AN EXTREMAL PROBLEM FOR FUNCTIONS
WITH POSITIVE REAL PART

M. S. Robertson

1. INTRODUCTION

In a recent paper [5] the author established the following solution of an extremal
problem. Let $ denote the class of regular functions P(z) in the unit disc E
(]zl < 1) with P(0) =1 and %P(z) > 0. Let F(w;, w,) be a given function analytic
in the half-plane %tw; > 0 and in the w,-plane. Then for every r (0 <r < 1) the
value of :

min min % F(P(z), zP'(z))
PeP l zl =r

occurs only for an extremal function of the form

1+snz)
1-¢e,z2/°

2
P(z) = 2 A
n=1
where
le ]=1, o<a,<1, 2Za =1.

The method used variational formulas whose development by the author depends upon
the works of Hummel [1], Julia [2], and Schiffer [7]. The same method yields the
solution of a related problem in which the term zP'(z) is replaced by

Z
(1.1) uz) =1 PRat  (P(z) € p).
0
It should be noticed that p(z) € §, since
1 .
Ru(z) = S NP(pz)dp > 0 (z = rele, r<1).
0

Specifically, we consider the following problem. Let F(w) denote an arbitrary func-
tion regular in the portion Dg of the half-plane %#w > 0 that is covered by the
images of izl < 1 by the mappings w = u(z) for P € $. As we proceed, Dy will be
explicitly determined. We set

(1.2) mg(r) = min min R F(u(z))
PeP ‘z‘=r

Received March 20, 1964,
The author acknowledges support for this research from the National Science
Foundation under contract NSF-GP-1659,

327



328 M. S. ROBERTSON

and consider the problem of finding its value by determining the extremal function
P(z). The author solved this problem first by the variational method. The method
proved to be quite long and somewhat difficult, Its details suggested a much shorter,
clearer and almost trivial proof by the method of subordination.

It is the purpose of this paper to present this shorter derivation of the solution
of (1.2) (see Theorem 1) and to make applications (Corollaries 1 and 2) to the class
9 o of analytic functions

(1.3) f(z) = el® z + a, 2% 4 eer 4 a,z" + - (a real and fixed)

that are regular and satisfy the condition 9% f'(z) > 0 in E. It is well known [4] that
such functions f(z) are univalent in E., Recently MacGregor [3] discussed the class
N o in the special case a = 0. In particular, he pointed out that for ]zl <1

(1.4) i—i—‘»ﬁ-’ < wf(z) < |P@)] < if—I:-;

(1.5) -z + 2 1og(1 + |2z]) < |£(z)] < -lz] -210g (1 - |2]).

We obtain the following theorems and corollaries.

THEOREM 1. Let P be the class of regular functions P(z) in E (|z| < 1) with
P(0) =1 and RP(z) > 0. Let F(w) denote a nonconstant function that is analytic in
the convex domain D, which is the image of E by the mapping

1 (P14t 2
W=H0(Z)=E.S‘OI—:—Edt=——Z-10g(l -Z)— 1.

This domain Dy lies in the half-strip given by the inequalities |Sw| < m,
RNw > 21og 2 - 1. Then, for each r > 1, the minimum

zZ
mp(r) = min min ERF(%S P(t)dt)
Pep |z|=x 0

occurs for a function of the form P(z) = (1 + ez)(1 - sz)'l, wheve € is an arbitrary
complex constant of absolute value 1, and for no other functions.

COROLLARY 1. Let %, be the class of regular functions f(z) defined on E as
in (1.3), so that %f'(z) > 0 on E. Let G(w) denote a nonconstant analytic function
in the convex domain Dy that is the image of E by the mapping

= —e-ia _ —g—(cos a) log(1l - z).
Then, for each fixed r < 1, the minimum

. 1(z)
min min SRG(Z—)
fe.‘)?a Iz.|=r

occurs fov a function of the form
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-io 2
f(z)= -7 "z - E(COS a)log(l - ez),

where & is an arbitvary complex constant of absolute value 1, and fov no other
Junctions.

The inequalities (1.5), obtained by MacGregor [3] for the class 9, are seen to
be the special case of Corollary 1 where G(w) is the function log w.

