INDECOMPOSABLE REPRESENTATIONS OF
NON-CYCLIC GROUPS

Irving Reiner

INTRODUCTION

Let ZG denote the group ring of a finite group G over the ring of rational inte-
gers Z. The term “ZG-module” denotes here a left ZG-module which has a finite
Z-basis. (A corresponding definition holds when Z is replaced by another ground
ring.) Heller and Reiner [2] recently proved

(1) If G has a non-cyclic p-Sylow subgroup for some p, then theve exist in-
finitely many non-isomovphic indecomposable ZG-modules.

The crux of the proof of (I) was the following result:

(I1) Let H be a divect product of two cyclic groups, each of prime ovder p.
Then theve exist infinitely many non-isomovphic indecomposable ZH-modules.

This latter result was established in [2] by the explicit construction of such in-
decomposables for p = 2, whereas for p > 2 a non-constructive proof was given
which used the non-periodicity of the homology sequence for H. In the present note,
a constructive proof is given for all p. This construction is of especial interest be-
cause of the paucity of examples of indecomposable modules.

1. CONSTRUCTION OF THE MODULES

Let p be a fixed prime, and let H = [a] X [b] be the direct product of two cyclic
groups [a] and [b], with generators a and b, respectively, each of order p. Cor-
responding to each positive integer n, we shall here construct a ZH-module M,,
postponing until Section 2 the proof that each My is indecomposable. In order to
avoid writing (-1)™ repeatedly, we shall treat only the case where n is even. The
reader should have no difficulty in carrying out the analogous construction for odd n.

The following symbols shall constitute a Z-basis for My:

- . -2 ..
X1, axy, -, aP 2x1; X2, bxa, ++-, bP"%x5; ..o,
(1) X ax -, aP2x s bx,, -+, bP " Zxpy;
n-1° n-1° ’ n-12 X PX4, ’ Xn
. -2 . ] -2_
V15 Y25 @¥2 *5 8P 7%Y 25+, Y015 Yo @ ns ++r, 2% 77y 05 il

In order to define the action of H on M, it suffices to define the action of the
generators a and b on each of the above basis elements, and then to extend the ac-
tion of a and b by linearity. Of course, we shall have to verify that

(af - 1)m = (b - 1)m = 0, abm = bam (m € M).
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Let
o(t) =tP 14+ tP-24 oo p t 4 1

be the cyclotomic polynomial of order p. We now define

1

a(@ix) = a'*lx;, a(@yp =a'tlyy
(2) . - ) 1 } (0<i<p-3,jodd, k even),
b(bixy) = bty boly =bitly,
¢(a)xj = Yy (a = 1)YJ =0, ¢(a)Yk = 0,
(3) (j odd, k even),
(,b(b)Xk = Vi+1r (b - l)yk+1 =0, ¢'(b)Yk =0
(4) (b - l)aixj = ain+1 = biyj+1 = (a - 1)bin+1 (G odd,0<i<p-2).

Associativity is easily verified. Next, we have
@P - 1)x;=(@- De@x;=(a-1y;=0 (j odd),
(@P - 1)x), = ¢(a)(a - Dx, = ¢(a)y, =0 (k even),

whence also (aP - 1)alx: = 0, and so on. Thus M, is annihilated by aP - 1, and
similarly by bP - 1. We must also verify that

(5) ab-m=ba-m (m € M).

This is obvious when m is any yi. On the other hand, for odd j and 0 <i<p- 3
we have

{( - Da} alx; = altly; = {a( - 1)} ain .

Thus (5) holds when m = ain (j odd, 0 <i<p- 3). Toprove (5) for m = ap’sz'
(j odd), it suffices to remark that

{®-De@}x=0={¢@®-D}x; ( odd).
Similarly one verifies (5) for m=bix, (0<i<p- 2, k even). Thus M, is a ZH-

module. Since the Z-rank (M,: Z) increases steadily with n, it is clear that
M, = M, only when n = q.

2. PROOF OF INDECOMPOSABILITY
Keeping the previous notation, we now show that each module M, is indecompos-
able. Setting Z = Z/pZ (a field with p elements), M, = M,/pM,, we see that M,

is a ZG-module. We shall prove that M, is indecomposable, whence My, is also
indecomposable.

