BOUNDARY BEHAVIOR OF NORMAL FUNCTIONS DEFINED
IN THE UNIT DISK

D. C. Rung

1. INTRODUCTION

In generalizing some results of Plessner, Meier [12, p. 241] showed that if f is
holomorphic for Fz] < 1, and if there exists a set M of points eif such that for
each elf € M, f remains bounded on two distinct rectilinear segments terminating
in eig, then f has an angular limit at almost all points of M.

The search for an analogous result for holomorphic functions which are normal
if Iz] < 1 led to some results which are given in Section 1. (For the definition of a
normal function see [10, p. 53].) Section 2 contains some examples of the behavior
enunciated in Section 1.

The point ei? is called a Plessner point of f, if the cluster set at eif of f on
every Stolz domain with vertex eif is the whole complex plane.

In Section 3 it is shown that, at a Plessner point eif of a normal, meromorphic
function f, the cluster set along any chord terminating in eif is the whole Riemann
sphere. The case in which the range of such functions f is a nowhere dense set of
the Riemann sphere is treated in Section 4.

We conclude, in Section 5, by considering points at which the two-segment
property of Bagemihl [1, p. 380] holds.

The following notation will be used. The open unit disk |z|< 1 and its circum-
ference |z|= 1 will be denoted by D and C, respectively. For z, and Z, in D, set
p(z,, z,) equal to the non-Euclidean (hyperbohc) distance between these pomts. For
a discussion of this non-Euclidean geometry see, for example, [7, Chapter 2].

For any point eif, we denote by Ay ,0 the symmetric Stolz domain of opening 2u
(0 < a < 7/2) with vertex eif, If it is clear that the vertex is at eif, we write Ay
for Ay g; and if there is no need to distinguish the angle « of opening, we just
write A.

Let = be any subset of D whose closure intersects C only at eif, and let & be
the Riemann sphere. For a complex-valued function f defined in D, the cluster set
(respectlvely range set) of f along £ will be denoted by Cx(f, eif) (respect1vely
Rx(f, et 0)). It is the set of all points w on Z, such that there exists a sequence of
points {zn} in £ with lim,_, . z, = eif and with lim,_, ., f(z,) = w (respectively
fzy)=w,n=1,2 ). If T isa 31mp1e continuous curve in D one of whose ends
is e19 and if A is any Stolz domain at e19 we set

7, €0) = D C,(t, €if),

where the intersection is taken over all such 7 lying entirely in A.
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Finally define

ﬁA(f’ eig) = r]* int RA*(f’ eie) ’
A

where A is any Stolz domain at eif and the intersection is taken over all Stolz do-
mains A* at eif which strictly contain A. (The set int R *(f, eif) is the interior
of Rax(f, eif) relative to #. We consider the domain of values of f, as well as the
sets Ca(f, ei0), Ra(f, ei9), and 7, (£, €if), to be a subset of #, so that, for example,
f is considered to be continuous at its poles. Further, c = « is an admissible value
in any of the theorems unless otherwise specified.)

2. THE BASIC THEOREM

THEOREM 1. If f is normal and mevomorphic in D, then for any elf e C and
any Stolz domain Ny at eif,

if = i6 if
CAa(f, € ) - RAa(f9 € ) S_ ﬂAa(f, € )-

Proof. Consider any c € CAa (£, eif) - f{Aa (f, eif). There exists a sequence

{Zn} (z, € Dy) with limy_, o 2, = el such that

(2.0) lim f(z,) =c.
n—oo

Let w, be the unique point on the diameter of C from el to -eif for which

p(z,, W,) equals the non-Euclidean distance of z, to this diameter; for any

B (@ <B<n/2) let HB denote the connected region bounded by the two hypercycles,

symmetric in this diameter, that form the angles g8 and -g with the diameter.

There exists some neighborhood U of eif such that, within this neighborhood, Ag

contains Hg. Further, if we specify g, (@ <8, < B), we may choose a positive inte-

ger N so that, for all n > N,

1 B1
(2.1) 0(Zn, Wp) < Elog cot (% - —2—) = M.

The existence of such an N is insured by observing that since all z, lie in Ay,

-y 1 T A
lim p(z,, w,) < 5log cot (Z -3

n—>00

For convenience we consider all z, to satisfy (2.1).

As is usual in arguments concerning normal functions, set

€+ wn

50 = 1 (Tryy) (L.

