ON THE COMPLETENESS OF BIORTHOGONAL SYSTEMS
Fred Brauer

1. One method of proving the completeness of the eigenfunctions of a Sturm-
Liouville boundary value problem uses the fact that an orthonormal sequence which
is sufficiently close to a complete orthonormal sequence must be complete. This
fact, related to a theorem of Paley and Wiener [4, p. 208] on biorthogonal sequences,
is fairly easy to prove directly [1, p. 307]. Since there exist asymptotic estimates
for the eigenfunctions of a Sturm-Liouville boundary value problem which show that
these eigenfunctions are close to a complete sequence of trigonometric functions [3,
p. 66], the completeness of the eigenfunctions follows immediately. The drawback of
this approach is that although the necessary Hilbert space theorem is quite easy, the
asymptotic estimates require a rather complicated analysis. Much of the effort is
in a sense wasted, since the asymptotic estimates are also valid for non-self-adjoint
boundary value problems, while the applicability of the Hilbert space theorem is re-
stricted to the self-adjoint case. It is therefore natural to ask whether some appro-
priate Hilbert space theorem dealing with biorthogonal sequences can be combined
with the asymptotic estimates to yield a proof of completeness of the eigenfunctions
of a non-self-adjoint boundary value problem. Although the Paley-Wiener theorem
mentioned above is not suitable, there exists a similar theorem that serves the pur-
pose. This theorem will-be proved, and the result will then be applied to the study
of non-self-adjoint boundary value problems.

2. Let H be a separable Hilbert space. A pair of sequences {xn}, {yn} of
elements of H is said to form a normalized biovthogonal system if

1 (n=m),
(Xn’ ym) = 51'1’1n =

0 (n+#m).

This biorthogonal system is said to be complete if every f € H can be written in the
form

[~ o] o0
f= 27 (1 Vo)X, = 27 (f, x )y, -
n=1 n=1
A sequence {¢_ } of elements of H is said to be orthonormal if
(b5 b)) = O, n -
An orthonormal sequence {c,bn} is said to be complete if every f € H can be written

in the form

£= 27 (f ¢.)0,.

n=1
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THEOREM 1. Let {¢,} bea complete orvthonormal sequence, and let {xn},
{yn} be a normalized biorthogonal system such that

o [~}
2 2
(1) E ” ¢n - xn” < °, Z} ” ¢n - yn“ < oo,
n=1 n=1
Then the system {x,}, {ya} is complete.
Proof. We begin by proving the theorem with (1) replaced by the stronger condi-

tion

(2) 2 o, - =17 <1,

n=1 n=

1
We define a linear transformation K; of H into itself by
o0
Kif= 27 (5 ¢ ), - x)
n=1

for every f € H. This transformation is well-defined, since the series converges in
H. In fact,

2 2
Ix, 2% =

) 2
< [_Z: 16, )] - 160 - xnu]
n=1

_El € ¢.)(o, - %)

) 5 o 2 2 et 2
< 2@ e)1" 2 o, - x,01° = 12l° Z o, - =, 01%,
n:l 1’1=1 n=1

by the triangle inequality, the Schwarz inequality, and the Parseval equality. In view
of (2), this shows that K is a bounded operator, with |K;| < 1. We now define

T, = I - K, where I is the identity transformation. Since [K,[ <1, Tj! exists.
Also, an easy calculation gives

Ty ¢ = by - Ky oy = Oy - §<¢k,¢nx¢n—xn>

=¢ - (o -x) =% [k=1,2, -].

In exactly the same say, we define another linear transformation K, by
[~ o]
Kpf = 27 (f, ép)(é, - V) -
n=1
This transformation is bounded, [|K,| <1, andif T, =1 - K,, then T;! exists.

A.].SO, TZ ¢k =Yk [k = 1; 2: "']-
Since T, ¢, =x, and T, ¢, = ¥,
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6romn = (Xns Vi) = (T1 6., Trd,) = (6, TIT,0,) = (TET ¢, ¢,) = (b, ¢,

where T’i‘ and TE are the adjoints of T; and T,, respectively. This implies that
¢ - T T, ¢, is orthogonal to every ¢, whence T} T,¢,, = ¢,,. Since {¢,} is
a complete set, T’f Tzf =f for every f € H, and T’i‘ is a left inverse of T, . Since

we know that T, has an inverse, T1= Til . In particular, T,T}f=f for every
f € H. Now

-
il

2]
T, THf=T, 2J (T*f, ¢ )é_

n=1

T, Z‘l (£, T, 9 )6, =T, 20 (f x )¢ = ?31 (£, x )y, -
n= n=

n=1

An analogous argument showog that T’g T,f=T, T’gf ={ for every f € H, and this
leads to the expansion f=2__; (f, y, )x,. This completes the proof of the theorem
with the hypothesis (2) instead of (1).

