BOUNDARY BEHAVIOR OF NORMAL FUNCTIONS DEFINED IN THE UNIT DISK

D. C. Rung

1. INTRODUCTION

In generalizing some results of Plessner, Meier [12, p. 241] showed that if f is holomorphic for |z| < 1, and if there exists a set M of points $e^{i\theta}$ such that for each $e^{i\theta} \in M$, f remains bounded on two distinct rectilinear segments terminating in $e^{i\theta}$, then f has an angular limit at almost all points of M.

The search for an analogous result for holomorphic functions which are normal if |z| < 1 led to some results which are given in Section 1. (For the definition of a normal function see [10, p. 53].) Section 2 contains some examples of the behavior enunciated in Section 1.

The point $e^{i\theta}$ is called a Plessner point of f, if the cluster set at $e^{i\theta}$ of f on every Stolz domain with vertex $e^{i\theta}$ is the whole complex plane.

In Section 3 it is shown that, at a Plessner point $e^{i\theta}$ of a normal, meromorphic function f, the cluster set along any chord terminating in $e^{i\theta}$ is the whole Riemann sphere. The case in which the range of such functions f is a nowhere dense set of the Riemann sphere is treated in Section 4.

We conclude, in Section 5, by considering points at which the two-segment property of Bagemihl [1, p. 380] holds.

The following notation will be used. The open unit disk |z| < 1 and its circumference |z| = 1 will be denoted by D and C, respectively. For z_1 and z_2 in D, set $\rho(z_1, z_2)$ equal to the non-Euclidean (hyperbolic) distance between these points. For a discussion of this non-Euclidean geometry see, for example, [7, Chapter 2].

For any point $e^{i\theta}$, we denote by $\triangle_{\alpha,\theta}$ the symmetric Stolz domain of opening 2α $(0 < \alpha < \pi/2)$ with vertex $e^{i\theta}$. If it is clear that the vertex is at $e^{i\theta}$, we write \triangle_{α} for $\triangle_{\alpha,\theta}$; and if there is no need to distinguish the angle α of opening, we just write \triangle .

Let Σ be any subset of D whose closure intersects C only at $e^{i\theta}$, and let $\mathscr R$ be the Riemann sphere. For a complex-valued function f defined in D, the cluster set (respectively range set) of f along Σ will be denoted by $C_{\Sigma}(f,e^{i\theta})$ (respectively $R_{\Sigma}(f,e^{i\theta})$). It is the set of all points w on $\mathscr R$, such that there exists a sequence of points $\{z_n\}$ in Σ with $\lim_{n\to\infty}z_n=e^{i\theta}$ and with $\lim_{n\to\infty}f(z_n)=w$ (respectively $f(z_n)=w$, $n=1,2,\cdots$). If τ is a simple, continuous curve in D one of whose ends is $e^{i\theta}$ and if Δ is any Stolz domain at $e^{i\theta}$, we set

$$\pi_{\triangle}(\mathbf{f}, e^{i\theta}) = \bigcap_{\tau} C_{\tau}(\mathbf{f}, e^{i\theta}),$$

where the intersection is taken over all such τ lying entirely in \triangle .

Received May 28, 1962.

Finally define

$$\tilde{R}_{\triangle}(f, e^{i\theta}) = \bigcap_{\bigwedge *} int R_{\triangle *}(f, e^{i\theta}),$$

where \triangle is any Stolz domain at $e^{i\theta}$, and the intersection is taken over all Stolz domains \triangle^* at $e^{i\theta}$ which strictly contain \triangle . (The set int $R_{\triangle^*}(f, e^{i\theta})$ is the interior of $R_{\triangle^*}(f, e^{i\theta})$ relative to \mathscr{R} . We consider the domain of values of f, as well as the sets $C_{\triangle}(f, e^{i\theta})$, $R_{\triangle}(f, e^{i\theta})$, and $\pi_{\triangle}(f, e^{i\theta})$, to be a subset of \mathscr{R} , so that, for example, f is considered to be continuous at its poles. Further, $c = \infty$ is an admissible value in any of the theorems unless otherwise specified.)

