AN ASYMPTOTIC FORMULA FOR PRIMES OF THE FORM 4n + 1

Robert Breusch

Introduction. The prime number theorem for arithmetic progressions asserts that if (a, b) = 1 and $\pi(x; a, b)$ represents the number of primes of the form an + b $(an + b \le x)$, then

$$\pi(x; a, b) = \frac{1}{\phi(a)} \int_{2}^{x} \frac{dt}{\log t} (1 + o(1)),$$

where ϕ is Euler's function. With $o(1) = O((\log x)^{-1-\delta})$ ($\delta > 0$), it follows immediately that

(A)
$$\sum_{\substack{p \leq x \\ p \equiv b \pmod{a}}} \frac{\log p}{p} = \frac{\log x}{\phi(a)} + O(1),$$

just as

(B)
$$\sum_{p \le x} \frac{\log p}{p} = \log x + O(1)$$

follows from the corresponding form of the basic prime number theorem. However, it is well known that (B) can also be derived directly, in very elementary ways, from the relation $\pi(x) = O(x/\log x)$. In this paper, (A) will be derived by elementary reasoning, but only for the very special case a = 4. A similar proof can be given for a = 3, but the method employed here does not seem to be applicable if $\phi(a) > 2$.

THEOREM. Let p stand for primes of the form 4n + 1. Then

$$\sum_{p < x} \frac{\log p}{p} = \frac{1}{2} \cdot \log x + O(1).$$

Proof. For a given positive integer n, let

$$P_n = \prod_{r=1}^n \prod_{s=1}^n (r^2 + s^2).$$

Certainly, $P_n < \prod \prod (2n^2) = 2^{n^2} n^{2n^2}$, and

$$P_n > \Pi \Pi(s^2) = (n!)^{2n} > (n^n \cdot e^{-n})^{2n} = n^{2n^2} \cdot e^{-2n^2}$$
.

Thus

Received April 13, 1964.

(I)
$$\log P_n = n^2 \cdot \log n^2 + O(n^2).$$

Let $P_n = 2^{\alpha_2} \cdot \prod_{\substack{q < 2n^2 \\ p < 2n^2}} q^{\alpha_q} \cdot \prod_{\substack{p < 2n^2 \\ p < 2n^2}} p^{\alpha_p}$, where q represents primes of the form 4n + 3; then $\log P_n = \alpha_2 \log 2 + \sum_{\substack{q < 2n^2 \\ q < 2n^2}} \alpha_q \log q + \sum_{\substack{p < 2n^2 \\ p < 2n^2}} \alpha_p \log p$. For convenience, we split the last sum into three parts and write

$$\log P_{n} = \alpha_{2} \log 2 + \sum_{q < 2n^{2}} \alpha_{q} \log q$$
(II)
$$+ \left(\sum_{p < 4n} + \sum_{4n < p < n^{2}} + \sum_{n^{2} < p < 2n^{2}} \right) \alpha_{p} \log p.$$

We now consider separately each of the five parts in II.

1) $2^{2t} \mid (r^2 + s^2)$ if and only if $2^t \mid r$ and $2^t \mid s$. This occurs in $[n/2^t]^2$ of the factors $(r^2 + s^2)$. An additional factor 2 is contained in $(r^2 + s^2)$ if r and s contain precisely the same number of factors 2. The total contribution of this effect is clearly fewer than n^2 factors 2. Thus $\alpha_2 < 2\sum_t [n/2^t]^2 + n^2 = O(n^2)$, and therefore

$$\alpha_2 \log 2 = O(n^2).$$

2) $q^{2t} | (r^2 + s^2)$ if and only if $q^t | r$, $q^t | s$. Therefore

$$\alpha_{\rm q} = 2 \sum_{\rm t} [n/q^{\rm t}]^2 < 2n^2/(q^2 - 1),$$

and thus

$$\sum \alpha_{q} \log q = O(n^2).$$

3) For a given p, and for every r, there exist precisely two numbers s_i (i = 1, 2) such that $0 < s_i \le p$ and $p \mid (r^2 + s^2)$. $[s_1 = s_2 = p \text{ if } p \mid r]$. Precisely the numbers $s = s_i + mp$, and no others, are divisible by p; the number of such $s \le n$ is 2[n/p] + O(1). An additional factor p is contained in those $(r^2 + s^2)$ that are divisible by p^2 ; their number is $2[n/p^2] + O(1)$. Continuing with higher powers of p, we see that p^t can be a divisor of $(r^2 + s^2)$ only as long as $p^t \le 2n^2$; thus $t = O((\log n)/(\log p))$. It follows that the number of factors p in $\prod_{s=1}^n (r^2 + s^2)$ is

$$2\sum_{t} \left[n/p^{t}\right] + O\left(\frac{\log n}{\log p}\right) = \frac{2n}{p} + O\left(\frac{n}{p^{2}}\right) + O\left(\frac{\log n}{\log p}\right).$$