It seems fitting to add the following corollary at this point, since it is also re-
lated to the class 9,. Corollary 2, as will be seen, is an easy consequence of
Theorem 2 of the author’s earlier paper [5], which states that if F(w) is analytic in
the half-plane 9w > 0, then for each r <1

(1.6) min min RF(P(z)) = min RF ii—z)
Pep |z|=r N

COROLLARY 2. Let % be the class of regular functions f(z) defined on E as
in (1.3), so that Rf'(z) > 0 on E. Let G(w) denote a function that is analytic in the
vight half-plane Rw > 0. Then for each r <1

1+
1 -

min min RGE'(z)) = min snG((cos a) =2 4+ sin a) X
fe Sla z|=r z|=r z

The following theorem is closely related to Theorem 1 and will be derived from
it.
THEOREM 2. Let P be the class described in Theovem 1. Let z) be a com-

plex number (0 < |z 1| < 1). Let F(w) denote a nonconstant function that is analytic
in the convex domain D defined as in Theovem 1. Then

Zl Zl
min mF(iS P(z)dz) = snF(l— S 1+ ez dz).
Pe z1J, z2y Jy 1-¢z

wheve ¢ depends on zy and F, and |e| = 1.

2. A STAR FUNCTION S(z)

Before we proceed to the proof of Theorem 1 it is desirable to discuss the prop-
erties of a rather special univalent, starlike function S(z) that will be useful in the
proof. The starlike character of S(z) is fundamental to the proof of Theorem 1,
whether one uses the method of subordination (which we shall give) or the varia-
tional method of proof (which we shall not include). We define S(z) by the equation

Z

(2.1) s@ =2 kwat,
z Jo

where K(z) is the Koebe function z(1 - z)~%. Thus

n

2n 2
+1 '

2 2 <
(2.2) S(z) = ;=5 + > log(l - 2) = len
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S(z) may be written in the useful alternate form

1+z 1 "1+t
- 7 1 -tdt = PO(Z) 'JU'O(Z)’

(2.3) S(z) =

where both

Po(z) = 722 and  po(z) = %Soz Po(t) dt
are members of the class $. A computation of
s(etf) = u(o) + iv(6)
for 0< 6 < 7 gives
(2.4) U(6) = 1+ (cos 0)log {2(1 - cos 0)} - (7w - 8)sin 8,

du(o)

(2.5) Vv(0) = (sin 6)(1 - cos 6)"1 -(m - 0)cos 6 - sin 6 log {2(1 - cos 8)} = a0 -

For 0 < 6 < 7w, we obtain from (2.3) the inequalities

1 2
(2.6) U(9)=-sn[l -l—f—tdt] =-S L-0"  _ap<o,
Zg 1-1t i o 1-2pcos 6+ p

(2.7) V() =

du(e) _ Sl 2p(1 - p?)sin 0 4o > 0
0

do (1 - 2pcos 6 + p?)2

The function w = S(z) maps |z| = 1 onto an unbounded curve C, symmetric about
the real axis. From (2.6) it follows that C hes in the left half—plane Rw < 0. From
(2.7) it follows that the imaginary part of S(el?) is positive for 0 < 6 < 7 and that
its real part is a strictly increasing function of 0. Thus S(z) is both typically-real
and univalent in |z]| < 1.

Moreover, S(z) is starlike with respect to the origin in E. In other words,

(2.8) % Zg((";) >0 (|z] <1).

Since it follows from (2.1) that
zS'(z) + S(z) = K(z) = 2z(1 - z)'z,

we have the relations

28'(z) , | - 2z 28'(z) _, _ 2z - 2(1 - 2)*S(2)
S(z) (1-2)?28@)" S (1 - 2)28(z)

But (2.8) is equivalent to

zS'(z)
S(z)

zS'(z)
S(z)

+1\ (|z] < 1),

<
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in other words, to

4Zn+1
nn+ 1)(n + 2)

(2.9) 3z - 2 —%(1 - z)%log (1 - z)l = l?

< |z < |z|  (0<]z| <1).