2. THE BASIC THEOREM

THEOREM 1. If f is normal and meromorphic in D, then for any $e^{i\theta} \in C$ and any Stolz domain \triangle_{α} at $e^{i\theta}$,

$$C_{\triangle_{\alpha}}(f, e^{i\theta}) - \tilde{R}_{\triangle_{\alpha}}(f, e^{i\theta}) \subseteq \pi_{\triangle_{\alpha}}(f, e^{i\theta}).$$

Proof. Consider any $c \in C_{\triangle_{\alpha}}(f, e^{i\theta}) - \widetilde{R}_{\triangle_{\alpha}}(f, e^{i\theta})$. There exists a sequence $\{z_n\}$ $(z_n \in \triangle_{\alpha})$ with $\lim_{n \to \infty} z_n = e^{i\theta}$ such that

(2.0)
$$\lim_{n\to\infty} f(z_n) = c.$$

Let w_n be the unique point on the diameter of C from $e^{i\theta}$ to $-e^{i\theta}$ for which $\rho(z_n,w_n)$ equals the non-Euclidean distance of z_n to this diameter; for any β ($\alpha<\beta<\pi/2$) let H_β denote the connected region bounded by the two hypercycles, symmetric in this diameter, that form the angles β and $-\beta$ with the diameter. There exists some neighborhood U of $e^{i\theta}$ such that, within this neighborhood, \triangle_β contains H_β . Further, if we specify β_1 ($\alpha<\beta_1<\beta$), we may choose a positive integer N so that, for all $n\geq N$,

(2.1)
$$\rho(z_n, w_n) < \frac{1}{2} \log \cot \left(\frac{\pi}{4} - \frac{\beta_1}{2}\right) \equiv M.$$

The existence of such an N is insured by observing that since all z_n lie in Δ_{α} ,

$$\overline{\lim}_{n\to\infty} \rho(z_n, w_n) \leq \frac{1}{2} \log \cot \left(\frac{\pi}{4} - \frac{\alpha}{2}\right).$$

For convenience we consider all z_n to satisfy (2.1).

As is usual in arguments concerning normal functions, set

$$g_n(\zeta) = f\left(\frac{\zeta + w_n}{1 + \bar{w}_n \zeta}\right)$$
 $(n = 1, 2, \dots).$

By the normality of f, there exists a subsequence $\left\{\,g_{\,n_{\bf k}}^{}\right\}\,$ which converges uniformly in any compact part of $\,\left|\,\zeta\,\right|<1\,$ to a function g. Next define a sequence $\,\left\{\,\zeta_{\,\bf k}^{}\right\}\,$ by the equation

$$z_{n_k} = \frac{\zeta_k + w_{n_k}}{1 + \overline{w}_{n_k} \zeta_k}.$$

The inequality (2.1) implies that

$$\left|\zeta_{k}\right| < \frac{e^{2M}-1}{e^{2M}+1} \equiv K;$$

and hence if ζ_0 is an accumulation point of $\{\zeta_k\}$, then $|\zeta_0| \leq K$. Let $\{\zeta_p\}$ be a subsequence of $\{\zeta_k\}$ tending to ζ_0 . The continuous convergence of $\{g_{n_k}\}$ at ζ_0 together with (2.0) and (2.2) implies that

$$\lim_{p\to\infty} g_{n_p}(\zeta_p) = \lim_{p\to\infty} f(z_{n_p}) = g(\zeta_0) = c;$$

see [8, p. 173 ff.] for a discussion of the notation of continuous convergence.

We now consider two cases, according as to whether $g(\zeta) \equiv c$ or not.

If $g(\zeta) \equiv c$, then f tends uniformly to the value c on the sequence of non-Euclidean disks with centers w_{n_k} and non-Euclidean radius M. Each disk intersects both boundary segments of \triangle_{α} , which in turn implies that $c \in \pi_{\triangle_{\alpha}}(f, e^{i\theta})$.

Consider the case where $g(\zeta)$ is not identically c. Let D* denote any fixed non-Euclidean open disk with center ζ_0 which is contained in the open disk

$$|\zeta| < \frac{1}{2} \frac{e^{2M^*} - 1}{e^{2M^*} + 1},$$

where

$$\mathbf{M}^* = \frac{1}{2}\log \cot \left(\frac{\pi}{4} - \frac{\beta}{2}\right).$$

This insures that if $\zeta \in D^*$ then, for any positive integer n,

$$x = \frac{\zeta + w_n}{1 + \overline{w}_n \zeta}$$

is contained in H_{β} .

