CHARACTERIZATION OF n-SPHERES BY AN EXCLUDED
MIDDLE MEMBRANE PRINCIPLE

R. F. Dickman, L. R. Rubin and P. M. Swingle

Many authors have obtained characterizations of n-spheres, especially for
n = 1; Zippin in [13] gave one for n = 2 (see [11, p. 88]); Bing in [1] gave character-
izations for n = 1, 2, and 3; also, in a recent paper [5], Doyle and Hocking have
achieved a characterization for all n-spheres. It is our purpose to approach the
problem in a somewhat different fashion. We use primarily well-known results of
point-set topology; we also use results based on the set-valued set-function T, with
its origins in Jones’ aposyndetic [7], which has been used in studying semigroups in
[3] and elsewhere.

We prove a general theorem that characterizes n-spheres for n > 1; because
O-spheres are not connected, we must revert to a slightly different hypothesis for
the case n = 1. But both instances involve an excluded middle irreducible mem-
brane principle that we first discovered for the case of the simple closed
curve.

1. CHARACTERIZATION OF THE 1-SPHERE (SIMPLE CLOSED CURVE)

We definé the set-valued set-function T, for A C S, as follows. Let Q be an
open subset of S, and let W be a subcontinuum of S. Then

y £ T(A) if and only if there exist Q and W suchthat ye QCc WcC S - A.
For examples and fundamental properties, see [4].
Let S be an irreducible continuum [9, p. 14]; we follow Kuratowski [8] and let
I(b, S) = {x: S is an irreducible continuum from x to b}.

We denote the closure of A by cl(A).

The following two theorems will be assumed, under the hypothesis that X is a
compact Hausdorff continuum.

(A) For p € X, the set T(p) is a continuum. See Theorem 3 in [7] or Corollary
1.1 in [4, p. 115].

(B) If X is irvveducible from a to b, thern T(a) = cl (I(b, X)); if T(a) has vacuous
intevior, then T(a) is a C-set; if T(a) has nonvacuous intevior, then T(Q) is an in-
decomposable continuum. See Theorems 12 and 13 in [3, p. 272]. For Wallace’s
definition of C-set see [10, p. 639].

THEOREM 1. Let X be a nondegenevate, compact, pevfectly sepavable Haus-
dovff continuum. Then X is a 1-spheve if and only if for every paiv X,y € X with
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X #y, there exist irveducible continua S and S, from X to y, such that S, # S,,
X =8, +8,, and if S3 is a continuum irreducible from x to 'y, then either S3 = 5
oy S, =S

3 2°

Proof. The necessity follows immediately.

For the sufficiency, we first show that X contains no indecomposable continuum.
Suppose N 'is an indecomposable subcontinuum of X. Let x and y be in the same
composant C' [9, p. 57] of N. By Theorem 43 in [9, p. 15], there exists a continuum
C; in C' irreducible from x to y. By hypothesis there exists a continuum C;, ir-
reducible from x to y, and such that X = C; + C,, and so C, contains the nonvacuous
set X - C,. Since C, D N - C,4, it follows from the properties of an indecomposable
continuum [9, Theorem 137, p. 58] that C, D C;. Then C, = C;, which contradicts
the hypothesis that C, # C;. Hence X does not contain an indecomposable subcon-
tinuum.

Now let a, b € X, a# b, and let S| and S, be the irreducible subcontinua from
a to b in the theorem. For the space S;, we write T(a, S;) for T(a); we wish now
to prove T(a, S;) = a. By (B) above and by the previous argument, T(a, S;) has
vacuous interior with respect to S;, and therefore T(a, S;) # S;. Now suppose a # ¢
and ¢ € T(a, S;); by (A) above, T(a, S;) is a continuum. Let N; be an irreducible
subcontinuum in T(a, S;) from a to c; by hypothesis, there exists an irreducible
subcontinuum N, of X such that X = N; + N, and Nj # N,. Then

N,D>cl(X-N)>ecl(S,-N)>ecl(S; - T(a, §,) =8, ,

and so N, D N;. Then N, = N;, which is a contradiction.

Hence we have shown that T(a, S;) = a; similarly, T(a, S;) = a and

We use this now to show that S; NS, =a+b.

Suppose that d € (S; N S;) - a - b. By the argument above, d € I(b, S;) + I(a, S;),
that is, d is not an endpoint of S;(i = 1, 2). Hence some proper subcontinuum S'; of
S; is irreducible from d to b, and therefore a g S';. By hypothesis, there must then
exist a subcontinuum S'3 irreducible from d to b such that X = S'; + S'3, and so
S'3D a; hence S'3 # §';. This implies that S'; = S',, by our hypothesis; hence,

q £ S'3 for some q € 8'; N §',. But then §'3 D> a + b+ d, and there exists an S3 in
S'3 that is a continuum irreducible from a to b. Thus q £ S3 and q € S; N Sy;
hence S;# S3 and S, +# S3, which again contradicts our hypothesis. Therefore we
have shown that S; N S, = a+ b. Hence every pair of points separates the space,
and therefore X is a 1-sphere,

We note that we need perfect separability only for showing that X is metrizable
and therefore homeomorphic with the unit circle. For similar reasons we include
perfect separability in the hypothesis of Theorem 2.