The inequality in (2.9) follows from the identity

< 1
412n(n+ Dm¥ra - L

It is also obvious that (2.8) is satisfied for z = 0. This completes the proof that
S(z) is univalent and starlike with respect to the origin for I|)z| <1. It is well

known that K(z) is also starlike in E; moreover, %S(z) is its average value on the
interval [0, z]. We have proved the following proposition.

LEMMA 1. Let K(z) denote the Koebe function z(1 - z)~%, which is univalent
and stavlike with rvespect to the ovigin for ]zl < 1. Then the function

S(z) = 5-5: K(t)dt = —2—+ 2

[+ o]
— 2n n
- Zlog(l—z)—? Z

n+1
is also univalent and starlike with vespect to the ovigin for |z| < 1.

We give a second lemma, closely related to Lemma 1 and with a similar proof.
It is of some interest in itself, but we state it here for future reference. It may be
of value in the proofs by variational methods of certain theorems related to Theorem
1. The functions S(z), K(z), and linear combinations of them, arise in this alternate
approach.

LEMMA 2. Let S(z) and XK(z) be defined as in Lemma 1. Then
T(z) = [K(z) - S(z)] /2

is univalent and starlike in Izl < 1 and satisfies the inequalities

1 -
IT(z)] < H—_I—z:mz[) < |1f2| = |zx@)|V?  (0<|z| <1).
Proof. The inequality
(2.10) %Zf)z) ; %I < E-TT('—Z(;?—H %l (2] < 1)

is equivalent, for 0 < Izl < 1, to the relation

72 > 12 znt2
242
3 1 n(n+ 1)(n+ 2)(n+ 3)

472 - 5z + 2+§(1 -z)3log(l - z)| =

< |z]?,
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in which the inequality follows from the identity
2212[n(n + 1) + 2)n + 3)]-! = 2/3.
1

From (2.10) it follows that T(z) is starlike with respect to the origin in IZI < 1.
Since T'(0) # 0 and T(0) = 0, we conclude that T(z) is univalent and starlike. For
0 < |z| <1, (2.9) implies that

3z - 2 2

(1_—7)2 —Elog(l - z) Z

2
T = |zK(z)|,

<

or
|T(z)|? = |K(z) - S(z)| < |zK(z)| (0<]|z| <1).

Replacing z by [z| in (2.9), we also readily see that

|T(2)] <

1- |z
7 1-2

|1 - 2]

3. PROOFS OF THE THEOREMS

T(|z|)<| 2 | (0< |z| <1).

Let po(z) be defined as in (2.3). Then

1 (%14t Sll-i—zp

2
po(z) = = —dt = Ol_zpdp——glog(l—z)-l.

R. M. Robinson [6] has pointed out that 1(z) is convex in E. However, this is also
an immediate consequence of Lemma 1. Since S(z) is starlike in E and since

2 2
zo(z) = S(z) = I—_;‘i‘glog(l - z),

it follows that w = ug(z) maps E onto a convex domain Dgy. This domain is sym-
metric about the real axis. We shall show that Dg lies in the half-plane
Nw>21log 2 - 1> 0 between the two straight lines Iw =+, a fact that is not
immediately obvious. We let
Lo(el?) = Uy(0) +1Vy(6).
Then, for 0 < 6 < 7,
Uy(6) = -(cos 8)log {2(1 - cos 6)} - 1+ (7 - 6)sin 6,
Vy(6) = (sin 6)log {2(1 - cos )} +(m - 8)cos 0.

(3.1) 2 Vo(0) = -U(0).
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From (2.4) and (2.6) we see that Ug(6) =-U(6) > 0. From (3.1) it follows that
Vy(8) <0 for 0 < 6 < 7. Since Vy(0)=x and V§(8) <0 for 0 < 6 < 7, it now fol-
lows that

|Spol)| < 7 (|z] <1).

Since Ug(w) = 2log 2 - 1 and Ug(0) = +, and because [Lg(z) is univalent, convex and
real on the real axis,

Rpglz) > 2log 2-1  (|z| <1).

