HOMOTOPY PRODUCTS FOR H-SPACES
Martin Arkowitz

1. INTRODUCTION

In this note we consider two products in the generalized homotopy groups of an
H-space. The first is a commutator or generalized Samelson product. It assigns to
each a € 7(A, Y) and each 8 € 7(B, Y) an element <a, > € (A # B, Y), where A
and B are polyhedra and Y is an H-space (definitions and notation are presented
below). The definition is given by means of a commutator, and thus this product is
closely related to the homotopy-commutativity of Y. Proposition 6 asserts that if
A=B=Y and a = 8 = 1, where L denotes the homotopy class of the identity map,
then <a, 8> is trivial if and only if Y is homotopy-commutative. From this we
obtain Stasheff’s axial theorem [10, Theorem 1.10], which gives necessary and suf-
ficient conditions for a loop space to be homotopy-commutative. The second product
that we consider is the associator product. It assigns to @ and 8 as above and
y € 7{C, Y) an element <a, 3, y>€ w(A # B #C, Y), where A, B, and C are poly-
hedra and Y is an H-space. This product is defined by means of an associator and
is related to the homotopy-associativity of Y. In fact, if A=B=C =Y and
a=8=y=t, <a, B, y> vanishes if and only if Y is homotopy-associative (Propo-
sition 10). We show that if A, B, and C are suspensions, the commutator and asso-
ciator products are multiplicative in each variable. Thus if A, B, and C are
spheres, these products provide homomorphisms on homotopy groups,

(V) @ 1g(Y) = Tpig(V)  and () @ 1q (V) @ 7x(¥) — Tprqex (V).

In Proposition 12, the primary obstruction (in the ordinary cohomological sense) to
the homotopy-commutativity of Y and to the homotopy-associativity of Y is com-
puted. The preceding homomorphisms give cohomology coefficient homomorphisms
which enter into the computation of these obstruction elements.

For the case where A, B, and C are spheres, the commutator and associator
products seem to be similar to James’ obstructions to homotopy-commutativity and
to homotopy-associativity, respectively, both of which are defined as separation
elements [6].

2. PRELIMINARIES

We consider only path-connected topological spaces with base points. The base
point is generically denoted by *. All maps and homotopies will respect base points.
If R and S are spaces, (R, S) denotes the collection of homotopy classes of maps
from R to S. If f, gt R — S are maps, f ~ g means that f is homotopic to g. The
constant map from R to S (mapping all of R onto * € S) is written *: R — S. If
f ~ *x, we say that f is nullhomotopic. The homotopy class of a map g: R — S is
written {g} € 7(R, S). Maps h: R — R' and k: S — S' induce transformations
h*: 7(R', S) — 7(R, 8) for all S and k,{#(R, S) — #(R, S') for all R in the obvious
way.
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Next we introduce notation for certain functors. For more details see [1], [4],
or [10]. We let = denote the (reduced) suspension functor, and we let  denote the
loop space functor. These functors can be iterated so that, for example, Z?R is
Z(ZR). We shall also consider the cartesian product (written X) and the wedge
(written V). Recall that ~

RVS=RX*x Ux*xXSCRXS.

If A is a subspace of X that contains the base point, then X/A denotes the (quotient)
space obtained from X by identifying A to the base point. In particular, we set

R #S =R X S/RV S. Another useful quotient space is R o S, the join of R and S.
This is the space obtained from R X S X I (I is the closed unit interval [0, 1]) by
“factoring out” the relations '

1) (r, s, 0) ~(r,s', 0) forall s, s'€S,
(2) (r,s,1)~(r", s, 1) forall r, r' € R, and
(3) (%, *, t) ~* for all t € I.

Next let Y be a space, let j: YV Y — Y XY be the inclusion map, and let
V:YV Y — Y be the folding map (V(y, *) =y = V(*, y)). We call Y an H-space if
thereisan m: YXY — Y suchthat mj~V:YVY — Y. The map m is called the
multiplication in Y, and m(x, y) is written 'x-y or xy, where X, y € Y. An H-space
is homotopy-commutative if the maps x,y — Xy and X,y - yxXx from Y XY to Y
are homotopic. It is homotopy-associative if x,y, z — x(yz) and x, y, z — (xy)z
from YXYXY to Y are homotopic. A loop space with the usual multiplication of
loops is an example of a homotopy-associative H-space. If f, g: R — Y, the multi-
plication in Y induces a product f-g or fg: R — Y. Thus if Y is an H-space, there
exists a multiplication in #(R, Y) which has {*} as unit. It is also possible to
multiply maps f, g: ZR — S to get f-g or fg: ZR — S, where R and S are any
spaces. This multiplication induces group structure in #(ZR, S). If Y is an H-
space, the two multiplications in 7(ZR, Y) coincide.