2. CHARACTERIZATION OF THE n-SPHERE FOR n> 1

Let F be a compact, perfectly separable Hausdorff space, let A(n) be a nonvoid
collection of (n - 1)-spheres in F, and let J € A(n). Let M be a subcontinuum in F
(b € M), and C an (n - 1)-sphere. Denote by (CxXM, b) the decomposition space
[9, pp. 273-274] of the upper-semicontinuous decomposition of the cartesian product
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C XM, where the only nondegenerate element is taken as CXb (intuitively, we re-
gard the decomposition space as a sort of generalized cone with vertex at the point
Cxb). With this notation, we give the following definition.

DEFINITION 1. We say that F is an A(n)-cartesian membrane from b to J if
and only if there exists a homeomorphism h from (CXM, b) onto F, for some M
such that

(i) for some a € M - b, J = h(Cxa),
(ii) for all q € (M - b), h(Cxq) € A(n), and
(iii) h(Cxb) = b.

For brevity we occasionally say that F is an A(n)-cartesian membrane with vespect
to J. If moreover M is irreducible from b to a, then we call the membrane irre-
ducible.

THEOREM 2. Let S be a pevfectly separvable, compact Hausdovff space, and let
n> 1. Then S is an n-spheve if and only if

(1) the class A(n) of (n - 1)-sphevres in S is not void,

(2) for each J € A(n), S=F, + ¥,,where F, and F, are irreducible A(n)-
cartesian membranes with respect to I such that ¥y B F, and F, 3 Fy; and
whenever S is such a union and F3 is any other A(n)-cartesian membrane contain-
ing J, then F 3 contains eithey ¥, orv ¥,, but not both; and

(3) if J € A(n) and p € (S - J), then therve exists an A(n)-cartesian membrane
Jrom p to J.

Proof of the Sufficiency. Let J € A(n); then by (2) of the hypothesis, S = F| + F,,
where F; and F, are irreducible A(n)-cartesian membranes with respect to J, and
where F; 7 F, and F, J F;. Now suppose that F, is also an irreducible A(n)-
cartesian membrane with respect to J. By (2), F3 contains F; say, but F; 3 F,.
Then S = F3 + F,, where F3 3 F, and ¥, 4 F;. Hence again, by (2), F; contains
either F3 or F,; since F; 3 F,, F; D F;. Therefore F; = F,. We have proved
that an irreducible A(n)-cartesian membrane with respect to J equals either F; or
F,. Let us designate this result by (Rl)'

It follows easily from (2) and (R;) that if F is an irreducible A(n)-cartesian
membrane with respect to J € A(n), then no proper A(n)-cartesian membrane of F
contains J. We designate this result by (R5).

Now, above, let F; = h{(CxXM,, b;), where h; is a homeomorphism, as in
Definition 1. Then M, is a continuum irreducible, say, from a to b;, where
h;(Cxa) = J because of (i) in Definition 1. We now wish to prove that Kuratowski’s
I(by, M) reduces to a. Since a € I(b;, M;) by definition, suppose that
d € I(b;, M;) - a. By the definition, F; is an irreducible A(n)-cartesian membrane
with respect to J; = h; (CXxd).

Let q € Jy. By (3) of the hypothesis, there exists an A(n)-cartesian membrane
F'3 from q to J. Say F'; = h3(CxXM'3, q), where h; is a homeomorphism,
h3(Cxq) = q, and for some r € M'3, h3(CXr) = J above. Let M, be a continuum
in M'3 irreducible from q to r. Let F; = h3(C><M3, q); then F; is an irreducible
A(A(n;-cartesian membrane with respect to J, and therefore, F; =F; or F;=TF, by
R;).

Let us consider the case F3 = F;.
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Define a function f: (CXM3, q) — M3 by saying f(c, x) = x for all ¢ € C and
x € M3. Then f is continuous and closed. The (n - 1)-sphere h;~1(Jg) contains the
point h3-1(q) of (CxMs3, q) because q € Jp; and h3'1(J0) N (CXr) = P because
h3(CxXr)=J and JgnN J=0. Thus N = f(h3'1(Jo)) is a continuum in M3 containing
q but not r. Hence the set

is a proper A(n)-cartesian membrane of F; that contains J,; this contradicts (R,),
and so F3 # F;.