By the normality of f, there exists a subsequence {gnk} which converges uniformly

in any compact part of IC ’ < 1 to a function g. Next define a sequence {Ck} by the
equation
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+

.2 i =TT Wty

The inequality (2.1) implies that

2M _ 4

e ) .
¢ | <'(;‘2'1\'/["+_1' =K;

and hence if {, is an accumulation point of {Ck} , then ICOI < K. Let {C’P} be a
subsequence of {Ck} tending to ,. The continuous convergence of {gnk} at ¢,
together with (2.0) and (2.2) implies that
lim g, (§) = lim f(z, ) = g(§y) = c;
see [8, p. 173 ff.] for a discussion of the notation of continuous convergence.
We now consider two cases, according as to whether g(¢) = ¢ or not.

If g(¢) = ¢, then f tends uniformly to the value c on the sequence of non-
Euclidean disks with centers Wn, and non-Euclidean radius M. Each disk intersects

both boundary segments of A,, which in turn implies that c € 7 Aa(f’ eif),
Consider the case where g({) is not identically c. Let D* denote any fixed non-
Euclidean open disk with center ¢, which is contained in the open disk
1e2M* _ 4
|§| < E-TK/I’-"—_’
e + 1

where

1 (77 B
* — = —_— - =
M 2logcot -3

This insures that if { € D* then, for any positive integer n,
C+wp,
ST w,C
is contained in Hﬁ.

Let £ be any point of D*. Hurwitz’s theorem guarantees the existence of an in-
teger k, and a sequence of points {Ek} in D* which tend to £ such that

(2.3) En, (610 = E(O)
for all k > k,.
Defining
E + W

KT 5 k>ky),
+ gk“’]ﬁ'lk -
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and referring to the definition of the family {gn}, we find that (2.3) yields the
equality f(xy) = g(£). For sufficiently large k, all x, are contained in U N Hg and
hence in Ag. It is clear that the point g(£) is contained in RAB(f, eif), since g is

an open mapping and £ is an arbitrary point of D*, g(D*) is an open set, which con-
tains g({,) = ¢ and which is contained in R AB(f, eif)., The assertion that g(¢) is not

identically equal to ¢ implies that c € ﬁAa (£, eie). By our choice of ¢, this is im-
possible: Thus g({) = c, and the theorem is proved.

A point eif is called a Fatou point of f(z) if lim f(z) exists uniformly as
z — eif in every Stolz domain with vertex eif,

COROLLARY 1. Let f be normal and mevomovphic in D, and suppose f omits
the value c. Fuvthev suppose there exists a subset E of C of positive linear meas-
ure such that for each point eif e E theve exists a Jovdan curve Ty, tending to eif
and lying within some Stolz domain at ei0, such that C, G(f’ eie) does not contain c.

’

Then almost all points of E are Fatou points.

Proof. Consider any eif € E. For some Stolz domain A at eie, cf A, ei?);
and since, by hypothesis, ¢ ¢ R (f, e'?), we conclude that c £ Ca(f, e9)., Thus el
cannot be a Plessner point of f. An application of Plessner’s theorem shows that
almost all points of E must be Fatou points.

If we restrict f to be holomorphic and normal in D and if we set ¢ =« in
Corollary 1, we obtain the more special result below.

COROLLARY 2. Let £ be holomorphic and normal in D. Suppose that there
exists a subset E of C such that, for each point ei9 in E, f is bounded on a Jordan
curve teyminating in ei9 and lying in some Stolz domain at ei9, Then f has Fatou
points at almost all points of E.

3. EXAMPLES

The non-tangential approach to eif hypothesized in Theorem 1 is essential. To
see this, we define C(f, eif), R(f, eif), and 7(f, eif) as we did Ca(f, ei¥), RA(f, eif),
and 7 A(f, ei9), except that we omit the restriction that the sequence zn} , or the
curve T, necessarily approach eif within some Stolz domain. It is not true that for
each normal and meromorphic function f

C(f, ei9) - R(f, el9) c n(1, ef).

If u denotes the elliptic modular function defined in D, then C(u, eif) , for all but
a countable set of points S of C, is the whole Riemann sphere, while for elf € S,
C(u, eif) is either 0, 1, or «. For each eif € C it is known that n(u, eif) is the
empty set [2, Theorem 3, p. 30]. However, for each eif, C(u, i) - R(u, ei9) con-
tains at least one of the values 0, 1, or <,

The notion of normalcy is also necessary in Theorem 1. Seidel and Bagemihl [4,
Corollary 5, p. 191] constructed a function f, holomorphic in D, for which the cluster
set on almost all radii is the unit circle. According to Plessner’s theorem, almost
all points of C are then Plessner points of f. Choose a Plessner point eif of f for
which the corresponding cluster set is the unit circle. For any Stolz domain A at
eif, the point ¢ =« is contained in Cp(f, eif) - R,(f, eif) but is not contained in the
set mA(f, eif),
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4. BEHAVIOR OF NORMAL FUNCTIONS AT PLESSNER POINTS

In the sequel let A represent any symmetric or non-symmetric Stolz domain at
eif, Following the notation used by Noshiro and others |13, p. 68 ff.], if f is mero-
morphic in D, we denote by J(f) the set of all points e such that for every Stolz
domain at eif,

CA(f, i) = c(f, ei9).