In a CW-complex [12] a 0-cell will be the base point. A space that is both a
CW-complex and an H-space is called an H-complex. If R and S are CW-com-
plexes, then R X S is not necessarily a CW-complex. However, it is known that if
R and S are countable or if R or S is locally finite, then R X S is a CW-complex.
We shall call a single CW-complex R productive, if R X R is a CW-complex.

3. LEMMAS FOR H-SPACES

First we recall the definition of a loop. A set 7 with a binary operation, written
multiplicatively, is called a loop if:

(1) There exists a two-sided identity, denoted by e.

(2) The equations x-a=b and a-y = b, where a, b € 7, admit a unique pair of
solutions x, y € 7.

In particular, every element of 7 has a unique left inverse and a unique right
inverse.

LEMMA 1 (James [6]). If Y is an H-space and K is a CW-complex, then
(K, Y) i.? a loop with multiplication induced by the multiplication in Y and with
unit e = {*}
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The left inverse of @ € 7(K, Y) is denoted by L(o) and the right inverse of a is
denoted by R(a).

LEMMA 2. If Y is an H-complex, then there exist a space S and a map
r: Y — QS such that r : n(K, Y) — n(K, QS) is one-to-one jor all CW-complexes K.

Remark. In [5] James has shown that if Y is a countable H-complex, then the
inclusion Y — Q2Y is a retract.

We sketch the proof of Lemma 2. From the work of Dold and Lashof [2] (with
modifications indicated in [10, p. 739]) there exist spaces and maps Y LELES
such that (1) i is an inclusion map, (2) pi = *, (3) i ~ *, and (4) p,: 7;(E, Y) — 7;(S)
is an isomorphism for all j. If kit Y — E is a nullhomotopy of i, define r: Y — QS
by r(y)(t) = pk(y). The remainder of the proof is an adaptation of an argument due
to Sugawara [11, Proposition 1]. We let m,(K; E, Y) denote the homotopy classes of
maps of the pair. CK, K into the pair E, Y, where CK denotes the (reduced) cone
over K. We consider the diagram

7,(K; E, Y) —?-—> (K, Y)

b e

T(ZK, S) <—— w(K, QS),

where Kk, is the canonical isomorphism [4, Section 2], 2 is the transformation ob-
tained by restriction, and p, is the transformation induced by p: E, Y — S, *. It
follows from (2), (4), and the fact that K is a CW-complex that p, is an isomorph-
ism. But it is easy to verify that

opzl Kk, r (@) = o (¢ € 1(K, Y)).

Thus r,: 7(K, Y) — 7(K, QS) is one-to-one.

Let R be any space, and let PR denote the geometric realization of the singular
complex of R [7]. We call PR the singular polyhedvon of R, and we note that PR
is always a CW-complex. A mapping that induces isomorphisms of homotopy groups
is called a weak homotopy equivalence. We recall that there exists a canonical map-
ping from PR to R which is a weak homotopy equivalence [7].

LEMMA 3. If Y is an H-space, then PY is an H-space.

Proof. Let f: PY — Y be the weak homotopy equivalence. We consider the
element {m(fx f)} € n(PY X PY, Y) and the commutative diagram

3k
7(PY X PY, PY) 1> 7(PY V PY, PY)

lf* lf*
ik
7(PY x PY, Y) 1> n(PY V PY, V).
We observe that PY X PY and PY V PY each have the homotopy type of a CW-
complex [8]. Since f is a weak homotopy equivalence, it then follows that both of

the maps f, in the diagram are one-to-one and onto. Thus there exists a
p € m(PY X PY, PY) with f (u) = {m(fx£)}. But

£0*¥(n) = ¥, (1) = *{m@ExH} = {vyEvD} = £ {Vpy},
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where Vy and Vv py are the folding maps of Y and PY, respectively. Therefore,
i*(u) = {Vpy}, and so u determines a multiplication in PY.

