ON THE COMPLETENESS OF BIORTHOGONAL SYSTEMS

Fred Brauer

- 1. One method of proving the completeness of the eigenfunctions of a Sturm-Liouville boundary value problem uses the fact that an orthonormal sequence which is sufficiently close to a complete orthonormal sequence must be complete. This fact, related to a theorem of Paley and Wiener [4, p. 208] on biorthogonal sequences, is fairly easy to prove directly [1, p. 307]. Since there exist asymptotic estimates for the eigenfunctions of a Sturm-Liouville boundary value problem which show that these eigenfunctions are close to a complete sequence of trigonometric functions [3, p. 66, the completeness of the eigenfunctions follows immediately. The drawback of this approach is that although the necessary Hilbert space theorem is quite easy, the asymptotic estimates require a rather complicated analysis. Much of the effort is in a sense wasted, since the asymptotic estimates are also valid for non-self-adjoint boundary value problems, while the applicability of the Hilbert space theorem is restricted to the self-adjoint case. It is therefore natural to ask whether some appropriate Hilbert space theorem dealing with biorthogonal sequences can be combined with the asymptotic estimates to yield a proof of completeness of the eigenfunctions of a non-self-adjoint boundary value problem. Although the Paley-Wiener theorem mentioned above is not suitable, there exists a similar theorem that serves the purpose. This theorem will be proved, and the result will then be applied to the study of non-self-adjoint boundary value problems.
- 2. Let H be a separable Hilbert space. A pair of sequences $\{x_n\}$, $\{y_n\}$ of elements of H is said to form a normalized biorthogonal system if

$$(x_n, y_m) = \delta_{mn} = \begin{cases} 1 & (n = m), \\ 0 & (n \neq m). \end{cases}$$

This biorthogonal system is said to be complete if every $f \in H$ can be written in the form

$$f = \sum_{n=1}^{\infty} (f, y_n) x_n = \sum_{n=1}^{\infty} (f, x_n) y_n$$

A sequence $\{\phi_n\}$ of elements of H is said to be *orthonormal* if

$$(\phi_n, \phi_m) = \delta_{mn}$$
.

An orthonormal sequence $\{\phi_n\}$ is said to be complete if every $f\in H$ can be written in the form

$$f = \sum_{n=1}^{\infty} (f, \phi_n) \phi_n$$
.

Received June 15, 1964.

This work was supported by the National Science Foundation, Grant G-24335.

THEOREM 1. Let $\{\phi_n\}$ be a complete orthonormal sequence, and let $\{x_n\},$ $\{\,y_n\}$ be a normalized biorthogonal system such that

(1)
$$\sum_{n=1}^{\infty} \|\phi_n - x_n\|^2 < \infty, \qquad \sum_{n=1}^{\infty} \|\phi_n - y_n\|^2 < \infty.$$

Then the system $\{x_n\}$, $\{y_n\}$ is complete.

Proof. We begin by proving the theorem with (1) replaced by the stronger condition

We define a linear transformation K_1 of H into itself by

$$K_1 f = \sum_{n=1}^{\infty} (f, \phi_n) (\phi_n - x_n)$$

for every $f \in H$. This transformation is well-defined, since the series converges in H. In fact,

$$\begin{aligned} \|K_{1}f\|^{2} &= \left\| \sum_{n=1}^{\infty} (f, \phi_{n})(\phi_{n} - x_{n}) \right\|^{2} \leq \left[\sum_{n=1}^{\infty} |(f, \phi_{n})| \cdot \|\phi_{n} - x_{n}\| \right]^{2} \\ &\leq \sum_{n=1}^{\infty} |(f, \phi_{n})|^{2} \sum_{n=1}^{\infty} \|\phi_{n} - x_{n}\|^{2} = \|f\|^{2} \sum_{n=1}^{\infty} \|\phi_{n} - x_{n}\|^{2}, \end{aligned}$$

by the triangle inequality, the Schwarz inequality, and the Parseval equality. In view of (2), this shows that K_1 is a bounded operator, with $\|K_1\|<1$. We now define $T_1=I-K_1$, where I is the identity transformation. Since $\|K_1\|<1$, T_1^{-1} exists. Also, an easy calculation gives

$$T_{1} \phi_{k} = \phi_{k} - K_{1} \phi_{k} = \phi_{k} - \sum_{n=1}^{\infty} (\phi_{k}, \phi_{n})(\phi_{n} - x_{n})$$

$$= \phi_{k} - (\phi_{k} - x_{k}) = x_{k} \quad [k = 1, 2, \cdots].$$

In exactly the same say, we define another linear transformation K2 by

$$K_2 f = \sum_{n=1}^{\infty} (f, \phi_n)(\phi_n - y_n).$$

This transformation is bounded, $\|\mathbf{K}_2\| < 1$, and if $\mathbf{T}_2 = \mathbf{I} - \mathbf{K}_2$, then \mathbf{T}_2^{-1} exists. Also, $\mathbf{T}_2 \ \phi_k = \mathbf{y}_k \ [\mathbf{k} = 1, \ 2, \ \cdots]$.