Consider now the case F3 = F,.

Here we may assume that Jy C F,; for otherwise we could have chosen q above
so that q £ F,, thus eliminating the possibility that F3 = F,. We know by (2) of the
hypothesis that S = G; + G,, where G; and G, are irreducible A(n)-cartesian mem-
branes with respect to J; such that G; 7 G, and G, ¥ G;. By (Rl), F,; must equal
one of these, say F; = G;. By the method used in the case ¥; = F,, we can con-
struct an A(n)-cartesian membrane H in F, that contains J, but does not intersect
J. By (2) of the hypothesis, H must contain either G; or G,. But HZ J and
J C F; = Gy; therefore HD G;, and thus G, N J = .

Now let q' € J, and let G 3 be an irreducible A(n)-cartesian membrane from q'
to Jg. Then either G3 = G; or Gz = Gy; since q' £ G, G3 = G;. Now G3 = G; is
irreducible from q' to Jy, where q' € J. Again we can revert to the method used in
the case F3 = F; to say that there exists a proper A(n)-cartesian membrane of
G, = F, that contains J but not Jy: this contradicts (R;), and so F3 # F,.

Thus the proof is complete for I(b;, M;) = a. Let us call this result (R;).
We now show that F;n F,=J.

Since F, # Fy, let z € (F; - F,). By (3) of the hypothesis there exists an A(n)-
cartesian membrane F'; from z to J. As previously noted, we may choose F';
irreducible, which we do. By (R;), and since z ¢ F,, it follows that F'; coincides
with F;, which contains J. Hence we may as well assume that F¥; was chosen as
F'y; that is, that F; = h; (CxM;, z), where h(CXxz) = z.

Now suppose r € ((F; N F,) - J); then r # z. Let h;"1(r) = (¢, r") (c' €C and
r' € M), and denote by J, the set hi(CXr'). Then J,. € A(n) by (ii) of Definition 1.
By (R3) and properties of irreducible continua, there exists a proper subcontinuum
N; of M; irreducible from z to r; thatis, a £ N;. The irreducible A(n)-cartesian
membrane H; = h; (CXN,, z) is a proper subset of h{(CxM,, z) = F;; moreover,
since a £ Ny, JN H; = @. Also, H; is irreducible from z to J,. because
hi(Cxr') =J_.

By (2) of the hypothesis and (R;), there exists an irreducible A(n)-cartesian
membrane H, from a point p to J, such that Hy 3 Hy, H,J Hj;, and S=H; + Hj.
Since H; N J =0, H, D J. Letus say that H, = g,(CXN,, p), where g, is a homeo-
morphism and N, is a continuum irreducible from p to p'. Then I{p, N,) = p' by
(R3), and so g (Cxp') = J. because H, is irreducible.

Define a function f': (CXN3, p) — N2 by saying f'c, x) = x for ¢ € C and
x € N,. Then f' is continuous and closed. Then J N J, = f, the set K = f'(g,~1(J))
does not contain p' = f'(gz-l(Jr)), and K is a continuum since J is a continuum.

For the continuum N,, T(p') = cl (I(p, N3)) by Theorem 12 of [3, p. 272]; hence
T(p') = p' by (R3). Now let k € K; then p' # k. By Theorem 2 of [4, p. 116], N, is
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symmetric with respect to the set-function T as defined in [4, p. 115]; hence

k £ T(p') implies p' £ T(k). There are two possibilities. If p € T(k), let

I=K+ T(k). If p# T(k), then by Corollary 16.1 of [3, p. 274], T(k) separates p
from p' in N,. Then N, - T(k) is the union of mutually separated sets K, and K,,
where p € K,, say. In this case define I = T(k) + K, + K. Since by (A), T(k) is a
continuum, it follows from properties of continua that I is a continuum in either
case.

The set H' = g,(CXI, p) is an A(n)-cartesian membrane containing J but not
intersecting J.; thus r £ H', and so by (2) either H'D> F; or H'D F,, which is im-
possible since r € F; N F, but r £ H'.

This contradiction proves that F; N F, = J.

Thus J separates S. In general, every J € A(n) separates S. Recall that
F; = hj(CXM;y, b;) and F; is an irreducible A(n)-cartesian membrane; we now
prove that M, is an arc. Choose any point y € M; - a ~ b; and consider
Jy =hy (Cxy); J, € A(n) by (ii) in Definition 1. By the above, Jy separates §; but
J, does not intersect ¥, and so J, must separate the continuum F;. By the con-
s¥ruction of ¥,, this implies that y separates M;; therefore M, is irreducibly
connected from a to b;, and therefore it is an arc.