Let K(f) denote the set of all points eif such that for any two Stolz domains A, and
A, at eif,

Ca, (£, eif) = Ca, (&, eif) .

Also, given any eie, let p(a) denote that chord of C terminating at eif and making
the angle a (-7/2 < @ < +7/2) with the radius at eif,

If A is any Stolz domain at eif set
CA(, e9) = Nc ax(E, €19),
NA¥
where the intersection is taken over all A* strictly containing A. Similarly define,
for any chord p(a) at eif,

Coa)(t %) = 21 Cpxlf, &1,

where A* contains p(o).

LEMMA 1. If f is normal and mevomorphic in D, then for any €1 and any
Stolz domain at eif

(i) Cal, elf) = CA(f, elf).
Also, if p(a) is any chord at eif

Proof. We first prove (ii). Consider any fixed ei®, We need only show that
Co@)(E, %) < Cpa)(, €19).

'I:o that end, let c € ép(a)(f, eif) ; and let {_An} be a sequence of Stolz domains at
el containing p(a), with A, O Ap+1 and n‘;f:l Ay, = p{@). For each A, .

(n=1, 2, *-), let {zf{n)} be a sequence contained in A, such that z{7) — i and
f(zf(n)) — c. Select a sequence w, = zl((?l) (m=1,2, ) sothat |w_ - ei| < 1/n and

lf(wn) - c[ < 1/n. Then f(w,) tends to ¢ as n — =, and w, € A,. As is easily seen,
the non-Euclidean distance of w,, to p(a) tends to zero as n — . Let £, be that
point on p(a) at which this distance is assumed. Then p(w,, €,) — <. By a result
of Seidel and Bagemihl [6, Lemma 1, p. 10], £f(¢,) — ¢ as n — . Since c was
chosen to be any point contained in Cp(a)(, eif), (ii) is proved. The proof of (i) may
be seen to be similar. With this lemma we can prove the following theorem.
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THEOREM 2. Let f be normal and meromorphic in C. If eib € K(f), then for
any Stolz domain A and any chord p(a) at eif,

Calf, €19 = Cp)(, €f).

Proof. For any two Stolz domains A, and A, at eif, C A, eif) = C A, eif),

Therefore, employing Lemma 1, we see that
Cp(, eif) = ép(a)(f, eif) = Cp (o) eif)

Remark 1. The set of points K(f), since it contains all Plessner and Fatou
points, is of measure 27 on C; and further, according to Collingwood [9, Theorem
4A, p. 383], K(f) is also residual on C.

Remark 2. At any Plessner point eif of f, since Ca(f, eif) is the Riemann
sphere £, so also is the cluster set along any chord. This compares with the be-
havior of an arbitrary meromorphic function g at a Plessner point, where the
equation

Cp(a)(E €19 = Cpl, eif) = &

is satisfied for a set S of points a (-7/2 < @ < 7/2) which is residual relative to
the interval (-7/2, n/2); see Seidel and Bagemihl [3, Theorem 9, p. 1072]. However:
S may be of measure 0 on (-7/2, 7/2), as an example of Seidel and Bagemihl [5,
Corollary 1, p. 82] demonstrates. They constructed a meromorphic and non-
constant function g in D such that for every 8 (0 < 6 < 27) g tends to 0 along al-
most all chords of C terminating at eif. The set of Fatou points must be of meas-
ure 0, otherwise, by the uniqueness theorem of Lusin and Privaloff, [11, p. 164] g
would be identically 0. By Plessner’s theorem, almost all points of C are Plessner
points of g. At a Plessner point of g the residual set S, introduced above, must be
of measure 0 on (-7/2, 7/2).

5. RESULTS ON THE OUTER ANGULAR CLUSTER SET

If £ is holomorphic in D, the outer angular cluster set at eif ig defined to be

CA(f, eie) = U CA(f’ eie) ’
A

where the union is taken over all Stolz domains at eie; for example, see [13, p. 69].
We also form the set

76, ei0) = [ 7,1, €if),
A

where A varies over all Stolz domains at eie.

Finally let C(f) (respectively R(f)) denote, as usual, the set of all values w in
# such that there exists a sequence {z,} in D for which lim,_, |zn| =1 and
lim,_, . f(z,) = w (f(z,) = w).
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Let ZC(f) denote the frontier of C(f) relative to 2. Collingwood [9, Theorem
9A, p. 389] showed that for any f meromorphic in D and such that C(f) = #C(f),
then for each eif € J(f),

C(t, eif) = (i, eif).

