ON THE CENTROID OF A HOMOGENEOUS WIRE
G. D. Chakerian and S. K. Stein

1. INTRODUCTION

Let C be a closed convex curve in the Euclidean plane E;. If C has continuous
curvature, then the curvature centroid of C is defined as the center of mass of C
considered as a wire whose density is equal to the curvature at each point. Hayashi
[5] shows that at least four normals of C pass through its curvature centroid. Bose
and Roy [2] and Tietze [6] prove that the avea centroid of C has the same property
(the area centroid is the center of mass of a disk of uniform density bounded by C).
In this paper, we prove that the perimeter cenivoid of C also has this property
(Section 4). (The point (xg, o) is the perimeter centroid of C if

(1) Lxg = S xds, Ly = S yds,
C C

where L is the length of C, and s is arc length along C.) The proofs in [2] and [5]
employ Fourier series and put restrictions on the smoothness of C; however, even
if C is assumed smooth, this technique fails to give the result for the perimeter
centroid. Indeed, Bose and Roy [3] obtain by these methods only the weaker result
that if m is the number of points on C where the radius of curvature is equal to
three times the support function with respect to (%0, Y0), and n is the number of
normals through (xg, yg), then m + n> 4. The proof we give in Section 4, like that
of Tietze [6] in the case of the area centroid, is purely geometric and places no
smoothness restrictions on C.

The authors are indebted to the referee for several helpful suggestions.

2. DEFINITIONS
A support line of C is a line intersecting C so that the interior of C lies en-
tirely on one side of the line.

A line or line segment ¢ containing a point P of C is a normal if and only if ¢
is orthogonal to some support line of C through P.

Let C; be an arc lying in the upper half-plane and having its endpoints at (-a, 0)
and (a, 0) on the x-axis. C) is a convex arc if and only if, together with its chord
from (-a, 0) to (a, 0), it forms a closed convex curve.

The moment of C; about the x-axis, denoted by I(C;), is given by

(2) I(Cy) = SC yds.
1

The integralgeometric definition of the area A(S) of a surface S in Euclidean
space E;3 is as follows: let dG be the usual integralgeometric density for the set of
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lines G in E3 (see [1, p. 65] or [4, p. 88]). For each line G, let n(G N S) be the
number of points of intersection of G with S. Then

(3) A(S) = % S n(G N S)dG,

where the integration is over all lines G. It is proved in [1, p. 69], that this formula
gives the “usual” surface area under suitable smoothness conditions on S. More-
over, in the case of convex surfaces the formula is consistent with the usual defini-
tion, without any smoothness restrictions (see [4, p. 95]). If S is the surface of
revolution generated by revolving a convex arc C about its chord, (3) is still con-
sistent, as can be established by approximating C with inscribed polygons and
considering the corresponding surfaces of revolution; however, in the proof of
Lemma 1, below, we need (3) in this last case only when C is a polygon.

3. PRELIMINARY LEMMAS

LEMMA 1. Let C) and C, be convex arcs in the upper half-plane, each having
its endpoints at (-a, 0) and (a, 0). Suppose that C, lies below C; and also in the
strip {(x,y): -a<x< a}. Then, if C; # C,,

(4) C,) < I(Cy).

Proof. If S; and S, are the surfaces generated by revolving C; and C;, re-
spectively about the x-axis, then S; is a convex surface contained within Sj, and
S, # S,. Moreover, the area of S; is given by

(5) AS) = 27K(Cy) (i=1,2).

For any line G, n(G N S3) < n(G N S;), and there exists a set of lines of positive
measure intersecting S; but not intersecting S;. Thus, the validity of formula (3)
for S =8; would by (5) imply the required result (4). Instead of establishing (3)
with S = S;, we proceed as follows:

Let P; be a polygonal arc circumscribed about C; and having the same end-
points as Cj. Let R; be the surface generated by rotating Pj about its chord.
Then R; is the union of “conical segments” (cones and truncated cones), for each
of which (3) is consistent. But the integral in (3) is additive, so that (3) is consistent
for R;. Hence we can apply the argument of the last paragraph, with C; replaced
by P,, to obtain the inequality

(6) IC,) < KP)) -6,

where 6 is positive and independent of P;. (To establish the existence of 6, one
may consider the convex surface S5 formed by taking the convex hull of S; and a
point outside S, but inside S;. Then A(S;) + 276 = A(S5) < A(Rj).) Now the con-
tinuity of I(C), as a functional on convex arcs C, implies, by (6),

(7 IKC,) < KCy) - 6 < KCy).