To complete the proof, we assume (1) and choose an integer N large enough so
that

[>o] 0
(3) 27 e -x |2 <1, 27 e -y _|I% < 1.
n=N+1 n=N+1

Let S denote the intersection of the following two subspaces of H: S;, spanned by
XN+1: XN+20 0 and S, spanned by YN+1, Y42, °-- Being the intersection of

subspaces, S is also a subspace. Let S denote the orthogonal complement of S.
Since x,, -+, Xy are orthogonal to S, and y;, ---, yyy are orthogonal to S, this
orthogonal complement S< contains Xy, ***, Xy and yy, -, Y. In view of (3), the
part of the theorem already proved shows that S contains the subspace spanned by
dn+1 s Pnezo oo+ This implies that S1 is contained in the subspace spanned by

¢y, ***, ¢y, Which has dimension N. It is easy to verify, by means of the biorthogo-
nality, that x;, -+, x;y are linearly dependent, and therefore x,, ---, x;y form a

basis of S4. Thus every f € S1 can be written in the form f = 211?:1 @ x_, and

N
) x) = 2 (x,y)=a

n=1

k*

Since H is the direct sum of S and S'L , every f € H can be written in the form

=]
ft=2 _,9.%x,, with @_=(f, y, ). An analogous argument shows f = Z;:l(f, x V.,
and this completes the proof of the theorem in its full generality.

The theorem extends a result of Birkhoff and Rota [1, pP. 307] to the effect that if

{¢,} and {x_} are orthonormal sequences in a Hilbert space H, if {¢,} is com-
plete, and if

(4) 27 o, - x ||% <,

n=1
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then {xn} is complete. Obviously, this follows from Theorem 1 if we take y, =
for each n.

Xn

Theorem 1 is clearly related to a theorem of Paley and Wiener [4, p. 208] which
says that if {¢,} is a complete orthonormal sequence and {x,} is a sequence such
that

(5) Z N - xall? < 1,

n=1

then there exists a sequence {y,} such that {x,}, {y,} is a complete normalized
biorthogonal system. This theorem does not contain the Birkhoff-Rota theorem. It
is easy to see that if the sequence {x_} is orthonormal, then the sequence {yn}
constructed in the Paley-Wiener theorem is the same as {x,}. However, it is im-
possible to relax the condition (5) to (4) in the Paley-Wiener theorem and the appli-
cations to eigenfunction expansions in [1] and in this paper require the weaker
hypotheses (1) or (4).

3. Let L be a linear ordinary differential operator
Lx = x(™ 4+ p 1 (®) xm-D oy p(t) %,

where p; is a complex-valued function of class c-k gn a<t<b. Let Ux=0 de-
note a set of n boundary conditions

Ux= 2 [My 51 (@) + Ny D )] = 0.
k=1

To the eigenvalue problem
(6) Lx=2xx, Ux=0
there corresponds an adjoint problem of the same type,
(7) Lty =2y, U'y=o,
where L' is the adjoint differential operator
Lty = (0P x® 4 (021G 000 + e+ 5 0)x,

and where U™ v = 0 denotes another set of boundary conditions determined by Ux = 0.
It is well-known (see for example [2, p. 310], that the eigenvalues of (7) are the com-
plex conjugates of the eigenvalues of (6) and that the eigenfunctions x(t) of (6) and
yk(t) of (7) can be chosen so as to form a normalized biorthogonal system in

L%(a, b).
It is also known [3, p. 66] that for a large class of boundary conditions, called

regular boundary conditions, the boundary value problem (6) has an 1nf1n1te sequence
of eigenvalues and two sequences of eigenfunctions x( (t) and x (2) (t) such that
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27nt 1
an[cosb +O( )],

xiz}(t) = bn[sin 27znt + 0(—1—) ] .

n

=)
(n = O: 1, 2; "')

The functions cos 321_7:1% , sin ]f ?n; are of course complete in LZ(a, b), and
(1) 2mt ||2 1
”xn (t)—ancosb_a“ = O(;Z)’
(8) , (n=0, 1, 2, )
(2) 5y _ . 2mnt ” _ 1
”xn (t) bnsmb—a = O(HZ).

Since the adjoint problem (7) is of the same type as (6), it also has two sequences of
eigenfunctions y (t) and y (2) (t) such that

o “Yfll)(t) -a cos :Tn; “ = O(;li) , ( |
9 =0, 1,2, -
”Y(Z)(t)—b anﬂTnt ”2=O(i) )

b-a L2

The estimates (8) and (9) together with the convergence of = 1/n% show that Theo-
rem 1 can be applied. This yields the following result:

THEOREM 2. The eigenfunctions of a boundary value problem (6) with regular
boundary conditions, together with the eigenfunctions of the adjoint problem, can be
chosen so as to form a normalized biovthogonal system that is complete in L?(a, b).

It should be remarked that Theorem 2 is not a best possible result. It can be
shown that, in fact, the eigenfunction expansion of a function f is equiconvergent with
the Fourier series expa.ns1on of f. Here we have shown only that the eigenfunction
expansion of a function in L?(a, b) converges in L%(a, b). The more precise results
require sharper asymptotic estimates of Green’s functions and contour integration in
the complex plane.
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