Let ξ be any point of D*. Hurwitz's theorem guarantees the existence of an integer k_0 and a sequence of points $\{\xi_k\}$ in D* which tend to ξ such that

$$g_{n_k}(\xi_k) = g(\xi)$$

for all $k \geq k_n$.

Defining

$$x_k = \frac{\xi_k + w_{n_k}}{1 + \xi_k \overline{w}_{n_k}} \qquad (k \ge k_0),$$

and referring to the definition of the family $\{g_n\}$, we find that (2.3) yields the equality $f(x_k) = g(\xi)$. For sufficiently large k, all x_k are contained in $U \cap H_{\beta}$ and hence in \triangle_{β} . It is clear that the point $g(\xi)$ is contained in $R_{\triangle_{\beta}}(f, e^{i\theta})$. Since g is an open mapping and ξ is an arbitrary point of D^* , $g(D^*)$ is an open set, which contains $g(\zeta_0) = c$ and which is contained in $R_{\triangle_{\beta}}(f, e^{i\theta})$. The assertion that $g(\zeta)$ is not identically equal to c implies that $c \in \widetilde{R}_{\triangle_{\alpha}}(f, e^{i\theta})$. By our choice of c, this is impossible. Thus $g(\zeta) \equiv c$, and the theorem is proved.

A point $e^{i\theta}$ is called a Fatou point of f(z) if $\lim f(z)$ exists uniformly as $z \to e^{i\theta}$ in every Stolz domain with vertex $e^{i\theta}$.

COROLLARY 1. Let f be normal and meromorphic in D, and suppose f omits the value c. Further suppose there exists a subset E of C of positive linear measure such that for each point $e^{i\theta} \in E$ there exists a Jordan curve τ_{θ} , tending to $e^{i\theta}$ and lying within some Stolz domain at $e^{i\theta}$, such that $C_{\tau_{\theta}}(f, e^{i\theta})$ does not contain c. Then almost all points of E are Fatou points.

Proof. Consider any $e^{i\theta} \in E$. For some Stolz domain \triangle at $e^{i\theta}$, $c \notin \pi_{\triangle}(f, e^{i\theta})$; and since, by hypothesis, $c \notin \widetilde{R}_{\triangle}(f, e^{i\theta})$, we conclude that $c \notin C_{\triangle}(f, e^{i\theta})$. Thus $e^{i\theta}$ cannot be a Plessner point of f. An application of Plessner's theorem shows that almost all points of E must be Fatou points.

If we restrict f to be holomorphic and normal in D and if we set $c = \infty$ in Corollary 1, we obtain the more special result below.

COROLLARY 2. Let f be holomorphic and normal in D. Suppose that there exists a subset E of C such that, for each point $e^{i\theta}$ in E, f is bounded on a Jordan curve terminating in $e^{i\theta}$ and lying in some Stolz domain at $e^{i\theta}$. Then f has Fatou points at almost all points of E.

3. EXAMPLES

The non-tangential approach to $e^{i\theta}$ hypothesized in Theorem 1 is essential. To see this, we define $C(f, e^{i\theta})$, $R(f, e^{i\theta})$, and $\pi(f, e^{i\theta})$ as we did $C_{\triangle}(f, e^{i\theta})$, $R_{\triangle}(f, e^{i\theta})$, and $\pi_{\triangle}(f, e^{i\theta})$, except that we omit the restriction that the sequence $\{z_n\}$, or the curve τ , necessarily approach $e^{i\theta}$ within some Stolz domain. It is not true that for each normal and meromorphic function f

$$C(f, e^{i\theta})$$
 - $R(f, e^{i\theta}) \subseteq \pi(f, e^{i\theta})$.

If u denotes the elliptic modular function defined in D, then $C(u, e^{i\theta})$, for all but a countable set of points S of C, is the whole Riemann sphere, while for $e^{i\theta} \in S$, $C(u, e^{i\theta})$ is either 0, 1, or ∞ . For each $e^{i\theta} \in C$ it is known that $\pi(u, e^{i\theta})$ is the empty set [2, Theorem 3, p. 30]. However, for each $e^{i\theta}$, $C(u, e^{i\theta})$ - $R(u, e^{i\theta})$ contains at least one of the values 0, 1, or ∞ .