4. THE COMMUTATOR PRODUCT

We now define the commutator product. We assume that A, B, and A X B are
CW-complexes. We let Y be an H-space, and we choose an o € 7(A, Y) and a
B € n(B, Y). These determine elements ph(a), pg(8) € (A x B, Y), where
Pp: AXB— A and pg: AX B — B are the projections. By Lemma 1, there exists
a commutator

(p% (@), P58 = Lo} ®)~ph(@)- 0}, (@)-p}(B) in 7(AX B, Y),

where L denotes left inverse. If j: AV B — A X B is the inclusion, then
i* (ph(@), pX(B)) = e, where e denotes the unit in 7(A \/ B, Y). To see this, consider
the isomorphism

9: AV B, Y) S 7(A, Y) @ 7(B, Y)

given by 4(y) = i’:\('y) @ i"]‘_:,(y), where i,: A— AV B and iz: B— AV B are the in-
jections and the symbol @ denotes cartesian product. Clearly,

0i*(px (@), pR(B) = iXi*(p} (@), p%(B) @ ifi*(h(@), p%®) .

However, i%j*(p%(a), p%(8)) equals (a, e), the commutator of @ and e in 7(A, Y).
Since (@, e) = e, ifj*(p%(@), pX(B)) = e. Similarly, i§i*(pX (@), pR(B)) = e. Thus,

0i* (P (@), pE(B)) = e @ e,

and so j*(p}l_(a), pk(B)) = e, as asserted. Since AV B is a subcomplex of A X B,
there exists an exact sequence

a* i*
TA#B,Y) > m(AXB,Y) = 1AV B, Y)

(see [4, Section 4] or [3]), where q: AX B — A # B is the projection. Hence there
exists an element, written <o, 8>, in 7(A # B, Y) such that q*<a, 8> is the
commutator (p’i(a), pk(8)). By the following proposition this element is unique.

(Compare with Lemma (2.1) of [1].)

PROPOSITION 4. If A, B,and A X B are CW-complexes and Y is an H-space,
then gq*: m(A # B, Y) — n(A X B, Y) is one-to-one.

Proof. Consider first the case where Y is a loop space, Y = QX. By using the
natural isomorphism 7(ZR, S) = (R, 2S) which is valid for all spaces R and S, we
see that it suffices to show that

(Zq)*: 7(Z(A # B), X) — 7(Z(A X B), X)

is one-to-one. Let A o B denote the join of A and B (defined in Section 2), and let
A: A o B — Z(A X B) be the map that identifies all points (a, b, 0) or (a, b, 1) in

A © B to the base point * (a € A, b € B). The composition ZqAx: A ©B — Z(A # B)
identifies all points (a, *, t) and (*, b, u) to *, where t, u € I. These latter points
form a subcomplex of A o B that consists of two cones joined at a single point, and
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hence is contractible. Thus ZqA is a homotopy equivalence [12, p. 238]. Therefore
Zq has a right homotopy inverse, and so (Zq)* is one-to-one. This proves the
proposition in the case where Y is a loop space. For any H-space Y, the singular
polyhedron PY is an H-space by Lemma 3. Therefore, by Lemma 2, there exists
an S and an r: PY — QS such that r, is one-to-one. Now consider the commutative
diagram

£ Tx
m(A # B, Y) <— u(A # B, PY) —> 7(A # B, QS)

=

a* a* lq*
i f* l r*

m(A X B, Y) «— (A X B, PY) —> 7m(A X B, Q§),

where f: PY — Y is the weak homotopy equivalence. We have seen that g* on the
right is one-to-one, and so it follows that g* on the left is one-to-one.

Definition 5. The commutator product of a € n(A, Y) and B € n(B, Y) is the
element <a, B> € n(A # B, Y) uniquely defined by

q*<a, > = (pi(a), PR(B)).

This definition is made under the assumption that (1) Y is an H-space and (2) A, B,
and A X B are CW-complexes. It is clear that we can define a commutator product
<a,B>cn(A#B,Y) of @ € (A, Y) and B8 € 7(B, Y) under the following slightly
more general conditions: (1) Y is an H-space (2) A and B are spaces having the
same homotopy type as A' and B!, respectively, where A', B', and A' X B' are
CW-complexes. We shall consider the commutator product in this more general
form.

When A and B are spheres and Y is homotopy-associative, then <a, 8> is the
Samelson product [9].

If Y is homotopy-commutative, then the commutator (pz(a), pE(B)) = e. Thus
<a,B>=e in m(A # B, Y) for all o and 8.

PROPOSITION 6. Let Y have the homoitopy type of a productive CW-complex
(that is, a CW-complex whose cartesian product with itself is a CW-complex) and
let 1 € n(Y, Y) be the homotopy class of the identity map (v = {1}). Then
<L, t>=e if and only if Y is homotopy-commutative.

The proof follows from the definition and the fact that Y is homotopy-commuta-
tive if and only if the commutator ({p, }, {p, }) is e, where p, and p, are the two
projections of Y X Y onto Y.

