HOMOTOPY PRODUCTS FOR H-SPACES

Martin Arkowitz

1. INTRODUCTION

In this note we consider two products in the generalized homotopy groups of an H-space. The first is a commutator or generalized Samelson product. It assigns to each $\alpha \in \pi(A, Y)$ and each $\beta \in \pi(B, Y)$ an element $<\alpha, \beta> \in \pi(A \# B, Y)$, where A and B are polyhedra and Y is an H-space (definitions and notation are presented below). The definition is given by means of a commutator, and thus this product is closely related to the homotopy-commutativity of Y. Proposition 6 asserts that if A = B = Y and $\alpha = \beta = \iota$, where ι denotes the homotopy class of the identity map, then $\langle \alpha, \beta \rangle$ is trivial if and only if Y is homotopy-commutative. From this we obtain Stasheff's axial theorem [10, Theorem 1.10], which gives necessary and sufficient conditions for a loop space to be homotopy-commutative. The second product that we consider is the associator product. It assigns to α and β as above and $\gamma \in \pi(C, Y)$ an element $\langle \alpha, \beta, \gamma \rangle \in \pi(A \# B \# C, Y)$, where A, B, and C are polyhedra and Y is an H-space. This product is defined by means of an associator and is related to the homotopy-associativity of Y. In fact, if A = B = C = Y and $\alpha = \beta = \gamma = \iota$, $\langle \alpha, \beta, \gamma \rangle$ vanishes if and only if Y is homotopy-associative (Proposition 10). We show that if A, B, and C are suspensions, the commutator and associator products are multiplicative in each variable. Thus if A, B, and C are spheres, these products provide homomorphisms on homotopy groups,

$$\pi_p(Y) \otimes \pi_q(Y) \to \pi_{p+q}(Y)$$
 and $\pi_p(Y) \otimes \pi_q(Y) \otimes \pi_r(Y) \to \pi_{p+q+r}(Y)$.

In Proposition 12, the primary obstruction (in the ordinary cohomological sense) to the homotopy-commutativity of Y and to the homotopy-associativity of Y is computed. The preceding homomorphisms give cohomology coefficient homomorphisms which enter into the computation of these obstruction elements.

For the case where A, B, and C are spheres, the commutator and associator products seem to be similar to James' obstructions to homotopy-commutativity and to homotopy-associativity, respectively, both of which are defined as separation elements [6].

2. PRELIMINARIES

We consider only path-connected topological spaces with base points. The base point is generically denoted by *. All maps and homotopies will respect base points. If R and S are spaces, $\pi(R, S)$ denotes the collection of homotopy classes of maps from R to S. If f, g: $R \to S$ are maps, $f \succeq g$ means that f is homotopic to g. The constant map from R to S (mapping all of R onto * ϵ S) is written *: $R \to S$. If $f \succeq *$, we say that f is *nullhomotopic*. The homotopy class of a map g: $R \to S$ is written $g \in \pi(R, S)$. Maps h: $R \to R'$ and k: $S \to S'$ induce transformations h*: $\pi(R', S) \to \pi(R, S)$ for all S and k_* : $\pi(R, S) \to \pi(R, S')$ for all R in the obvious way.

Received March 26, 1962.

Next we introduce notation for certain functors. For more details see [1], [4], or [10]. We let Σ denote the (reduced) suspension functor, and we let Ω denote the loop space functor. These functors can be iterated so that, for example, Σ^2R is $\Sigma(\Sigma R)$. We shall also consider the cartesian product (written \times) and the wedge (written \vee). Recall that

$$R \vee S = R \times * \cup * \times S \subset R \times S$$
.

If A is a subspace of X that contains the base point, then X/A denotes the (quotient) space obtained from X by identifying A to the base point. In particular, we set $R \# S = R \times S/R \vee S$. Another useful quotient space is $R \circ S$, the join of R and S. This is the space obtained from $R \times S \times I$ (I is the closed unit interval [0, 1]) by "factoring out" the relations

- (1) $(r, s, 0) \sim (r, s', 0)$ for all $s, s' \in S$,
- (2) $(r, s, 1) \sim (r', s, 1)$ for all $r, r' \in R$, and
- (3) $(*, *, t) \sim * \text{ for all } t \in I$.