The notion of normalcy is also necessary in Theorem 1. Seidel and Bagemihl [4, Corollary 5, p. 191] constructed a function f, holomorphic in D, for which the cluster set on almost all radii is the unit circle. According to Plessner's theorem, almost all points of C are then Plessner points of f. Choose a Plessner point $e^{i\theta}$ of f for which the corresponding cluster set is the unit circle. For any Stolz domain \triangle at $e^{i\theta}$, the point $c=\infty$ is contained in $C_{\triangle}(f,e^{i\theta})$ - $\widetilde{R}_{\triangle}(f,e^{i\theta})$ but is not contained in the set $\pi_{\triangle}(f,e^{i\theta})$.

4. BEHAVIOR OF NORMAL FUNCTIONS AT PLESSNER POINTS

In the sequel let \triangle represent any symmetric or non-symmetric Stolz domain at $e^{i\theta}$. Following the notation used by Noshiro and others [13, p. 68 ff.], if f is meromorphic in D, we denote by J(f) the set of all points $e^{i\theta}$ such that for every Stolz domain at $e^{i\theta}$,

$$C_{\wedge}(f, e^{i\theta}) = C(f, e^{i\theta})$$
.

Let K(f) denote the set of all points $e^{i\theta}$ such that for any two Stolz domains Δ_1 and Δ_2 at $e^{i\theta}$,

$$C_{\triangle_1}(f, e^{i\theta}) = C_{\triangle_2}(f, e^{i\theta})$$
.

Also, given any $e^{i\theta}$, let $\rho(\alpha)$ denote that chord of C terminating at $e^{i\theta}$ and making the angle α ($-\pi/2 < \alpha < +\pi/2$) with the radius at $e^{i\theta}$.

If \triangle is any Stolz domain at $e^{i\theta}$, set

$$\hat{C}_{\triangle}(f, e^{i\theta}) = \bigcap_{\triangle *} C_{\triangle *}(f, e^{i\theta}),$$

where the intersection is taken over all \triangle^* strictly containing \triangle . Similarly define, for any chord $\rho(\alpha)$ at $e^{i\theta}$,

$$\hat{C}_{\rho(\alpha)}(f, e^{i\theta}) = \bigcap_{\wedge *} C_{\triangle *}(f, e^{i\theta}),$$

where \triangle^* contains $\rho(\alpha)$.

LEMMA 1. If f is normal and meromorphic in D, then for any $e^{i\theta}$ and any Stolz domain at $e^{i\theta}$

(i)
$$\hat{C}_{\triangle}(f, e^{i\theta}) = C_{\triangle}(f, e^{i\theta})$$
.

Also, if $\rho(\alpha)$ is any chord at $e^{i\theta}$.

(ii)
$$\hat{C}_{\rho(\alpha)}(f, e^{i\theta}) = C_{\rho(\alpha)}(f, e^{i\theta}).$$

Proof. We first prove (ii). Consider any fixed $e^{i\theta}$. We need only show that

$$\hat{C}_{\rho(\alpha)}(f, e^{i\theta}) \subseteq C_{\rho(\alpha)}(f, e^{i\theta})$$
.

To that end, let $c \in \hat{C}_{\rho(\alpha)}(f, e^{i\theta})$; and let $\{\triangle_n\}$ be a sequence of Stolz domains at $e^{i\theta}$ containing $\rho(\alpha)$, with $\triangle_n \supset \triangle_{n+1}$ and $\bigcap_{n=1}^{\infty} \triangle_n = \rho(\alpha)$. For each \triangle_n $(n=1,2,\cdots)$, let $\{z_k^{(n)}\}$ be a sequence contained in \triangle_n such that $z_k^{(n)} \to e^{i\theta}$ and $f(z_k^{(n)}) \to c$. Select a sequence $w_n = z_{k_n}^{(n)}$ $(n=1,2,\cdots)$ so that $|w_n - e^{i\theta}| < 1/n$ and $|f(w_n) - c| < 1/n$. Then $f(w_n)$ tends to c as $n \to \infty$, and $w_n \in \triangle_n$. As is easily seen, the non-Euclidean distance of w_n to $\rho(\alpha)$ tends to zero as $n \to \infty$. Let ζ_n be that point on $\rho(\alpha)$ at which this distance is assumed. Then $\rho(w_n, \zeta_n) \to \infty$. By a result of Seidel and Bagemihl [6, Lemma 1, p. 10], $f(\zeta_n) \to c$ as $n \to \infty$. Since c was chosen to be any point contained in $C_{\rho(\alpha)}(f, e^{i\theta})$, (ii) is proved. The proof of (i) may be seen to be similar. With this lemma we can prove the following theorem.