We shall also use the following well-known, elementary lemma.
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LEMMA 2. Let C be a closed convex curve with the ovigin intevior to C, and
let v = r(0) (0< 0 < 2m) be the polar equation of C. Suppose r(0) has a velative
maximum ov minimum. Then the covvesponding vadius is novmal to C.

4. A FOUR-NORMAL THEOREM

We now are ready to obtain the result described in the Introduction.

THEOREM. At least four novmals to a closed convex curvve pass through its
perimeler centroid.

Proof. Assume that the perimeter centroid of C lies at the origin, so that
(8) ‘S‘ yds =0,
C

and let r = r(9) (0 < 0 < 27) be the polar equation of C. If we can show that r(9)
has at least four relative maxima and minima, the theorem is proved, by Lemma 2.
By periodicity, r(6) must have an even number of extrema, so it suffices to show
it is impossible that r{8) has exactly one relative maximum and one relative mini-
mum.

The continuity of r(#) implies r(6y + 7) = r(6g) for some 9y. By performing a
rotation, we may suppose 6y = 0, so that r(0) = r(n) = a. Suppose that r(6) has:
exactly one maximum, assumed for 0 < 6 < 7, and one minimum, necessarily as-
sumed for 7 < 8 < 27. Then r(f) > a if 0< < 7w,and r(9) <a if 1< 8 < 27.
(Note that r(9) # a for 0 < 8 < m, since otherwise at least two extrema would exist
in 0 < 8 < 7. The same holds for 7 < 8 < 27.) It follows that the reflection across
the x-axis of the part of C in the lower half-plane is a convex arc C, that lies be-
low the arc C; of C in the upper half-plane. Moreover, C, lies in the disk
{(x, y): x%2+ y2 < a2}, hence in the strip {(x, y): -a <x<a}. Soby Lemma 1,
I(C,) < I(Cy). But then

(9) 0 < IC,) - I(C,) = S yds;
C
this contradicts (8) and completes the proof.

5. SOME REMARKS

Remark 1. The example of the ellipse shows that the number four in the theorem
cannot be replaced by a larger number.

Remark 2. The converse of Lemma 2 is false, so one cannot conclude in general
that the number of normals through a point is even. Indeed, we show how one can
construct, for any integer n > 5, a convex curve C with exactly n normals through
its perimeter centroid.

If n is even (n> 6), a regular polygon of n/2 sides does the trick. For n odd,
we proceed as follows. In the (x, y)-plane, let

Q=(0,1), R=(a,1), S=(b,0)y T=(0,—1)7
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where 0 <a<b. Let C' be the unit semicircle {(x, y): x2+y%=1, x<0}. Let
C be formed by C' together with the segments QR, RS, and ST. Continuity con-
siderations show that for the number a small, and a proper choice of b, the perime-
ter centroid P lies on the line x = a and in the upper half-plane. Exactly five
normals of C pass through P (note that there is a normal at R not corresponding
to an extremum of the radial function). If one replaces C' by a rectangular arc C"
in the left half-plane with a pair of vertices at Q and T, and a side parallel to the
y-axis, such that C' and C" have the same x- and y-moments, then the perimeter
centroid P is unchanged. The new curve has seven normals passing through P. It
is clear that suitable variations of C' in this manner yield examples for any odd
n> 5.

Remark 3. Tietze’s proof of the four-normal property for the area centroid is
valid for any curve that is star-shaped with respect to its area centroid. On the
other hand, the following example shows that, in general, even the simplest star-
shaped, nonconvex curves may fail to have four normals through the perimeter
centroid.

Let K be the circle x2+y2=1. Let Q= (0, 1/2). Let R=(a, V1 - a2)
(0 < a< 1), and let R' be the reflection of R across the y-axis. Let C be the
curve consisting of the larger arc RR' of K together with the segments R'Q and
QR (so that C is a “notched” circle). If a is chosen small enough, the perimeter
centroid P of C lies on the positive half of the y-axis, C is star-shaped with re-
spect to P, and exactly fwo normals of C pass through P. By slightly rounding off
the three corners of C, one obtains an infinitely differentiable example.
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