Next let Y be a space, let j: $Y \vee Y \to Y \times Y$ be the inclusion map, and let $\nabla \colon Y \vee Y \to Y$ be the folding map $(\nabla(y, *) = y = \nabla(*, y))$. We call Y an H-space if there is an m: $Y \times Y \to Y$ such that mj $\cong \nabla \colon Y \vee Y \to Y$. The map m is called the multiplication in Y, and m(x, y) is written $x \cdot y$ or xy, where x, $y \in Y$. An H-space is homotopy-commutative if the maps x, $y \to xy$ and x, $y \to yx$ from $Y \times Y$ to Y are homotopic. It is homotopy-associative if x, y, $z \to x(yz)$ and x, y, $z \to (xy)z$ from $Y \times Y \times Y$ to Y are homotopic. A loop space with the usual multiplication of loops is an example of a homotopy-associative H-space. If f, g: $R \to Y$, the multiplication in Y induces a product f g or fg: $R \to Y$. Thus if Y is an H-space, there exists a multiplication in $\pi(R, Y)$ which has $\{*\}$ as unit. It is also possible to multiply maps f, g: $\Sigma R \to S$ to get f g or fg: $\Sigma R \to S$, where R and S are any spaces. This multiplication induces group structure in $\pi(\Sigma R, S)$. If Y is an H-space, the two multiplications in $\pi(\Sigma R, Y)$ coincide.

In a CW-complex [12] a 0-cell will be the base point. A space that is both a CW-complex and an H-space is called an H-complex. If R and S are CW-complexes, then $R \times S$ is not necessarily a CW-complex. However, it is known that if R and S are countable or if R or S is locally finite, then $R \times S$ is a CW-complex. We shall call a single CW-complex R productive, if $R \times R$ is a CW-complex.

3. LEMMAS FOR H-SPACES

First we recall the definition of a loop. A set π with a binary operation, written multiplicatively, is called a *loop* if:

- (1) There exists a two-sided identity, denoted by e.
- (2) The equations $x \cdot a = b$ and $a \cdot y = b$, where $a, b \in \pi$, admit a unique pair of solutions $x, y \in \pi$.

In particular, every element of π has a unique left inverse and a unique right inverse.

LEMMA 1 (James [6]). If Y is an H-space and K is a CW-complex, then $\pi(K, Y)$ is a loop with multiplication induced by the multiplication in Y and with unit $e = \{*\}$.

The left inverse of $\alpha \in \pi(K, Y)$ is denoted by $L(\alpha)$ and the right inverse of α is denoted by $R(\alpha)$.

LEMMA 2. If Y is an H-complex, then there exist a space S and a map $r\colon Y\to \Omega S$ such that $r_*\colon \pi(K,\,Y)\to \pi(K,\,\Omega S)$ is one-to-one for all CW-complexes K.

Remark. In [5] James has shown that if Y is a countable H-complex, then the inclusion Y $\to \Omega \Sigma Y$ is a retract.

We sketch the proof of Lemma 2. From the work of Dold and Lashof [2] (with modifications indicated in [10, p. 739]) there exist spaces and maps $Y \xrightarrow{1} E \xrightarrow{P} S$ such that (1) i is an inclusion map, (2) pi = *, (3) i \simeq *, and (4) p*,: $\pi_j(E, Y) \to \pi_j(S)$ is an isomorphism for all j. If k*, Y \to E is a nullhomotopy of i, define r: Y $\to \Omega S$ by r(y)(t) = pk*_t(y). The remainder of the proof is an adaptation of an argument due to Sugawara [11, Proposition 1]. We let $\pi_1(K; E, Y)$ denote the homotopy classes of maps of the pair CK, K into the pair E, Y, where CK denotes the (reduced) cone over K. We consider the diagram

where κ_* is the canonical isomorphism [4, Section 2], ∂ is the transformation obtained by restriction, and p_* is the transformation induced by $p: E, Y \to S, *$. It follows from (2), (4), and the fact that K is a CW-complex that p_* is an isomorphism. But it is easy to verify that

$$\partial p_*^{-1} \kappa_* r_*(\alpha) = \alpha \quad (\alpha \in \pi(K, Y)).$$

Thus $r_*: \pi(K, Y) \to \pi(K, \Omega S)$ is one-to-one.

