the containing
group.

Let G be a p-group. We define paG for all ordinals « as follows:
(1) pG={x € G: x=pg, g € G},
(2) p®G = p(p%-1G) if @ - 1 exists, and

3) p2G= [] pPG if @ is a limit ordinal.
p<la

We shall often write G! for p?G= n n<w P'G. If x € G, we define the keight
hx) of x in G by

n if x € pG and x ¢ p"*t' G for the integer n,
h.(x) =
G

w if x € G,

If G is reduced, we also define the genevalized height h"(‘;(x) of x by

o if x#0 and a + 1 is the first ordinal such that x ¢ pa+1 G,
hi(x) =
o if x=0.

With each x € G we associate its Ulm sequence Ug(x) = (ag, @y, -**), Where

a; = hG(p x) for each i. In the same manner, if G is reduced, we associate with x
1ts genevalized Ulm sequence UG(x) The ordmary and generahzed Ulm sequences
are partially ordered in the obvious term-by-term fashion, that is, Ug(x) > Ug(y) if

and only if hg(pix) > hG(p y) for all i. We assume, of course, that o > a for all
ordinals «. The nth Ulm invariant of G is denoted by fG(n)
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A subgroup L of the p-group G is said to be large if (1) L is fully invariant
and (2) {L, B} = G for each basic subgroup B of G. Large subgroups were intro-
duced in [9], where it was shown, in particular, that to each large subgroup L of G
there corresponds a strictly increasing sequence n(L) = (ng, n;, **-) of nonnegative
integers such that L = {x € G: Ug(x) > n(L)}. A homomorphism ¢ of a p-group G
into a p-group K is said to be a small homomorphism if ker ¢ contains a large sub-
group of G. The set Hom (G, K) of all small homomorphisms of G into K is a
subgroup of Hom(G, K), and the set E_(G) of all small endomorphisms is an ideal in
the endomorphism ring E(G) of G (see [9]). Recall that the ring Ry, of p-adic inte-
gers, considered in the obvious manner as operators on the p-group G, is precisely
the center of E(G) when G is unbounded.

2. SMALL HOMOMORPHISMS

If A& is a class of p-groups, a p-group G will be said to be -thick if
Hom(G, A) = Hom (G, A) for all A € «#. A p-group will be said to be thick if it is
2:-thick, where Z denotes the class of all p-groups that are direct sums of cyclic
groups. A bounded p-group is obviously .#-thick regardless of the class ., and a
divisible group is -thick provided all groups in .# are reduced. In the next sec-
tion, we shall establish the existence of less trivial examples; in particular, we shall
find a large class (including all closed p-groups) of thick groups. It is evident that a
direct summand of an ~f-thick group is #-thick, and Theorem 5.7 in [9] implies that
the class of #-thick p-groups is closed under pure extensions.

[ Lemma 2.1 and Theorem 2.3 below are generalizations of Theorems 1 and 2 in
7].

LEMMA 2.1. Let G=A+K, where A € A4 and K is sA-thick. If H is an A -
thick pure subgroup of G, then H N L C K for some lavge subgroup L of G.

Proof, Let m be the projection of G onto A associated with the direct decompo-
sition G=A+K, and set ¢ =17 | H. Then ¢ € Hom(H, A), and consequently ker ¢
contains some large subgroup M of H. Since H is pure in G, G contains a large
subgroup L such that M = H N L; indeed, L is determined in G by the same se-
quence that determines M in H. It remains only to observe that ker ¢ = K N H.

Two abelian groups G and K will be said to be essentially isomovphic if there
exist bounded pure subgroups A and B of G and K, respectively, such that
G/A = K/B; that is, two groups are essentially isomorphic if and only if they have
isomorphic direct summands with bounded complements. The proof of the following
lemma can be accomplished by standard techniques, and it is indeed obvious for the
case of p-groups.

LEMMA 2.2. The abelian groups G and K are essentially isomorphic if and
only if there exist bounded groups A and B such that G+ A =K + B.

THEOREM 2.3. If G=A+H=B+K, where A and B arein A and H and K
ave od-thick, then A and H are essentially isomovphic to B and K, respectively.

Proof. By Lemma 2.1, there exist large subgroups L; and L, of G such that
HNL; €CKNL; and KN L, CHN L,. The intersection L = L; N L, is a large
subgroup of G such that HN L=K N L. Since HN L=K N L is a large subgroup
of both H and K, we can write H=A'+H' and K= B'+K/', where A' and B' are
bounded and H'[p] = (H N L)[p] = K'[p]. But H' and K' are direct summands of G
with the same socle and are therefore isomorphic. Thus, H and K are essentially
isomorphic. Since H' and K' have the same socle, the sets of complementary
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direct summands for H' and K' are the same, and therefore
A+A'=ZG/H'= G/K' = B+B'.