Next we relate the generalized Whitehead product of [1] to the commutator
product. Recall that the generalized Whitehead product assigns to @ € 7(ZA, X) and
B € m(ZB, X) an element [&, B] € 7(Z(A # B), X), where A, B, and A X B are CW-
complexes and X is any space. If K. : n(R, Q8) — 7(ZR, S) denotes the canonical
isomorphism [4, Section 2], then it easily follows that K, <a, > = [K,(a), K, (B)].
If the loop space X has the same homotopy type ac a productive CW-complex,
then, by Proposition 6, X is homotopy-commutative if and only if [K, (1), K, ()] = e,
where L = {1} € 1(2X, ©X). The following proposition, which is well known in the
case where A and B are spheres, was proved in [1, Proposition 5.1] by an elemen-
tary argument: For any & € n(ZA, X) and B € 7(ZB, X), [@, B] = e if and only if
there exists a map {: ZA X B — X such that {{|ZA} =@ and {f|ZB} =B. (Here
[ |ZA denotes the map obtained by restricting { to ZA = ZTA X * C ZA X ZB.) Thus
a necessary and sufficient condition for X to be homotopy-commutative is that
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there exist an f{: ZQX X ZQX — X such that { on each factor represents

K, (1) € 1(ZQX, X). But it is easy to see that the map d: ZQX — X defined by
dw, t) = w(t) (v € QX, t € I) has K, (L) as its homotopy class. Hence we have
deduced Stasheff’s theorem:

PROPOSITION 7 [10, Theorem 1.10]. If QX has the same homotopy type as a
productive CW-complex, then QX is homotopy-commutative if and only if theve
exists a map [: ZQX X ZOQX — X whose restriction to each factor is homotopic to d.

We note that Stasheff proves his result under the hypothesis that X has the hom-
otopy type of a countable CW-complex. It is known [8] that this hypothesis implies
that X has the homotopy type of a productive CW-complex.

5. THE ASSOCIATOR PRODUCT

Next we consider the associator product. Here, unless it is otherwise stated, we
shall assume that Y is an H-complex suchthat y-*=y=%.y forall yeY. If Y
is a productive H-complex, this last property follows from the definition of an H-
space. The homotopy extension property of the pair YX Y, Y VY enables one to
replace the multiplication by a homotopic multiplication that has the desired prop-

erty.

By Lemma 1, there are maps A, p: Y — Y such that {1} - t =e and ¢ - {p} = e,
where t = {1} and e = {*} in #(Y, Y). Now let

{f} =aena,v), {g}=B€n®B,Y), and {n} =yenC,V),
where A, B, and C are CW-complexes such that AX BX C is a CW-complex. If
Pi: AXBXC — A, p,: AXBXC — B, and ps:AXBXC — C

are the projections, we obtain maps fp, = f', gp, = g', hpy=h': AXBXC —» Y. We
consider the associator

a=(Lo(gHh) . (f'(g'h)):AXBXC — Y
and note that
al AXBx*~% alAX*x Cxx* and al*xxBXC=x*,.

Moreover, since each of these nullhomotopies comes from the nullhomotopy
A-1~%*:Y — Y, they are all compatible. Thus we get a nullhomotopy

al]T~*:T—Y,
where
T=AXBX*UAX*XCU*xXBXCcAXBXC,

If j: T — AX BXC is the inclusion, A # B # C the quotient space A X BX C/T, and
p: AX BXC — A # B # C the projection, then there exists an exact sequence ([4,
Section 4] or [3])

p* j*
TA#B#C,Y) - nAXBXC,Y) - (T, Y).
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Since j*{a} = e there exists an element <a, 8, y> in m(A # B # C, Y) such that
p*<a, B, y> = {a}. The following proposition shows that <«, 8, y> is unique and
is independent of the representatives f, g, and h of a, 8, and y.

PROPOSITION 8. If Y is any H-space and A, B, C, and AX B X C are CW-
complexes, then

p*:1A#B#C,Y) — 1n(AXBXC,Y)

is one-to-one.
Proof. First, let Y = QX. In this case it suffices to prove that

Cp)*: 1A #B#C), X) — 1(Z(AXBXC), X)
is one-to-one. Set
V=ZAVZIBVZICVZA#B)VZA#C)VZB#C)V ZA #B#C)

and let p,,, p;3, and p,; denote the projections of AX BX C onto A # B, A #C, and
B # C, respectively. It is proved in [4, p. 301], by a homological argument, that the
map

O = 2p,* 2P, * ZPg * ZPgg * ZPys* ZPps " 2P: S(AX BXC) —» V

is a homotopy equivalence, where the multiplication is obtained from Z(A X B X C)
and the bar over a map signifies the map followed by its inclusion into V. Let 5 be
a homotopy inverse of 0. Then, with i: Z(A # B # C) — V denoting the inclusion and
r:V — Z(A # B # C) denoting the projection, '

ro ~ (rZp,) - ~(r_2'p2) - (rZpy) - (rZpy,) - (rZps) « (xZp,y) * (rZp) ~ Zp.