Let R be any space, and let PR denote the geometric realization of the singular complex of R [7]. We call PR the *singular polyhedron* of R, and we note that PR is always a CW-complex. A mapping that induces isomorphisms of homotopy groups is called a *weak homotopy equivalence*. We recall that there exists a canonical mapping from PR to R which is a weak homotopy equivalence [7].

LEMMA 3. If Y is an H-space, then PY is an H-space.

Proof. Let $f: PY \to Y$ be the weak homotopy equivalence. We consider the element $\{m(f \times f)\} \in \pi(PY \times PY, Y)$ and the commutative diagram

$$\pi(PY \times PY, PY) \xrightarrow{j*} \pi(PY \vee PY, PY)$$

$$\downarrow^{f_*} \qquad \downarrow^{f_*}$$

$$\pi(PY \times PY, Y) \xrightarrow{j*} \pi(PY \vee PY, Y).$$

We observe that $PY \times PY$ and $PY \vee PY$ each have the homotopy type of a CW-complex [8]. Since f is a weak homotopy equivalence, it then follows that both of the maps f_* in the diagram are one-to-one and onto. Thus there exists a $\mu \in \pi(PY \times PY, PY)$ with $f_*(\mu) = \{m(f \times f)\}$. But

$$f_{\star}j^{\star}(\mu) = j^{\star}f_{\star}(\mu) = j^{\star}\{m(f \times f)\} = \{\nabla_{Y}(f \vee f)\} = f_{\star}\{\nabla_{PY}\},$$

where $\nabla_{\mathbf{Y}}$ and $\nabla_{\mathbf{PY}}$ are the folding maps of Y and PY, respectively. Therefore, $\mathbf{j}^*(\mu) = \{\nabla_{\mathbf{PY}}\}$, and so μ determines a multiplication in PY.

4. THE COMMUTATOR PRODUCT

We now define the commutator product. We assume that A, B, and A × B are CW-complexes. We let Y be an H-space, and we choose an $\alpha \in \pi(A, Y)$ and a $\beta \in \pi(B, Y)$. These determine elements $p_A^*(\alpha)$, $p_B^*(\beta) \in \pi(A \times B, Y)$, where $p_A \colon A \times B \to A$ and $p_B \colon A \times B \to B$ are the projections. By Lemma 1, there exists a commutator

$$(p_A^*(\alpha), p_B^*(\beta)) = L(p_B^*(\beta) - p_A^*(\alpha)) \cdot (p_A^*(\alpha) \cdot p_B^*(\beta)) \quad \text{in} \quad \pi(A \times B, Y),$$

where L denotes left inverse. If $j: A \vee B \to A \times B$ is the inclusion, then $j^*(p_A^*(\alpha), p_B^*(\beta)) = e$, where e denotes the unit in $\pi(A \vee B, Y)$. To see this, consider the isomorphism

$$\theta$$
: $\pi(A \vee B, Y) \stackrel{\approx}{\to} \pi(A, Y) \oplus \pi(B, Y)$

given by $\theta(\gamma) = i_A^*(\gamma) \oplus i_B^*(\gamma)$, where $i_A: A \to A \lor B$ and $i_B: B \to A \lor B$ are the injections and the symbol \oplus denotes cartesian product. Clearly,

$$\theta j^*(p_A^*(\alpha), p_B^*(\beta)) = i_A^* j^*(p_A^*(\alpha), p_B^*(\beta)) \oplus i_B^* j^*(p_A^*(\alpha), p_B^*(\beta)).$$