The conclusion that A and B are essentially isomorphic follows from the preceding
lemma.

Following Kaplansky [6], we call a reduced p-group G fully transitive [transi-
tive] if for each pair of elements g; and g, in G with

Uk(g,) < UL(g,) [Uk(g)) = Uk(g,)]

there exists an endomorphism [automorphism] ¢ of G such that ¢(g;) =g, . Count-
able reduced p-groups and p-groups without elements of infinite height are known
to be both transitive and fully transitive, and Kaplansky has suggested that “it seems
plausible to conjecture” that all reduced p-groups are such. However, we now have
the following result.

THEOREM 2.4. If G=H+K, where H! 2K! =2 C(p), H/H! is in A , and K/K}
is A-thick, then G is neither transitive nov fully transitive—in fact, K1 is a fully
invariant subgroup of G.

Proof. Suppose K1l ={a} and H1= {b}. Then U*@) = U*(b) = (w, =, =, --+),
and it suffices to show that there exists no endomorphism ¢ of G such that ¢(a) =
Indeed, we show that ¢(a) € K, and hence ¢(K1) C K N Gl =K1, for every endomor-
phism ¢ of G.

Suppose ¢ is an endomorphism of G, and let ¢ be the endomorphism of
G = G/G! induced by ¢; that is, let (x+Gl) = ¢(x) + GL. Note that G = H+K,
where

e

= {H, G!}/Gl £ H/H! and X = {K, Gl}/G! = K/K!.

Let ¥ = ® | K. Then we can write ¥ = { + 8, where { is a homomorphism of K into
H and B is an endomorphism of K. Since { is necessarily small, its kernel con-
tains a large subgroup of K determined by some sequence (ng, n;, - -+). Choose

k € K so that p0 'k = a,and let x=p k. Then px=a and x+G! € ker £. Thus,

, ¢(x)+G! = ¢(x+Gl) = Bx+Gl) = y+G!

for some y € K. Therefore ¢(x) - y € G! C G[p] and ¢(a) = ¢(px) = py € K.

The existence of a pair of groups H and K as in Theorem 2.4 is implied by
Theorem 3.5 below.

From the foregoing theorem, it is evident that the well-known characterization
given by Kaplansky [6] for the fully invariant subgroups of fully transitive p-groups
cannot be extended to all p-groups. Also, contrary to the situation for countable p-
groups (see [2]), there does indeed exist an uncountable p-group G and an ordinal «
(namely, @ = w) such that p® G has automorphisms not induced by automorphisms
of G.

A perhaps even more striking example of a p-group that is neither transitive
nor fully transitive is implicit in the following observation (the proof of which is
quite similar to that of Theorem 2.4): H G is a p-group such that

E(G/G') = E(G/G') +R,,
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(see [9] and Theorem 3.7 below) and Gl is elementary, then every subgroup of Gl
is a fully invariant subgroup of G.

3. HOMOMORPHISMS OF CLOSED p-GROUPS

A p-group without elements of infinite height is said to be a closed p-group if
each of its Cauchy sequences consisting of elements uniformly bounded in order has
a limit in the p-adic topology; that is, a closed p-group is the torsion subgroup of its
p-adic completion.

THEOREM 3.1. Suppose G is an unbounded closed p-group, and let K be a p-
group without elements of infinite height., Then Hom(G, K) properly contains
Hom (G, K) if and only if K contains an unbounded closed p-group as a subgroup.

Proof. If K does contain an unbounded closed p-group as a subgroup, then it is
easy to exhibit a nonsmall homomorphism of G into K.

Suppose conversely that there exists a nonsmall homomorphism ¢ of G into K.
Then ker ¢ contains no large subgroup of G, and by Corollary 2.10 in [9] we can
find a positive integer k, and a sequence X, , X,, -+ of elements in G such that for
each i,

O(Xi) < Pko ’ hg(xi+1) > max [k() + h(;(xi), hK(Sb(Xi))], ¢(Xi) # 0, ¢(Xi) € K[p].

Moreover, it is not difficult to see that each x; can be chosen to lie in a pure cyclic
subgroup of G. Let m; = hg(x;), and choose c; in G so that pmlci = X;. It is then
easy to see that

C={ey, ¢y, t =2 {c;}
i=1

is a pure subgroup of G and that the y; = ¢(x;) form a linearly independent subset of
K[p]. Also, one can verify that C N ker ¢ = E;il {px;}.