Since
$$T_1 \phi_k = x_k$$
 and $T_2 \phi_k = y_k$,

$$\delta_{mn} = (x_n, y_m) = (T_1 \phi_n, T_2 \phi_m) = (\phi_n, T_1^* T_2 \phi_m) = (T_2^* T_1 \phi_n, \phi_m) = (\phi_n, \phi_m),$$

where T_1^* and T_2^* are the adjoints of T_1 and T_2 , respectively. This implies that $\phi_m - T_1^* T_2 \phi_m$ is orthogonal to every ϕ_n , whence $T_1^* T_2 \phi_m = \phi_m$. Since $\{\phi_m\}$ is a complete set, $T_1^* T_2 f = f$ for every $f \in H$, and T_1^* is a left inverse of T_2 . Since we know that T_2 has an inverse, $T_1^* = T_2^{-1}$. In particular, $T_2 T_1^* f = f$ for every $f \in H$. Now

$$f = T_2 T_1^* f = T_2 \sum_{n=1}^{\infty} (T_1^* f, \phi_n) \phi_n$$

$$= T_2 \sum_{n=1}^{\infty} (f, T_1 \phi_n) \phi_n = T_2 \sum_{n=1}^{\infty} (f, x_n) \phi_n = \sum_{n=1}^{\infty} (f, x_n) y_n.$$

An analogous argument shows that $T_2^*T_1f=T_1T_2^*f=f$ for every $f\in H$, and this leads to the expansion $f=\Sigma_{n=1}^\infty$ (f, $y_n)x_n$. This completes the proof of the theorem with the hypothesis (2) instead of (1).

To complete the proof, we assume (1) and choose an integer N large enough so that

Let S denote the intersection of the following two subspaces of H: S_1 , spanned by x_{N+1} , x_{N+2} , ..., and S_2 , spanned by y_{N+1} , y_{N+2} , Being the intersection of subspaces, S is also a subspace. Let S^\perp denote the orthogonal complement of S. Since x_1 , ..., x_N are orthogonal to S_2 and y_1 , ..., y_N are orthogonal to S_1 , this orthogonal complement S^\perp contains x_1 , ..., x_N and y_1 , ..., y_N . In view of (3), the part of the theorem already proved shows that S contains the subspace spanned by ϕ_{N+1} , ϕ_{N+2} , This implies that S^\perp is contained in the subspace spanned by ϕ_1 , ..., ϕ_N , which has dimension N. It is easy to verify, by means of the biorthogonality, that x_1 , ..., x_N are linearly dependent, and therefore x_1 , ..., x_N form a basis of S^\perp . Thus every $f \in S^\perp$ can be written in the form $f = \sum_{n=1}^N \alpha_n x_n$, and

$$(f, x_k) = \sum_{n=1}^{N} \alpha_n(x_n, y_k) = \alpha_k.$$

Since H is the direct sum of S and S^{\perp}, every $f \in H$ can be written in the form $f = \sum_{n=1}^{\infty} \alpha_n x_n$, with $\alpha_n = (f, y_n)$. An analogous argument shows $f = \sum_{n=1}^{\infty} (f, x_n) y_n$, and this completes the proof of the theorem in its full generality.

The theorem extends a result of Birkhoff and Rota [1, p. 307] to the effect that if $\{\phi_n\}$ and $\{x_n\}$ are orthonormal sequences in a Hilbert space H, if $\{\phi_n\}$ is complete, and if

(4)
$$\sum_{n=1}^{\infty} \|\phi_n - x_n\|^2 < \infty,$$

then $\{x_n\}$ is complete. Obviously, this follows from Theorem 1 if we take $y_n = x_n$ for each n.