However, $i_A^*j^*(p_A^*(\alpha), p_B^*(\beta))$ equals (α, e) , the commutator of α and e in $\pi(A, Y)$. Since $(\alpha, e) = e$, $i_A^*j^*(p_A^*(\alpha), p_B^*(\beta)) = e$. Similarly, $i_B^*j^*(p_A^*(\alpha), p_B^*(\beta)) = e$. Thus,

$$\theta j^*(p_A^*(\alpha), p_B^*(\beta)) = e \oplus e$$
,

and so $j^*(p_A^*(\alpha), p_B^*(\beta)) = e$, as asserted. Since $A \vee B$ is a subcomplex of $A \times B$, there exists an exact sequence

$$\pi(A \# B, Y) \xrightarrow{q^*} \pi(A \times B, Y) \xrightarrow{j^*} \pi(A \vee B, Y)$$

(see [4, Section 4] or [3]), where q: $A \times B \to A \# B$ is the projection. Hence there exists an element, written $<\alpha$, $\beta>$, in $\pi(A \# B, Y)$ such that $q^*<\alpha$, $\beta>$ is the commutator $(p_A^*(\alpha), p_B^*(\beta))$. By the following proposition this element is unique. (Compare with Lemma (2.1) of [1].)

PROPOSITION 4. If A, B, and A \times B are CW-complexes and Y is an H-space, then q^* : $\pi(A \# B, Y) \to \pi(A \times B, Y)$ is one-to-one.

Proof. Consider first the case where Y is a loop space, $Y = \Omega X$. By using the natural isomorphism $\pi(\Sigma R, S) \approx \pi(R, \Omega S)$ which is valid for all spaces R and S, we see that it suffices to show that

$$(\Sigma q)^*: \pi(\Sigma(A \# B), X) \to \pi(\Sigma(A \times B), X)$$

is one-to-one. Let $A \circ B$ denote the join of A and B (defined in Section 2), and let $\lambda \colon A \circ B \to \Sigma(A \times B)$ be the map that identifies all points (a, b, 0) or (a, b, 1) in $A \circ B$ to the base point * $(a \in A, b \in B)$. The composition $\Sigma q \lambda \colon A \circ B \to \Sigma(A \# B)$ identifies all points (a, *, t) and (*, b, u) to *, where t, $u \in I$. These latter points form a subcomplex of $A \circ B$ that consists of two cones joined at a single point, and

hence is contractible. Thus $\Sigma q \lambda$ is a homotopy equivalence [12, p. 238]. Therefore Σq has a right homotopy inverse, and so $(\Sigma q)^*$ is one-to-one. This proves the proposition in the case where Y is a loop space. For any H-space Y, the singular polyhedron PY is an H-space by Lemma 3. Therefore, by Lemma 2, there exists an S and an r: PY $\to \Omega S$ such that r_* is one-to-one. Now consider the commutative diagram

$$\pi(A \# B, Y) \xleftarrow{f_*} \pi(A \# B, PY) \xrightarrow{r_*} \pi(A \# B, \Omega S)$$

$$\downarrow q^* \qquad \downarrow q^* \qquad \downarrow q^*$$

$$\pi(A \times B, Y) \xleftarrow{\approx} \pi(A \times B, PY) \xrightarrow{r_*} \pi(A \times B, \Omega S)$$

where $f: PY \to Y$ is the weak homotopy equivalence. We have seen that q^* on the right is one-to-one, and so it follows that q^* on the left is one-to-one.

Definition 5. The commutator product of $\alpha \in \pi(A, Y)$ and $\beta \in \pi(B, Y)$ is the element $\langle \alpha, \beta \rangle \in \pi(A \# B, Y)$ uniquely defined by

$$q^* < \alpha, \beta > = (p_A^*(\alpha), p_B^*(\beta)).$$

This definition is made under the assumption that (1) Y is an H-space and (2) A, B, and $A \times B$ are CW-complexes. It is clear that we can define a commutator product $<\alpha$, $\beta>\in\pi(A\ \#\ B,\ Y)$ of $\alpha\in\pi(A,\ Y)$ and $\beta\in\pi(B,\ Y)$ under the following slightly more general conditions: (1) Y is an H-space (2) A and B are spaces having the same homotopy type as A' and B', respectively, where A', B', and A' \times B' are CW-complexes. We shall consider the commutator product in this more general form.