Let H be the closure of C in G, and set C' = ¢(C) and H' = ¢(H). Then H is an
unbounded closed p-group, and we wish to show that the same is true of H'. Now

mi+ 1

[« o]
C'=C/CNker¢ = 27 Clp
i=1

),

and H'/C' is divisible. In order to see that C' is a basic subgroup of H!, it remains
only to show that C' is pure in H'. However, this will follow readily from the ob-
servation that H N ker ¢ is precisely the closure in G of C N ker ¢. Then, to com-
plete the proof that H' is a closed p-group, it suffices to show that every Cauchy

sequence (relative to the p-adic topology on H') in C'[p] = Ezozl {y;} has a limit
in H'. It is evident that every Cauchy sequence z}, z5, --- in C'[p] is the term-by-

term image under ¢ of a Cauchy sequence z;, z,, --- in H with each z, contained
in the bounded subgroup E:’;l {x;}. Consequently the sequence z;, z,, --- has a
limit z in H, and z' = ¢(z) is the limit in H' of the sequence z}, z5, *--. Thus, H'

is a closed p-group, and it is necessarily unbounded since C' is unbounded.
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COROLLARY 3.2. If G is_an unbounded closed p-group and XK is a dense, pure
subgroup of a closed p-grvoup B such that Hom(G, K) properly contains Hom (G, K),
then H[p] C K for some unbounded divect summand H of B.

Proof. Let C' be as in the proof of Theorem 3.1, and choose a pure subgroup A
of K such that A[p] = C'[p]. Then if M is the closure of A in B, M is an unbounded
direct summand of B. If H' is also as in the proof of Theorem 3.1, we easily see
that M|[p] C H'.

A reduced p-group G will be said to be gquasi-closed if the closure in G of every
pure subgroup is again a pure subgroup (see [4]). By a strictly quasi-closed p-group
we mean a quasi-closed p-group that is not a closed p-group. Closed p-groups are
quasi-closed; whereas unbounded direct sums of cyclic groups are not. If a reduced
primary group G is quasi-closed, then clearly Gl =0 a.nd_therefore G can be im-
bedded as a pure and dense subgroup of a closed p-group B. If G is strictly quasi-
closed, then G # B, and by a remark in [4] H|[p] ¢ G whenever H is an unbounded
direct summand of B. In fact, if B/G = C(p™) (see Theorem 3.7 T below) the condition
that H[p] £ G whenever H is an unbounded direct summand of B is also sufficient
for G to be quasi-closed. A primary group G satisfying this condition and such that
B/G = C(p™) was first constructed by Beaumont and Pierce in [10]. From Corollary
3.2 and these observations, we obtain the following.

COROLLARY 3.3. If G is a closed p-group and K is a stvictly quasi-closed p-
group, then Hom(G, K) = Hom (G, K); that is, if @ is the class of all strictly quasi-
closed p-groups, then all closed p-groups arve 2-thick.

In connection with Problem 13 in [1], the following may be of some interest.

THEOREM 3.4. Let B be a basic subgroup of the closed p-group B. If B ~ G,
then either B ~ G/G1l, or G/G contains an unbounded closed p-group as a sub-
group.

Proof. f B~ G, then there exists a homomorphism ¢ of B onto G/Gl. If
G/G1! does not contain an unbounded closed p-group as a subgroup, then ¢ is neces-
sarily small. In this case, B contains a large subgroup L such that G/G1l is a
homomorphic image of B/ L={B, L}/L 2B/BN L and thus a homomorphic image
of B itself.

THEOREM 3.5. Let G be a dense pure subgroup of a closed p-group B. If
either G =B or |B/G| =8¢, then G is thick.

Proof. If G = B, then the conclusion is an immediate corollary of Theorem 3.1.
Suppose IB/G| = Rp, and let ¢ be a homomorphism of G into a direct sum of cyclic
groups. Then A =im ¢ is a direct sum of cyclic groups, and A is the basic sub-_
group of a closed p-group A. ¢ then extends uniquely to a homomorphism ¢ of B
into A, If H=im <,b, then |H/A| < 8. Since A is a direct sum of cyclic . groups
and Hl =0, H is itself necessarily a direct sum of cyclic groups. Thus, ¢ is
small, and consequently ¢ = ¢ | G is also small.

COROLLARY 3.6. There exists a p-gvoup of length w + 1 that is neither
transitive nov fully transitive.

Proof. Choose p-groups H and K such that H1 S K 1= C(p), H/H! is a direct
sum of cyclic groups, and K/K! is a closed p-group. Then H + K has length w + 1,
and by Theorems 3.5 and 2.4, it is neither transitive nor fully transitive.