Thus F; is topologically equivalent to (C X [0, 1], 1), and therefore by Lemma 1
below, Fj, and similarly F;,, is a closed n-cell with boundary J. Since F; and F,
meet only at their boundary J, the union F; + F, is an n-sphere. This completes
the proof of the sufficiency.

LEMMA 1. If F=(Cx[0, 1], 1) and if C is an (n - 1)-sphere, then F is a
closed n-cell.

We do not prove this well-known result.
For the proof of the necessity in Theorem 2 we also need the following lemma.

LEMMA 2. Let S be an n-spheve. If C is an (n - 1)-sphere, M is a non-
degenerate continuum,p € M, and g is a homeomorphism that maps (CXM, p) into
S, then M is an arc and hence (CXM, p) is a closed n-cell.

Proof. Let y be a non-cut point of M - p, and let N be an irreducible subcon-
tinuum of M from p to y. By the Jordan-Brouwer Separation Theorem [11, p. 63],
g(Cxq) separates S into two complementary domains for q € M - p. Let
G = {g(Cxz): z € N}, which is a decomposition of g(CxN, p). The hypothesis of
Theorem 2 of [12, p. 1147] is satisfied, and from its conclusion the decomposition
hyperspace ((CXN, p), G) is locally connected and G is upper-semicontinuous. It
follows that N is locally connected, since N is homeomorphic to ((CXN, p), G).
But N is an irreducible continuum and must be an arc. By Lemma 1, g(CXN, p) is
a closed n-cell with boundary g(CXy), and therefore it must be one of the comple-
mentary domains of g(CXy). Since y is a non-cut point of M, all of g(CXM, p) must
be contained in g(CXN, p), and so N = M is an arc.

DEFINITION 2. An (n - 1)-sphere C in an n-sphere S" is said to be flat if and
only if the closure of each complement of S™ - C is a closed n-cell.

Proof of Necessity in Theovem 2.

We assume that S is an n-sphere (n> 1). Let A(n) be the collection of flat
(n - 1)-spheres in S. Since S is homeomorphic to the unit n-sphere, the class A(n)
is nonnull. Let J € A(n). By the definition of flatness, S - J = H' + K', where
cl(H') = H and cl(K') = K are closed n-cells. By Lemma 1, (Cx [0, 1}, 1) isa
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closed n-cell when C is an (n - 1)-sphere; hence there exists a homeomorphism h
from (C %[0, 1], 1) onto H. It follows from Brouwer’s Invariance of Domain Theo-
rem [6, p. 95] that h(Cx0) = J, and therefore h satisfies (i) of Definition 1. Condi-
tion (ii) of Definition 1, is satisfied by the Generalized Schoenflies Theorem proved
by Brown in [2, p. 76]. Now we merely note that h(Cx1) is mapped into a single
point in H, and (iii) in the definition of an A(n)-cartesian membrane is satisfied;
hence both H and K are A(n)-cartesian membranes.

Consider (2) of the theorem: let S = H + K, where H and K are A(n)-cartesian
membranes satisfying (2). Let G be any other A(n)-cartesian membrane containing
J. By Lemma 2, G is a closed n-cell; thus G must contain either H or K. Hence
(2) of Theorem 2 is satisfied.

Part (3) of the theorem follows easily from our choice of A(n). This completes
the proof of Theorem 2.

3. CONCLUDING REMARKS AND A LEMMA
In the proof of the sufficiency in Theorem 2, we used the condition

where h(CXxq) = is an (n - 1)-sphere for q € M; - b;; however, without using this
property of J we proved that M; must be an arc. But if J, were an indecompos-
able contmuum for example (that is, if A(n) were a class og such continua), then
condition (3) in Theorem 2 would be meaningless as a hypothesis. This suggests the
question of whether A(n) could be replaced with a class of continua of another type,
with (1), (2) and (3) holding; and if so, what kind of continuum S would have to be.

The referee informs us that Bing and Rosen have given examples of suspension
spheres that are not topological spheres and that may be used for our class A(n).

The proof we gave for Theorem 1 partly parallels that of the sufficiency for
Theorem 2. Instead, we could have made use of a different method that would also
prove Lemma 3 below. We say that a continuum M is the essential union of sub-
continua M; (i =1, 2, .-, n; n finite), if M is the union of these M; and each M;
contains points not in the union of the remaining M; G=1,2, -, n;i#7j).

LEMMA 3. Let S be a compact Hausdovff continuum, let {Pa} be the class of
all pairs of disjoint points of S, and for each o let {Mﬁ}a be the class of all irvre-
ducible subcontinua of S joining p and q of Py. If for each & and for each
M, € {Mﬁ}a theve exist a finite ny and sets Mj € {Mﬁ}a (=1, 2, -, ny) such
that S is the essential union of these nyg sets, tken S is locally connected

The proof follows quickly from Theorem 2.1 of [11, p. 102].
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