Since P(z) € $ has a Herglotz representation

by = Lz g (fom da(9)=1) ,

0 1—ze¢

where a(¢) is a nondecreasing function of ¢ in [0, 27], we can write

wz) = %S: P(t)dt = S;ﬂ (l if:e % dt) da(e)
ST ) ao - wgteann

We see that if |z| =r, then p(z) is an average (with a positive weight factor) of
values ,uo(ze ) and hence it lies in the convex hull of the values of pu(z) for

[z] = r. But since p,(z) is univalent and convex, it follows (as R. M. Robinson ob-
served [6]) that p(z) is subordinate to pg(z) for |z| < 1. Because p(0) = ng(0) =1,
there exists a bounded function w(z), regular in |z| < 1, such that

w(0) = 0, |w(z)] < lz| <1, =) = polw(z)}.

Hence, if F(w) is an analytic function, regular in the convex domain Dy that is the
image of |z| < 1 by the mapping w = p.o(z) then

F((z)) = Flpg{w(z)}).

This states that F(u(z)) is subordinate to F(ug(z)) for |z| < 1.

Since the value F(u(z)) for lzl r always lies within the set of values F(pq(z))
for |z| <r, it follows that

(3.2) min min R F(u(z)) = min RF(uy(z)).
PeP lz|=r z|=r

Thus_ Py(z) = (1 +z)(1 - z)-1 is an extremal function for the left member of (1.2). If
¢ = e!® where « is real, then clearly Pg(ez) is also an extremal function, since
the right-hand side of (3. 2) is unchanged when z is replaced by €z. The only ex-
tremal functions are of the form Pg(ez), since by Schwarz’s Lemma |w(z)| < |z|
unless w(z) = ei®z. For if P;(z) is another extremal function, not of the form
Py(ez), then
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z
min mF(lS Pl(t)dt> = min RF(py(z)).
Z|=r z 0 !Z =r
Then there exists an w;(z) (|w;(z)] < |z] < 1), regular in |z| < 1, such that

min SEF(uo{wl(z)})= min RF(uy(z)),

Z| =T Z|=Tr

which for nonconstant F(z) is impossible by the minimum modulus theorem, unless
|wi(z)| = If w,(z) = ez, where |e| =1, then

1 (= _ _1SSZ+ _1Sl+sp
-Z-SO PLOAL = noy() = 55§ 2L gp.

Thus, for all z and z; in E, we see that

S (P() 1+z:,o)d 0, S (P()—1+Sp)d

For z # z,, this gives the relation

o (- 1) -

Letting z; — 2z, we conclude that

1+ ez

Pl(z) = 16z =P (sz)

This completes the proof of Theorem 1,

Corollary 1 follows as a consequence of Theorem 1. Since %{'(z) > 0, we may
write

f'(z) = (cos a)P(z) +isina (cos @ >0, P(z) € P),

zZ
E(EZ—) = isin o+ c": O‘S P(t)dt = i sin o + (cos @) u(z).
0
When
1 + &£z
then

f(z) = fy(z) = e %z - % (cos a)log(l - €z).
The function

w = w(z) = %fo({:z) = -e-i _ % (cos a)log(l - z)
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is convex in |z| < 1, since zw'(z) = (cos a)S(z) is starlike in |z| < 1. Corollary 1
now follows immediately from Theorem 1.
Corollary 2 follows from (1.6) if we take

F(P(z)) = G((cos a)P(z) + i sin a) = G(f'(z)).

We shall now deduce Theorem 2 from Theorem 1. Clearly, for |z;| =r
0<r<1),

(3.3) min min RF(u(z)) _<_-9{F(u(z1)).
PeP ‘z|=r

If the left-hand side of (3.3) is attained at the point zqy (|zg] =r) when
P(z) = Py(z) = (1+2z)(1 - 2)!,

and if zg z"! = g, then £ depends on F and z;. Furthermore, equality occurs in
(3.3) if on the right-hand side of (3.3) in the definition of

1
uzy) = § Plozy)ap

P(z) is replaced by Pgy(ez) = Po(zozi1 z). In this case, the right-hand side becomes
NF(uo(zg)). However, the left-hand side is also % F(uy(zy)). Hence it follows from
(3.3) that

min R F(u(z,)) is attained for P(z) = P(ez).
Pep

This completes the proof of Theorem 2,
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