Theorem 1 is clearly related to a theorem of Paley and Wiener [4, p. 208] which says that if $\{\phi_n\}$ is a complete orthonormal sequence and $\{x_n\}$ is a sequence such that

(5)
$$\sum_{n=1}^{\infty} \|\phi_n - x_n\|^2 < 1,$$

then there exists a sequence $\{y_n\}$ such that $\{x_n\}$, $\{y_n\}$ is a complete normalized biorthogonal system. This theorem does not contain the Birkhoff-Rota theorem. It is easy to see that if the sequence $\{x_n\}$ is orthonormal, then the sequence $\{y_n\}$ constructed in the Paley-Wiener theorem is the same as $\{x_n\}$. However, it is impossible to relax the condition (5) to (4) in the Paley-Wiener theorem, and the applications to eigenfunction expansions in [1] and in this paper require the weaker hypotheses (1) or (4).

3. Let L be a linear ordinary differential operator

$$Lx = x^{(n)} + p_1(t) x^{(n-1)} + \cdots + p_n(t) x,$$

where p_k is a complex-valued function of class $C^{\,n\,\text{-}k}$ on $a\leq t\leq b.$ Let Ux=0 denote a set of n boundary conditions

$$U_j x = \sum_{k=1}^{n} [M_{jk} x^{(k-1)}(a) + N_{jk} x^{(k-1)}(b)] = 0.$$

To the eigenvalue problem

(6)
$$Lx = \lambda x, \quad Ux = 0$$

there corresponds an adjoint problem of the same type,

(7)
$$L^{+}y = \lambda y, \quad U^{+}y = 0,$$

where L⁺ is the adjoint differential operator

$$L^{+}y = (-1)^{n} x^{(n)} + (-1)^{n-1} (\bar{p}_{1}(t) x)^{(n-1)} + \cdots + \bar{p}_{n}(t) x,$$

and where $U^{\dagger}y = 0$ denotes another set of boundary conditions determined by Ux = 0. It is well-known (see for example [2, p. 310], that the eigenvalues of (7) are the complex conjugates of the eigenvalues of (6) and that the eigenfunctions $x_k(t)$ of (6) and $y_k(t)$ of (7) can be chosen so as to form a normalized biorthogonal system in $L^2(a, b)$.

It is also known [3, p. 66] that for a large class of boundary conditions, called regular boundary conditions, the boundary value problem (6) has an infinite sequence of eigenvalues and two sequences of eigenfunctions $x_n^{(1)}(t)$ and $x_n^{(2)}(t)$ such that

$$x_n^{(1)}(t) = a_n \left[\cos \frac{2\pi nt}{b-a} + O\left(\frac{1}{n}\right) \right],$$

$$x_n^{(2)}(t) = b_n \left[\sin \frac{2\pi nt}{b-a} + O\left(\frac{1}{n}\right) \right].$$
(n = 0, 1, 2, ...)

The functions $\cos \frac{2\pi nt}{b-a}$, $\sin \frac{2\pi nt}{b-a}$ are of course complete in L²(a, b), and

(8)
$$\left\| \mathbf{x}_{n}^{(1)}(t) - \mathbf{a}_{n} \cos \frac{2\pi nt}{b - a} \right\|^{2} = O\left(\frac{1}{n^{2}}\right),$$

$$\left\| \mathbf{x}_{n}^{(2)}(t) - \mathbf{b}_{n} \sin \frac{2\pi nt}{b - a} \right\|^{2} = O\left(\frac{1}{n^{2}}\right).$$

Since the adjoint problem (7) is of the same type as (6), it also has two sequences of eigenfunctions $y_n^{(1)}(t)$ and $y_n^{(2)}(t)$ such that

The estimates (8) and (9) together with the convergence of $\Sigma 1/n^2$ show that Theorem 1 can be applied. This yields the following result:

THEOREM 2. The eigenfunctions of a boundary value problem (6) with regular boundary conditions, together with the eigenfunctions of the adjoint problem, can be chosen so as to form a normalized biorthogonal system that is complete in $L^2(a, b)$.

It should be remarked that Theorem 2 is not a best possible result. It can be shown that, in fact, the eigenfunction expansion of a function f is equiconvergent with the Fourier series expansion of f. Here we have shown only that the eigenfunction expansion of a function in $L^2(a, b)$ converges in $L^2(a, b)$. The more precise results require sharper asymptotic estimates of Green's functions and contour integration in the complex plane.

REFERENCES

- 1. Garrett Birkhoff and G. C. Rota, Ordinary differential equations, Ginn and Co., Boston, 1962.
- 2. E. A. Coddington and N. Levinson, *Theory of ordinary differential equations*, McGraw-Hill Co., New York, 1955.
- 3. M. A. Neumark, *Lineare Differentialoperatoren* (Translation from the Russian), Akademie-Verlag, Berlin, 1960.
- 4. F. Riesz and B. Sz.-Nagy, *Functional analysis* (Translation from the French), F. Ungar Co., New York, 1955.