In ZG, weset A=a-1, B=b - 1. Then we have
AP =BP -0, AB=BA,

and also
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¢(@) = AP, ¢() = BP7L.
The module M,, has the following symbols as Z-basis (we should write X,, y,, -,

to indicate that these elements lie in M, rather than in My; but for convenience we
omit the bars):

-2 -2
x), Axy, =+, AP7xy; x5, Bxp, o1, BP 7%y oo,
-2 . -2
(6) X, 1 A1, 0 AP Xn-1) Xp» BXp, =, BY X
-2 . -2_ .
Y15 Y2 AYZ, "ty AP Y2 " ¥Yn-1 Y A}’m ) AP Y Yn+l-

The action of H on M, can be given by specifying how A and B act on the above
basis elements. The analogues of formulas (2) are valid, with A and B in place of
a and b, respectively. Moreover,

- -1
AP lxj=Yj’ AYJ=O’ AP Yk=0)

(1) } (j odd, k even),

BP %y = Vir1 By =0, BPlyg=0

(8) BA! x;= Alyj = B'y;41= AB'xj41  (j 0dd, 0<i<p - 2).
We find at once that

© {Ap-lxl =y AP x, = AP Py, o, AP oy, AP

-1 2 -1 -1 p-2 -1
BP 'x,=AP %y, BP 'x,=y3, o, BP U x, 1= AP %y, BT xy = vy,

-2
Xn= AP

and that both AP~! and BP-! annihilate all other basis elements listed in (6). Let
Y be the Z-space spanned by

p-2 p-2
{Y1’A Y2, °°» Yn_]_’A Yn, Yn-i-l}’

let X = £7 Zx;, and let 6: M,, — X be the projection of M_ onto its Z-subspace X.
It follows at once from (9) that if N is a ZH-submodule of M, such that

(10) (6(N) : Z) = r,

where r > 0, then

(AP-IN + Bp-lN :Z)>r+1.
However,
AP N+ BP N NNy,
so that
(11) NNY:Z)>r+1.

On the other hand, any non-zero ZH-submodule L of M, must satisfy

(LNY:2Z2)>0,
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as is easily deduced from the fact that for each i, ALcL and B'L c L. There-
fore (10) implies (11) even when r = 0, provided that N # 0.

We are now ready to show that M, is indecomposable. For suppose that
(12) ' M,=N;® N,

is a decomposition into non-zero ZH-submodules, and let n; = (8(N;) : Z) (i= 1, 2).
Then

(6(Ny + Np) : Z) = (6(M) : Z) =n,
which shows that n; + n, > n. By the preceding remarks,
N;NY:Z)y>n;+1 i=1,2).

But then N, N Y and N, N'Y are subspaces of the (n + 1)-dimensional space Y, and
we have

N, NY:Z)+ (N, NY:Z)>n +1+n,+1>n+1.
Consequently
(N,NY)Nn(N, nNY) #0,

and so also N; N N, # 0. This contradicts (12), and proves that M, is indecompos-
able.

3. INDECOMPOSABLE MODULES FOR ARBITRARY GROUPS

In order to demonstrate the usefulness of the preceding proof, we show briefly
how (I) may be deduced from (II). Let G be a finite group having a non-cyclic p-
Sylow subgroup S, and let Z* be the ring of p-adic integers in the p-adic comple-
tion of the rational field. Suppose there are finitely many non-isomorphic ZG-
modules, say Ly, :-+, L. We shall obtain a contradiction.

Since S is non-cyclic, the group H is a homomorphic image of S, and thus each
M, is also an indecomposable ZS-module. Form the induced module

G
M = ZG @, oM,

Then we may write

My=a;L;® - ®a,L, (€%, a;>0),

indicating thereby that MS splits into a direct sum of a, copies of L,, and so on. If
we set MY = Z* @y M,,, L¥=Z* Q@ L;, this yields

G
(M)~ =a;LT® *+ ® a;Lf.
Now we remark that M}, is a direct summand of (M;';)G restricted to S, as follows

at once from the definition of induced modules. Furthermore (see Borevich and
Faddeev [1], Reiner [3], or Swan [4]), the Krull-Schmidt theorem holds for
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Z* S-modules. Finally, M%/pM*% = M _, and by the results of Section 2 it follows that
M;'; is indecomposable. Therefore we may conclude that M’:l is (as Z* S-module) a
direct summand of some L’; viewed as Z* S-module. But this places an upper bound
on the Z-rank of M, and so gives a contradiction. We have thus shown (as in [2])
that (II) implies (I).
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