THEOREM 2. Let f be normal and meromorphic in C. If $e^{i\theta} \in K(f)$, then for any Stolz domain \triangle and any chord $\rho(\alpha)$ at $e^{i\theta}$,

$$C_{\triangle}(f, e^{i\theta}) = C_{\rho(\alpha)}(f, e^{i\theta}).$$

Proof. For any two Stolz domains \triangle_1 and \triangle_2 at $e^{i\theta}$, $C_{\triangle_1}(f, e^{i\theta}) = C_{\triangle_2}(f, e^{i\theta})$. Therefore, employing Lemma 1, we see that

$$C_{\triangle}(f, e^{i\theta}) = \hat{C}_{\rho(\alpha)}(f, e^{i\theta}) = C_{\rho(\alpha)}(f, e^{i\theta}).$$

Remark 1. The set of points K(f), since it contains all Plessner and Fatou points, is of measure 2π on C; and further, according to Collingwood [9, Theorem 4A, p. 383], K(f) is also residual on C.

Remark 2. At any Plessner point $e^{i\theta}$ of f, since $C_{\triangle}(f,e^{i\theta})$ is the Riemann sphere \mathscr{R} , so also is the cluster set along any chord. This compares with the behavior of an arbitrary meromorphic function g at a Plessner point, where the equation

$$C_{O(\alpha)}(f, e^{i\theta}) = C_{\triangle}(f, e^{i\theta}) = \mathcal{R}$$

is satisfied for a set S of points α $(-\pi/2 < \alpha < \pi/2)$ which is residual relative to the interval $(-\pi/2, \pi/2)$; see Seidel and Bagemihl [3, Theorem 9, p. 1072]. However S may be of measure 0 on $(-\pi/2, \pi/2)$, as an example of Seidel and Bagemihl [5, Corollary 1, p. 82] demonstrates. They constructed a meromorphic and nonconstant function g in D such that for every θ $(0 \le \theta \le 2\pi)$ g tends to 0 along almost all chords of C terminating at $e^{i\theta}$. The set of Fatou points must be of measure 0, otherwise, by the uniqueness theorem of Lusin and Privaloff, [11, p. 164] g would be identically 0. By Plessner's theorem, almost all points of C are Plessner points of g. At a Plessner point of g the residual set S, introduced above, must be of measure 0 on $(-\pi/2, \pi/2)$.

5. RESULTS ON THE OUTER ANGULAR CLUSTER SET

If f is holomorphic in D, the outer angular cluster set at $\mathrm{e}^{\mathrm{i}\theta}$ is defined to be

$$C_A(f, e^{i\theta}) = \bigcup_{\Lambda} C_{\Delta}(f, e^{i\theta}),$$

where the union is taken over all Stolz domains at $e^{i\theta}$; for example, see [13, p. 69]. We also form the set

$$\pi_{\mathbf{A}}(\mathbf{f}, \mathbf{e}^{\mathbf{i}\theta}) = \bigcap_{\Lambda} \pi_{\Delta}(\mathbf{f}, \mathbf{e}^{\mathbf{i}\theta}),$$

where \triangle varies over all Stolz domains at $e^{i\theta}$.

Finally let C(f) (respectively R(f)) denote, as usual, the set of all values w in $\mathscr R$ such that there exists a sequence $\{z_n\}$ in D for which $\lim_{n\to\infty}|z_n|=1$ and $\lim_{n\to\infty}f(z_n)=w$ ($f(z_n)=w$).

Let $\mathscr{F}C(f)$ denote the frontier of C(f) relative to \mathscr{R} . Collingwood [9, Theorem 9A, p. 389] showed that for any f meromorphic in D and such that $C(f) = \mathscr{F}C(f)$, then for each $e^{i\theta} \in J(f)$,

$$C(f, e^{i\theta}) = \pi(f, e^{i\theta}).$$

An analogous result is given by the next theorem.