Since this holds for every $r (1 \le r \le n)$,

$$\alpha_{\rm p} = \frac{2{\rm n}^2}{{\rm p}} + O\left(\frac{{\rm n}^2}{{\rm p}^2}\right) + O\left(\frac{{\rm n} \cdot \log {\rm n}}{\log {\rm p}}\right)$$

and

$$\sum_{p \leq 4n} \alpha_p \log p = 2n^2 \cdot \sum_{p \leq 4n} \frac{\log p}{p} + n^2 \cdot O\left(\sum_{p \leq 4n} \frac{\log p}{p^2}\right) + n \left(\log n\right) O\left(\sum_{p \leq 4n} \frac{\log p}{\log p}\right).$$

The content of the first O-term is O(1), and that of the second O-term is $\pi(4n) = O(n/\log n)$. Thus

$$\sum_{p < 4n} \alpha_p \log p = 2n^2 \sum_{p < 4n} \frac{\log p}{p} + O(n^2).$$

4) Every $p < n^2$ may be written uniquely as $p = a_0^2 + b_0^2$, with $0 < a_0 < b_0 < n$ and $(a_0, b_0) = 1$. If p > 4n, then no single factor $(r^2 + s^2)$ of P can contain p^2 . And if such a factor is divisible by p, then certainly $r \neq s$, because r = s would imply $p \mid 2s^2$, thus $p \mid s$, contrary to the relation $s \leq n < p$. Thus, if $p \mid (r^2 + s^2)$, and if we call a the smaller and s the larger of s and s, then s and s are interested in the number of such pairs s.

LEMMA. Let C_1 be the class of pairs of integers (a, b) with $0 < a < b \le n$ and with the property that $a^2 + b^2$ is divisible by a fixed $p = a_0^2 + b_0^2$ $[0 < a_0 < b_0, 4n < p < n^2]$. Let C_2 be the class of ordered pairs of integers (u, v) with

$$u>0$$
, $v\geq 0$, $a_0u+b_0v\leq n$, $\left|b_0u-a_0v\right|\leq n$.

Then C_1 and C_2 contain the same number of elements.

A proof of the lemma will be given at the end of the paper.

The set C_2 is represented by the lattice points in the (u, v)-plane that lie within the quadrilateral formed by the straight lines $a_0 u + b_0 v = n$, $b_0 u - a_0 v = n$, u = 0, v = 0, not counting the lattice points on the left-hand edge. [For all the points within this quadrilateral, the last condition, $a_0 v - b_0 u \le n$, is automatically satisfied.] The area of the quadrilateral is $A = n^2/(a_0^2 + b_0^2) = n^2/p$; its perimeter L is less than $4n/b_0$, and since $b_0^2 > p/2$, L $< 8n/\sqrt{p}$. Thus the number of lattice points within is

$$A + O(L) = n^2/p + O(n/\sqrt{p})$$
.

By the lemma, this is also the number of pairs (a, b) in C_1 . Since P_n contains every $(a^2 + b^2)$ with $(a, b) \in C_1$ twice,

$$\alpha_{\rm p} = 2{\rm n}^2/{\rm p} + {\rm O}({\rm n}/\sqrt{\rm p}),$$

and thus

$$\sum_{4n$$

Summation by parts shows that the sum in the O-term is O(n). Thus

$$\sum_{4n$$

5) In the last term of (II), clearly $\alpha_{\rm p} \leq 1$; thus

$$\sum_{n^2$$

Combining the five parts, we see by (II) that

$$\log P_n = 2n^2 \cdot \sum_{p < n^2} \frac{\log p}{p} + O(n^2).$$

Together with (I), this shows that

$$\sum_{p < n^2} \frac{\log p}{p} = \frac{1}{2} \log n^2 + O(1).$$

If x is any positive number and $n^2 \le x < (n+1)^2$, then $\Sigma_{p \le x} (\log p)/p$ lies between $\log n + O(1)$ and $\log (n+1) + O(1)$, both of which differ from $(1/2) \cdot \log x$ by O(1). Thus

$$\sum_{p < x} \frac{\log p}{p} = \frac{1}{2} \log x + O(1).$$

Except for the proof of the lemma, the theorem is thus established.