When A and B are spheres and Y is homotopy-associative, then $<\alpha$, $\beta>$ is the Samelson product [9].

If Y is homotopy-commutative, then the commutator $(p_A^*(\alpha), p_B^*(\beta)) = e$. Thus $<\alpha$, $\beta>=e$ in $\pi(A \# B, Y)$ for all α and β .

PROPOSITION 6. Let Y have the homotopy type of a productive CW-complex (that is, a CW-complex whose cartesian product with itself is a CW-complex) and let $\iota \in \pi(Y, Y)$ be the homotopy class of the identity map $(\iota = \{1\})$. Then $<\iota$, $\iota>=e$ if and only if Y is homotopy-commutative.

The proof follows from the definition and the fact that Y is homotopy-commutative if and only if the commutator ($\{p_1\}, \{p_2\}$) is e, where p_1 and p_2 are the two projections of Y × Y onto Y.

Next we relate the generalized Whitehead product of [1] to the commutator product. Recall that the generalized Whitehead product assigns to $\overline{\alpha} \in \pi(\Sigma A, X)$ and $\overline{\beta} \in \pi(\Sigma B, X)$ an element $[\overline{\alpha}, \overline{\beta}] \in \pi(\Sigma(A \# B), X)$, where A, B, and A × B are CW-complexes and X is any space. If $K_* \colon \pi(R, \Omega S) \to \pi(\Sigma R, S)$ denotes the canonical isomorphism [4, Section 2], then it easily follows that $K_* < \alpha, \beta > = [K_*(\alpha), K_*(\beta)]$. If the loop space ΩX has the same homotopy type as a productive CW-complex, then, by Proposition 6, ΩX is homotopy-commutative if and only if $[K_*(\iota), K_*(\iota)] = e$, where $\iota = \{1\} \in \pi(\Omega X, \Omega X)$. The following proposition, which is well known in the case where A and B are spheres, was proved in [1, Proposition 5.1] by an elementary argument: For any $\overline{\alpha} \in \pi(\Sigma A, X)$ and $\overline{\beta} \in \pi(\Sigma B, X)$, $[\overline{\alpha}, \overline{\beta}] = e$ if and only if there exists a map $f: \Sigma A \times \Sigma B \to X$ such that

there exist an $\ell: \Sigma\Omega X \times \Sigma\Omega X \to X$ such that ℓ on each factor represents $K_*(\iota) \in \pi(\Sigma\Omega X, X)$. But it is easy to see that the map $d: \Sigma\Omega X \to X$ defined by $d(\omega, t) = \omega(t)$ ($\omega \in \Omega X$, $t \in I$) has $K_*(\iota)$ as its homotopy class. Hence we have deduced Stasheff's theorem:

PROPOSITION 7 [10, Theorem 1.10]. If ΩX has the same homotopy type as a productive CW-complex, then ΩX is homotopy-commutative if and only if there exists a map $f: \Sigma \Omega X \times \Sigma \Omega X \to X$ whose restriction to each factor is homotopic to d.

We note that Stasheff proves his result under the hypothesis that X has the homotopy type of a countable CW-complex. It is known [8] that this hypothesis implies that ΩX has the homotopy type of a productive CW-complex.

5. THE ASSOCIATOR PRODUCT

Next we consider the associator product. Here, unless it is otherwise stated, we shall assume that Y is an H-complex such that $y \cdot * = y = * \cdot y$ for all $y \in Y$. If Y is a productive H-complex, this last property follows from the definition of an H-space. The homotopy extension property of the pair $Y \times Y$, $Y \vee Y$ enables one to replace the multiplication by a homotopic multiplication that has the desired property.