THEOREM 3. Let f be meromorphic in D, and suppose $R(f) = \mathcal{F}R(f)$. Then

$$C_A(f, e^{i\theta}) = \pi_A(f, e^{i\theta})$$

for every $e^{i\theta} \in C$.

Proof. The hypotheses imply that there exist three values that f takes on at most a finite number of times in D; hence as can be seen from a result of Lehto and Virtanen [10, p. 54], f is normal in D. Further, since int $R_{\triangle}(f, e^{i\theta}) = \emptyset$ for any $e^{i\theta}$ and any Stolz domain at $e^{i\theta}$, Theorem 1 yields the conclusion

(5.0)
$$C_{\triangle}(f, e^{i\theta}) = \pi_{\triangle}(f, e^{i\theta}),$$

where \triangle is any symmetric Stolz domain at $e^{i\theta}$. If \triangle_1 and \triangle_2 are two arbitrary Stolz domains at $e^{i\theta}$, let \triangle_3 be any symmetric Stolz domain at $e^{i\theta}$ which contains both \triangle_1 and \triangle_2 . Appealing to the properties of the sets involved and utilizing (5.0), we conclude that

$$C_{\triangle_1}(f, e^{i\theta}) = \pi_{\triangle_2}(f, e^{i\theta}),$$

and the theorem is proved.

COROLLARY 3. If f is meromorphic in D and R(f) = \mathscr{F} R(f), then for any $e^{i\theta} \in J(f)$,

$$C(f, e^{i\theta}) = \pi_A(f, e^{i\theta})$$
.

Proof. For $e^{i\theta} \in J(f)$, $C_{\triangle}(f, e^{i\theta}) = C(f, e^{i\theta})$. An application of Theorem 3 completes the proof.

6. NORMAL FUNCTIONS HAVING THE TWO SEGMENT PROPERTY OF BAGEMIHL

For a given complex-valued function w defined in D suppose that there exist two Jordan curves Γ_1 and Γ_2 , lying in D and terminating at $e^{i\theta}$, such that

$$C_{\Gamma_1}(w, e^{i\theta}) \cap C_{\Gamma_2}(w, e^{i\theta}) = \emptyset.$$

In this instance w is said to possess the two-arc property at $e^{i\theta}$. If Γ_1 and Γ_2 can be taken as chords, w is said to possess the two-segment property at $e^{i\theta}$. (For these definitions, see [2, p. 29].)

We find it useful to define a slightly different property. The function w is said to possess the non-tangential two-arc property if there exist two Jordan curves Γ_1 and Γ_2 , terminating at $e^{i\theta}$ and lying in some Stolz domain at $e^{i\theta}$, such that

$$C_{\Gamma_1}(w, e^{i\theta}) \cap C_{\Gamma_2}(w, e^{i\theta}) = \emptyset.$$

In the above definitions, if we replace the number 2 by any positive integer n, we alter the definitions accordingly.

THEOREM 5. Let f be normal and meromorphic in D. For any positive integer n, the set of all points $e^{i\theta}$ at which f possesses the n-segment property is a set of first category and measure 0 on C.

Proof. Consider any fixed positive integer n, and let S(f) denote the set of all $e^{i\theta}$ at which f possesses the n-segment property. We shall show that

$$S(f) \cap K(f) = \emptyset$$
.

Since K(f) is known to be a residual set of measure 2π on C, the theorem will then be proved. Suppose there exists a point $e^{i\theta}$ such that $e^{i\theta} \in S(f) \cap K(f)$. Let Δ be any fixed Stolz domain at $e^{i\theta}$ which contains the n-segments whose corresponding cluster sets have empty intersection. By Theorem 2 the cluster set along any chord, lying in Δ and terminating at a point of K(f), is $C_{\Delta}(f, e^{i\theta})$. This contradicts the hypothesis; hence the theorem is proved.

THEOREM 6. Suppose f is meromorphic in D and that there exist three values which R(f) omits. Then, for each positive integer n, the set of all points $e^{i\theta}$ at which f possesses the non-tangential n-arc property is a subset of C of first category and linear measure 0.