We close this section with two applications of Corollary 3.3. First, in answer to
a question raised in [5] we show that there exists a p-group G such that no high sub-
group of G is an endomorphic image of G. Let B be a closed p-group with a



158 CHARLES MEGIBBEN

countable basic subgroup B, and let K be a quasi-closed p-group that is a proper
pure, dense subgroup of B. We can then construct (see [8]) a p-group G containing
K as a high subgroup and such that G/G! = B. Since all high subgroups of G can be
identified with certain dense, pure subgroups of G/G! having the same socle, it fol-
lows from Corollary 1 in [4] that all high subgroups of G are strictly quasi—closed
p-groups. Now each endomorphism of G into a high subgroup H induces a homo-
morphism ¢ of G/G! into H. By Corollary 2.3, ¢ is small. Thus, as in the proof
of Theorem 3.4, B ~ im ¢. But then l1m ¢ < NO and H # im ¢, since |H| > 8 -

Our second application is a simple construction of an unbounded p-group such
that E(G) = E4(G) + R, . The existence and remarkable properties of such groups
were first established b by Pierce in [9].

THEOREM 3.7. Let G be a pure subgroup of the closed p-group B. If
B/G = C(p™) and G is quasi-closed, then E(G) = E i(e) +R,

Proof. It follows from Theorem 7.5 in [9] that Homs(G, G) +R_ is a direct
summand of Hom(G, G). Therefore it suffices to show that Hom(G, G)/Hom (G, G)
is a cyclic module over the ring of p-adic integers. From the pure exact sequence
0 - G— B— C(p™) — 0 (see[3]), we obtain the exact sequences

0 — Hom(B, G) —» Hom(G, G) — Pext(C(p™), G),
0 — Hom(C(p™), C(p™)) — Pext(C(p™), G) — 0.

From the latter sequence, it follows that Pext(C(p™), G) is a cyclic module. By
Corollary 3.3, Hom(B, G) = Homs(B G), and the proof is now completed by the ob-
servation that the image of Hom(B, G) in Hom(G, G) is just Hom s(G, G).

4. LARGE SUBGROUPS

We conclude this paper by showing that a large subgroup of a p-group is also
large in the sense that, along with a certain finite number of the Ulm invariants, it
determines the structure of the containing p-group. More precisely, we shall prove
the following theorem, despite its lack of elegance.

THEOREM 4.1. Lel L be a lavge subgvoup of a p-group G delteymined by the
sequence (ng, ny, ). Suppose ¢ is a monomorphism of L into a p-group K.
Then ¢ can be extended to an isomorphism of G onto K if and only if the following
conditions ave satisfied:

(1) 1) = £ () for n<n,
(ii) hg(x) = hi(¢(x)) for all x € L,
(iii) ¢(L) is a larvge subgroup of K.
Proof. The three conditions are clearly necessary; let us therefore assume that

they are satisfied. The group G contains a basic subgroup B = E =1 By, where for
each n either B, =0 or B = ZC(p™). There exists a nondecreasmg sequence
k,, k,, --- of nonnegative integers, with k, <n - 1 for n > n, and such that

k
BNL= 2, p©®B,.
n=n0+1
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Because of (i), we may assume that B, =0 for n <n,. Now suppose B = E{b&n) },
and let x;(\n) = pknbﬁn). Then

p B = 2{x™} ana o0 "B = ={y{},

k
where y§\n) = ¢(x(n)) and h (Y)(\n)) =k,. Choose c&n) € K such that p c,(\n) = y>(\n),
and set C, = E{chn)} Setting C = E
phism ¥ of B onto C such that

n=ngtl C , we see that there is an isomor-

yo{™) =c® and y|BnL=¢|BNL.

Clearly, C is pure in K. Since ¢(L) is fully invariant in K, ¢(L) N C,=p™C,
for some m <k_. It can easily be shown that the assumption m <k, violates (ii).
Thus,

HL)NC = 27 HL)NC, = 27 pknCn=¢(BﬂL).

n=n0+l Il:no‘l'].

It can also be shown that C is a basic subgroup of K. For if C is not a basic sub-
group of K, then there exists an integer n and a y € K having order p™ such that
C,+ {y} is a direct summand of K. However, the existence of such a y can also
be shown to contradict (ii).

We then define a mapping ¢ of G = {L, B} onto K = {¢(L), C} as follows:
de+Db) = ¢(0)+w) (LeL, be B).
It is then easy to verify that ¢ is a well-defined homomorphism, and that it is one-

to-one. ¢ is then an isomorphism of G onto K such that ¢| L = ¢.

COROLLARY 4.2. Each automovphism of a large subgrvoup that presevves
heights (as computed in the containing group) is induced by an automovphism of the
containing p-grvoup. In particulay, every automorphism of p™G, wheve n is an in-
teger, is induced by an automovrphism of G.

COROLLARY 4.3. If H and K are dense, pure subgroups of a p-group G such
that HN L =K N L for some large subgroup L of G, then H =K.

Finally, we comment that Corollary 4.3, and hence Theorem 4.1 itself, is sug-
gested by the proof of Theorem 2.3 above.
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