By Lemma 1, there are maps λ , ρ : $Y \to Y$ such that $\{\lambda\} \cdot \iota = e$ and $\iota \cdot \{\rho\} = e$, where $\iota = \{1\}$ and $e = \{*\}$ in $\pi(Y, Y)$. Now let

$$\{f\} = \alpha \in \pi(A, Y), \{g\} = \beta \in \pi(B, Y), \text{ and } \{h\} = \gamma \in \pi(C, Y),$$

where A, B, and C are CW-complexes such that $A \times B \times C$ is a CW-complex. If

$$p_1: A \times B \times C \rightarrow A$$
, $p_2: A \times B \times C \rightarrow B$, and $p_3: A \times B \times C \rightarrow C$

are the projections, we obtain maps $fp_1 = f'$, $gp_2 = g'$, $hp_3 = h'$: $A \times B \times C \rightarrow Y$. We consider the associator

$$a = (\lambda \circ (f'g')h') \cdot (f'(g'h')): A \times B \times C \rightarrow Y$$

and note that

$$a \mid A \times B \times * \simeq *$$
, $a \mid A \times * \times C \simeq *$, and $a \mid * \times B \times C \simeq *$.

Moreover, since each of these nullhomotopies comes from the nullhomotopy $\lambda \cdot 1 \simeq *: Y \to Y$, they are all compatible. Thus we get a nullhomotopy

$$a \mid T \simeq *: T \rightarrow Y$$
,

where

$$T = A \times B \times * \cup A \times * \times C \cup * \times B \times C \subset A \times B \times C$$
.

If j: T \rightarrow A \times B \times C is the inclusion, A # B # C the quotient space A \times B \times C/T, and p: A \times B \times C \rightarrow A # B # C the projection, then there exists an exact sequence ([4, Section 4] or [3])

$$\pi(A \# B \# C, Y) \xrightarrow{p^*} \pi(A \times B \times C, Y) \xrightarrow{j^*} \pi(T, Y).$$

Since $j^*\{a\} = e$ there exists an element $<\alpha$, β , $\gamma>$ in $\pi(A \# B \# C, Y)$ such that $p^*<\alpha$, β , $\gamma>=\{a\}$. The following proposition shows that $<\alpha$, β , $\gamma>$ is unique and is independent of the representatives f, g, and h of α , β , and γ .

PROPOSITION 8. If Y is any H-space and A, B, C, and $A \times B \times C$ are CW-complexes, then

$$p^*: \pi(A \# B \# C, Y) \rightarrow \pi(A \times B \times C, Y)$$

is one-to-one.

Proof. First, let $Y = \Omega X$. In this case it suffices to prove that

$$(\Sigma p)^*: \pi(\Sigma(A \# B \# C), X) \rightarrow \pi(\Sigma(A \times B \times C), X)$$

is one-to-one. Set

$$V = \Sigma A \vee \Sigma B \vee \Sigma C \vee \Sigma (A \# B) \vee \Sigma (A \# C) \vee \Sigma (B \# C) \vee \Sigma (A \# B \# C)$$

and let p_{12} , p_{13} , and p_{23} denote the projections of $A \times B \times C$ onto A # B, A # C, and B # C, respectively. It is proved in [4, p. 301], by a homological argument, that the map

$$\sigma = \overline{\Sigma} p_1 \cdot \overline{\Sigma} p_2 \cdot \overline{\Sigma} p_3 \cdot \overline{\Sigma} p_{12} \cdot \overline{\Sigma} p_{13} \cdot \overline{\Sigma} p_{23} \cdot \overline{\Sigma} p_1 \cdot \Sigma (A \times B \times C) \rightarrow V$$

is a homotopy equivalence, where the multiplication is obtained from $\Sigma(A \times B \times C)$ and the bar over a map signifies the map followed by its inclusion into V. Let η be a homotopy inverse of σ . Then, with i: $\Sigma(A \# B \# C) \to V$ denoting the inclusion and r: $V \to \Sigma(A \# B \# C)$ denoting the projection,

$$\mathbf{r}\sigma \ \underline{\ } \ (\mathbf{r}\overline{\Sigma}\mathbf{p_1}) \ \cdot \ (\mathbf{r}\overline{\Sigma}\mathbf{p_2}) \ \cdot \ (\mathbf{r}\overline{\Sigma}\mathbf{p_3}) \ \cdot \ (\mathbf{r}\overline{\Sigma}\mathbf{p_{12}}) \ \cdot \ (\mathbf{r}\overline{\Sigma}\mathbf{p_{13}}) \ \cdot \ (\mathbf{r}\overline{\Sigma}\mathbf{p_{23}}) \ \cdot \ (\mathbf{r}\overline{\Sigma}\mathbf{p}) \ \underline{\ } \ \underline{\Sigma}\mathbf{p} \ .$$