COROLLARY.
$$\sum_{q \le x} \frac{\log q}{q} = \frac{1}{2} \log x + O(1), \text{ by formula (B) of the Introduction.}$$

Proof of the lemma. (i) For every (u, v) \in C₂, let a be the smaller and b the larger of the two numbers a_0u+b_0v and $|b_0u-a_0v|$. Then

$$a^2 + b^2 = (a_0^2 + b_0^2)(u^2 + v^2);$$

thus $p \mid (a^2 + b^2)$, and $0 \le a \le b \le n$; but 0 = a and a = b are both impossible, since each would imply that $p \mid b$, contrary to the relation $b \le n < p$. Thus to every member of C_2 has been assigned a unique member of C_1 .

(ii) If the correspondence just established would assign the same (a, b) to two different members (u_1, v_1) and (u_2, v_2) , of C_2 , it would follow that either

$$a_0 u_1 + b_0 v_1 = a_0 u_2 + b_0 v_2$$
 or $a_0 u_1 + b_0 v_1 = \pm a_0 v_2 \mp b_0 u_2$.

Since $(a_0, b_0) = 1$, it follows that either $b_0 \mid (u_1 - u_2)$, or $b_0 \mid (u_1 \pm v_2)$. But since p > 4n, $b > \sqrt{2n}$, while $u^2 + v^2 < n/2$, and therefore u_i and v_i are all less than $\sqrt{n/2}$. It follows that $b_0 > |u_1 - u_2|$, and $b_0 > |u_1 \pm v_2|$. Thus $b_0 \mid (u_1 - u_2)$ is possible only if $u_1 = u_2$, in which case also $v_1 = v_2$; and $b_0 \mid (u_1 \pm v_2)$ is possible only if $u_1 - v_2 = 0$, so that $b_0(v_1 + u_2) = 0$ and hence $v_1 = u_2 = 0$, contrary to the relation $u_2 > 0$.

(iii) If $(a, b) \in C_1$, then the number

$$(b_0 b + a_0 a)(b_0 b - a_0 a) = b^2(a_0^2 + b_0^2) - a_0^2(a^2 + b^2)$$

is divisible by p; thus of the two numbers $(b_0 b + a_0 a)/p$ and $(b_0 b - a_0 a)/p$, one is a positive integer (positive because b > a, $b_0 > a_0$). Since

(C)
$$\begin{cases} b_0(b_0 b \pm a_0 a)/p + a_0(a_0 b \mp b_0 a)/p = b, \\ a_0(b_0 b \pm a_0 a)/p - b_0(a_0 b \mp b_0 a)/p = \pm a, \end{cases}$$

it follows that $(a_0 b \mp b_0 a)/p$ is an integer if $(b_0 b \pm a_0 a)/p$ is an integer. Now we make use of (C), as follows:

(a) If the upper signs hold, and $a_0 b - b_0 a > 0$, set

$$u = (a_0 b - b_0 a)/p$$
, $v = (b_0 b + a_0 a)/p$.

Then $a_0 u + b_0 v = b$, $|b_0 u - a_0 v| = a$.

(b) If the upper signs hold, and $\mathbf{a}_0\,\mathbf{b}$ - $\mathbf{b}_0\,\mathbf{a} \leq \mathbf{0},$ set

$$u = (b_0 b + a_0 a)/p$$
, $v = (b_0 a - a_0 b)/p$.

Then $a_0 u + b_0 v = a$, $b_0 u - a_0 v = b$.

(c) If the lower signs hold, set

$$u = (a_0 b + b_0 a)/p$$
, $v = (b_0 b - a_0 a)/p$.

Then $a_0 u + b_0 v = b$, $b_0 u - a_0 v = a$.

Thus we see that, in each case, to a given member of C_1 corresponds a member of C_2 ; and by (ii), this member of C_2 is unique. This completes the proof of the lemma.

Amherst College