An analogous result is given by the next theorem.
THEOREM 3. Let f be meromorphic in D, and suppose R(f) = FR(f). Then

CA(fy eie) = ﬁA(f’ eie)

for every eif € C.

Proof. The hypotheses imply that there exist three values that f takes on at
most a finite number of times in D; hence as can be seen from a result of Lehto and
Virtanen [10, p. 54], f is normal in D. Further, since int RA(f, €if) = ¢ for any eif
and any Stolz domain at eif, Theorem 1 yields the conclusion

(5.0) CA(, eif) = 7 A (f, eif),

where A is any symmetric Stolz domain at eif, 1f A, and A, are two arbitrary
Stolz domains at 619, let A; be any symmetric Stolz domain at eif which contains
both A, and A,. Appealing to the properties of the sets involved and utilizing (5.0),
we conclude that

CA]_(f’ eig) = ﬂAz(f, ei@) ’

and the theorem is proved.
~ COROLLARY 3. If f is meromovphic in D and R(f) = FR(f), then for any
eif € J(f),
C(f, eif) = 7, (£, eif).

Proof. For eif € J(f), CA(f, eif) = C(f, elf). An application of Theorem 3 com-
pletes the proof.

6. NORMAL FUNCTIONS HAVING THE TWO SEGMENT PROPERTY
OF BAGEMIHL

For a given complex-valued function w defined in D s é)pose that there exist two
Jordan curves I'; and I',, lying in D and terminating at el , such that

Cp (w, ei9) N Cp _(w, eif) = .

In this instance w is said to possess the two-arc property at eil, If T', and T', can
be taken as chords, w is said to possess the two-segment property at eif. (For
these definitions, see [2, p. 29].)

We find it useful to define a slightly different property. The function w is said
to possess the non-tangential two-arc property if there exist two Jordan curves I')
and T',, terminating at ei6 and lying in some Stolz domain at ei9, such that
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Cl-l(w, eif) n CI‘2(W’ eif) = 9.

In the above definitions, if we replace the number 2 by any positive integer n,
we alter the definitions accordingly.

THEOREM 5. Let f be normal and meromorvphic in D. For any positive inte-
ger n, the set of all points eif at which f possesses the n-segment property is a
set of fivst category and measure 0 on C.

__ Proof. Consider any fixed positive integer n, and let S(f) denote the set of all
eif at which f possesses the n-segment property. We shall show that

SN K@E = 9.

Since K(f) is known to be a residual set of measure 27 on C, the theorem will then
be proved. Suppose there exists a point ei® such that eif € S(f)N K(f). Let A be
any fixed Stolz domain at eif which contains the n-segments whose corresponding
cluster sets have empty intersection. By Theorem 2 the cluster set along any chord,
lying in A and terminating at a point of K(f), is Ca(f, ei0), This contradicts the
hypothesis; hence the theorem is proved.

THEOREM 6. Suppose f is mevomorvphic in D and that theve exist three values
which R(f) omits. Then, for each positive integer n, the set of all points eif gt
which f possesses the non-tangential n-arc property is a subset of C of first cate-
gory and linear measure 0.

Proof. Let n be a fixed positive integer. Since there exist three values of #
which f takes on only a finite number of times, f is normal in D. Let A(f) denote
the set of all those points of C at which f possesses the non-tangential n-arc
property. As in the previous theorem we show that A(f) N K(f) = §. Suppose
eif € A(f) N K(f). Set A equal to any fixed symmetric Stolz domain at eif which
contains the n Jordan curves whose corresponding cluster sets have empty inter-
section. By Theorem 1,

Cplf, eif) - RA (£, elf) = p.
Let A, be any Stolz domain at eif that strictly contains A. Observing that
CAl(f, eib) D int RAl(f’ eib) D f{A(f, eif)
and since
eif ¢ K(f) and Ca (4 eld) = Cp(4, elf),
we conclude that
(6.0) Ca,(E, €'9) - int Rp (£, €'9) = @.

Consequently, C Al(f’ eie) is a nonempty, open and closed, connected subset of &,

which implies

(6.1) Ca, elf) = &.
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By the hypothesis, int RA | (f, eif) must omit at least three values. Combining (6.0)
and (6.1), we reach a contradiction, and hence A(f) N K(f) = .

Theorem 6 can be slightly revised.

THEOREM 7. If f is meromovphic and novmal in D and R(f) omits at least one
value, then the set of all points of C at which f has the non-tangential n-arc prop-
erty is a set of first category and linear measuve 0 velative to C.

Proof. If the normality of f is assumed, the arguments used to prove Theorem 6
depend only on the fact that int R(f) is not the whole Riemann sphere. Hence the
same arguments prove Theorem 7.
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