Thus $(\Sigma p)\eta i \simeq ro\eta i \simeq ri$, and this is 1, the identity of $\Sigma(A \# B \# C)$. Therefore $(\eta i)^*(\Sigma p)^* = 1$, and so $(\Sigma p)^*$ is one-to-one. This proves the proposition if Y is a loop space. The general case now follows as in Proposition 4.

Definition 9. The associator product of

$$\{f\} = \alpha \in \pi(A, Y), \{g\} = \beta \in \pi(B, Y), \text{ and } \{h\} = \gamma \in \pi(C, Y)$$

is the unique element $<\alpha$, β , $\gamma>$ in $\pi(A \# B \# C, Y)$ such that $q*<\alpha$, β , $\gamma>=\{a\}$, where a is the associator of fp₁, gp₂, and hp₃.

Clearly, if Y is homotopy-associative, then $\langle \alpha, \beta, \gamma \rangle = e$ for all α, β , and γ .

PROPOSITION 10. Y is homotopy-associative if and only if $\langle \iota, \iota, \iota \rangle = e$ in $\pi(Y \# Y \# Y, Y)$.

Here it is assumed that Y is an H-complex such that (1) $y \cdot * = y = * \cdot y$ and (2) $Y \times Y \times Y$ is a CW-complex. We omit the proof.

6. AN APPLICATION

First we show that the commutator and associator products are multiplicative in each variable.

PROPOSITION 11. Let A, B, and C be suspensions, and let α , $\hat{\alpha} \in \pi(A, Y)$, β , $\hat{\beta} \in \pi(B, Y)$, and γ , $\hat{\gamma} \in \pi(C, Y)$. Then

(i)
$$\langle \alpha \hat{\alpha}, \beta \rangle = \langle \alpha, \beta \rangle \cdot \langle \hat{\alpha}, \beta \rangle$$
, $\langle \alpha, \beta \hat{\beta} \rangle = \langle \alpha, \beta \rangle \cdot \langle \alpha, \hat{\beta} \rangle$,

(ii)
$$<\alpha\hat{\alpha}$$
, β , $\gamma>=<\alpha$, β , $\gamma>\cdot<\hat{\alpha}$, β , $\gamma>$, and so forth.

We sketch the proof of the first part of (i). By naturality, it suffices to prove that

$$<\iota$$
, $\iota>\circ(\alpha\hat{\alpha}\ \#\beta)=(<\iota$, $\iota>\circ(\alpha\ \#\beta))\cdot(<\iota$, $\iota>\circ(\hat{\alpha}\ \#\beta))$.

Since $A = \Sigma \overline{A}$ and $B = \Sigma \overline{B}$, there exists a homeomorphism $\theta \colon \Sigma^2(\overline{A} \# \overline{B}) \to \Sigma \overline{A} \# \Sigma \overline{B}$. It is easily seen that

$$(\alpha + \beta)\theta \cdot (\hat{\alpha} + \beta)\theta = ((\alpha \hat{\alpha}) + \beta)\theta,$$

and thus

$$<\iota$$
, $\iota>\circ(\alpha\hat{\alpha}\ \#\beta)\circ\theta=((<\iota,\ \iota>\circ(\alpha\ \#\beta))\cdot(<\iota,\ \iota>\circ(\hat{\alpha}\ \#\beta)))\circ\theta$.

The other parts of the proposition are proved similarly.