Thus (Zp)ni ~ roni ~ ri, and this is 1, the identity of Z(A # B # C). Therefore
(ni)*(Zp)* = 1, and so (Zp)* is one-to-one. This proves the proposition if Y is a
loop space. The general case now follows as in Proposition 4.

Definition 9. The associator product of
{tf} =aena,Y), {g} =Ben®B,Y), and {h} =y enlC,Y)
is the unique element <o, B, y> in m(A # B # C, Y) such that q*<a, B, y> = {a},
where a is the associator of fp,, gp,, and hp,.

Clearly, if Y is homotopy-associative, then <a, 8, y> = e for all a, 8, and y.

PROPOSITION 10. Y is homotopy-associative if and only if <, t, L> =¢ in
(Y # Y #Y, Y).

Here it is assumed that Y is an H-complex suchthat (1) y - * =y =* .y and
(2) YXY XY isa CW-complex. We omit the proof.

6. AN APPLICATION

First we show that the commutator and associator products are multiplicative in
each variable.
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.PROPOSITION 11. Let A, B, and C be suspensions, and let a, @ € 1(A, Y),
B,B€nB,Y), and v,y € n(C, Y). Then
(i) <ad,p>=<a,p>-<a,p>, <a,pp>=<a,p>-<a,p>,
(ii) <eaa, B, y>=<a, B, y>-<a, B, vy>, and so forth.
We sketch the proof of the first part of (i). By naturality, it suffices to prove
that
<, >0 (@@ #8) = (<, >0 (@ #p) - (<t, t>0(@ #p).

Since A = ZA and B = ZB, there exists a homeomorphism 6: Z2(A # B) — ZA # ZB.
It is easily seen that

(@ #B)0 - (@ #p)0 = ((@@) #p)0,
and thus
<t,t>o0(@@ #B)o0 6 = (K, t>0(@ #p) - (Kt, >0 (@ #p))) od.

The other parts of the proposition are proved similarly.

Thus if A, B, and C are spheres, A = S?, B=S% and C =S" (p, q, r > 1), then
the commutator product and the associator product provide homomorphisms

c: m(Y) @ 7g(Y) — 7ptq(¥Y) and  a: 7p(Y) ® 7(Y) @ 7x(Y) — mpiqir (¥).

If Y is a productive H-complex, then Y is homotopy-commutative if and only if
¢~*:Y#Y — Y, where ¢ is some map in the class <, t>. Similarly, Y is
homotopy-associative if and only if Y ~*x: Y #Y # Y— Y, where ¥ is a map in the
class <t, t, t>. If Y isan (n - 1)-connected H-complex (n > 2), then it is easily
seen that Y #Y is (2n - 1)-connected and Y # Y # Y is (3n - 1)-connected. Thus
there exists a primary obstruction to a nullhomotopy of ¢, °p € Hzn(Y #Y; 72, (Y)),
and a primary obstruction to a nullhomotopy of ¥, oy € H3MNY #Y #Y; 73,(Y)). The
element ©g (respectively, Otl/) can be regarded as the primary obstruction to the
homotopy-commutativity (respectively, the homotopy-associativity) of Y. Let
b € H(Y, *; m,(Y)) denote the basic class, let

QeYXY,YVY —>Y#Y,* and p:YXYXY, T > Y#Y#Y, *

denote the projections, and let X denote the cohomology cross product.
PROPOSITION 12. (i) q*"!c,(bx b) =04,
N S |
(ii) p° Ta,(bXbxDb)= oy s

where
Cet MY XY, YV Y; 7 (V) @ 7 (Y) — HENY XY, YV Y; 7, (Y) and
a MY XYXY, T; 7 (Y) @ 7 (V) @ 7,(Y) — H (Y X Y XY, T; 73,(Y))

are induced by the coefficient homomorphisms c and a mentioned above.

The proof is a consequence of elementary obstruction theory, several commu-
tativity relations, and the definitions.
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