Proof. Let n be a fixed positive integer. Since there exist three values of \mathcal{R} which f takes on only a finite number of times, f is normal in D. Let A(f) denote the set of all those points of C at which f possesses the non-tangential n-arc property. As in the previous theorem we show that $A(f) \cap K(f) = \emptyset$. Suppose $e^{i\theta} \in A(f) \cap K(f)$. Set \triangle equal to any fixed symmetric Stolz domain at $e^{i\theta}$ which contains the n Jordan curves whose corresponding cluster sets have empty intersection. By Theorem 1,

$$C_{\wedge}(f, e^{i\theta}) - \tilde{R}_{\wedge}(f, e^{i\theta}) = \emptyset$$
.

Let \triangle_1 be any Stolz domain at $e^{i\theta}$ that strictly contains \triangle . Observing that

$$C_{\triangle}(f, e^{i\theta}) \supseteq int R_{\triangle}(f, e^{i\theta}) \supseteq \widetilde{R}_{\triangle}(f, e^{i\theta})$$

and since

$$e^{i\theta} \in K(f)$$
 and $C_{\triangle_1}(f, e^{i\theta}) = C_{\triangle}(f, e^{i\theta})$,

we conclude that

(6.0)
$$C_{\triangle_1}(f, e^{i\theta}) - int R_{\triangle_1}(f, e^{i\theta}) = \emptyset.$$

Consequently, $C_{\triangle_1}(f, e^{i\theta})$ is a nonempty, open and closed, connected subset of \mathcal{R} , which implies

(6.1)
$$C_{\triangle_1}(f, e^{i\theta}) = \mathcal{R}.$$

By the hypothesis, int $R_{\Delta_1}(f, e^{i\theta})$ must omit at least three values. Combining (6.0) and (6.1), we reach a contradiction, and hence $A(f) \cap K(f) = \emptyset$.

Theorem 6 can be slightly revised.

THEOREM 7. If f is meromorphic and normal in D and R(f) omits at least one value, then the set of all points of C at which f has the non-tangential n-arc property is a set of first category and linear measure 0 relative to C.

Proof. If the normality of f is assumed, the arguments used to prove Theorem 6 depend only on the fact that int R(f) is not the whole Riemann sphere. Hence the same arguments prove Theorem 7.

REFERENCES

- 1. F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 379-382.
- 2. F. Bagemihl, G. Piranian, G. S. Young, *Intersections of cluster sets*, Bul. Inst. Politehn. Iași (N.S.) 5 (9) (1959), no. 3-4, 29-34.
- 3. F. Bagemihl and W. Seidel, A general principle involving Baire category, with applications to function theory and other fields, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 1068-1075.
- 4. ——, Some boundary properties of analytic functions, Math. Z. 61 (1954), 186-199.
- 5. ———, Some remarks on boundary behavior of analytic and meromorphic functions, Nagoya Math. J. 9 (1955), 79-85.
- 6. ——, Sequential and continuous limits of meromorphic functions, Ann. Acad. Sci. Fenn., Ser. A I No. 280 (1960), 17 pp.
- 7. C. Carathéodory, *Conformal representation*, 2d ed. Cambridge Tracts in Mathematics and Mathematical Physics, no. 28. Cambridge, at the University Press, 1952.
- 8. ——, Theory of functions of a complex variable, Vol. 1, Chelsea Publishing Co., New York, 1954.
- 9. E. F. Collingwood, On sets of maximum indetermination of analytic functions, Math. Z. 67 (1957), 377-396.
- 10. O. Lehto and K. I. Virtanen, Boundary behavior and normal meromorphic functions, Acta. Math. 97 (1957), 47-65.
- 11. N. Lusin and I. Privaloff, Sur l'unicité et la multiplicité des fonctions analytiques, Ann. Sci. École Norm. Sup. (3) 42 (1925), 143-191.
- 12. K. Meier, Über die Randwerte meromorpher Funktionen und hinreichende Bedingungen für Regularität von Funktionen einer komplexen Variablen, Comment. Math. Helv. 24 (1950), 238-259.
- 13. K. Noshiro, *Cluster sets*, Ergebnisse der Mathematik und ihrer Grenzgebiete, n.F., Heft 28, Springer-Verlag, Berlin, 1960.

The Pennsylvania State University