Thus if A, B, and C are spheres, $A = S^p$, $B = S^q$, and $C = S^r$ (p, q, $r \ge 1$), then the commutator product and the associator product provide homomorphisms

$$c\colon \pi_p(Y) \otimes \pi_q(Y) \to \pi_{p+q}(Y) \quad \text{and} \quad a\colon \pi_p(Y) \otimes \pi_q(Y) \otimes \pi_r(Y) \to \pi_{p+q+r}(Y).$$

If Y is a productive H-complex, then Y is homotopy-commutative if and only if $\phi \simeq *: Y \# Y \to Y$, where ϕ is some map in the class $<\iota,\iota>$. Similarly, Y is homotopy-associative if and only if $\psi \simeq *: Y \# Y \# Y \to Y$, where ψ is a map in the class $<\iota,\iota,\iota>$. If Y is an (n-1)-connected H-complex $(n\geq 2)$, then it is easily seen that Y # Y is (2n-1)-connected and Y # Y # Y is (3n-1)-connected. Thus there exists a primary obstruction to a nullhomotopy of ϕ , $\circ_{\phi} \in H^{2n}(Y \# Y; \pi_{2n}(Y))$, and a primary obstruction to a nullhomotopy of ψ , $\circ_{\psi} \in H^{3n}(Y \# Y \# Y; \pi_{3n}(Y))$. The element \circ_{ϕ} (respectively, \circ_{ψ}) can be regarded as the primary obstruction to the homotopy-commutativity (respectively, the homotopy-associativity) of Y. Let $b \in H^n(Y, *; \pi_n(Y))$ denote the basic class, let

q:
$$Y \times Y$$
, $Y \vee Y \rightarrow Y \# Y$, * and p: $Y \times Y \times Y$, $Y \rightarrow Y \# Y \# Y$, *

denote the projections, and let × denote the cohomology cross product.

PROPOSITION 12. (i)
$$q^{*-1} c_*(b \times b) = o_{\phi}$$
,
(ii) $p^{*-1} a_*(b \times b \times b) = o_{\psi}$,

where

$$c_* \colon \operatorname{H}^{2n}(Y \times Y, Y \vee Y; \pi_n(Y) \otimes \pi_n(Y)) \to \operatorname{H}^{2n}(Y \times Y, Y \vee Y; \pi_{2n}(Y)) \quad \text{and}$$

$$a_* \colon \operatorname{H}^{3n}(Y \times Y \times Y, T; \pi_n(Y) \otimes \pi_n(Y) \otimes \pi_n(Y)) \to \operatorname{H}^{3n}(Y \times Y \times Y, T; \pi_{3n}(Y))$$

are induced by the coefficient homomorphisms c and a mentioned above.

The proof is a consequence of elementary obstruction theory, several commutativity relations, and the definitions.

REFERENCES

- 1. M. Arkowitz, The generalized Whitehead product, Pacific J. Math. 12 (1962), 7-23.
- 2. A. Dold and R. Lashof, Principal quasifibrations and fibre homotopy equivalence of bundles, Illinois J. Math. 3 (1959), 285-305.
- 3. B. Eckmann and P. J. Hilton, *Groupes d'homotopie et dualité*, C. R. Acad. Sci. Paris 246 (1958), 2444-2447, 2555-2558, 2991-2993.
- 4. P. J. Hilton, *Homotopy theory and duality*, Mimeographed notes, Cornell University (1959).
- 5. I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170-197.
- 6. ——, On H-spaces and their homotopy groups, Quart. J. Math. Oxford Ser. (2), 11 (1960), 161-179.
- 7. J. Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math. (2) 65 (1957), 357-362.
- 8. ——, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 90 (1959), 272-280.
- 9. H. Samelson, A connection between the Whitehead and Pontryagin product, Amer. J. Math. 75 (1953), 744-752.
- 10. J. Stasheff, On homotopy Abelian H-spaces, Proc. Cambridge Phil. Soc. 57 (1961), 734-745.
- 11. M. Sugawara, H-spaces and spaces of loops, Math. J. Okayama Univ. 5 (1955), 5-11.
- 12. J. H. C. Whitehead, Combinatorial homotopy I, Bull. Amer. Math. Soc. 55 (1949), 213-245.

Princeton University