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1. INTRODUCTION

The problem considered here is a special case of the general problem of the ex-
tent to which a module (F, A) is determined by its endomorphism ring E(F, A). We
consider the special case of free modules A, over principal left ideal domains F
(not necessarily commutative rings without proper zero divisors, in which each left
ideal is principal). Let (F, A) and (G, B) be two such modules (of arbitrary rank).
We are able to show (Theorem 4.1) that any isomorphism of E(F, A) and E(G, B) is
induced by a semilinear transformation of (F, A) upon (G, B). The theorem is
proved by modifying the methods used in [3] by Baer, who studied the problem when
F and G are division rings. Use is made of the results in [9] on the lattice of sub-
modules of free modules, and of the fact that the subring E (F, A) of endomorphisms
of finite rank determines the behavior of the entire ring E(F, A).

Other studies of the isomorphisms of endomorphism rings of modules appear in
[1], [2], and [7]. The modules considered in these papers are (essentially) torsion
modules A over (commutative) complete discrete valuation rings F. These rings
are far more restricted than our rings of scalars. Our modules are torsion-free,
and they are restricted by the requirement of the existence of a basis.

A related problem for groups is considered in [8]. The modules (F, A) studied
there are free, of finite rank, over principal ideal domains in which each left and
right ideal is principal. The authors determine all automorphisms of the unit group
of E(F, A), in case A has rank at least three over F.

2. DEFINITIONS AND PRELIMINARIES

Throughout the paper, F and G will denote rings with identities, and (F, A)
will indicate a unitary left F-module A. The set of all linear functionals on A (F-
homomorphisms of A into F) forms a right F-module called the adjoint module,
and it is denoted by (A*, F). We shall denote by E(F, A) the ring of all F-endo-
morphisms of A. The elements of E(F, A) shall operate on the elements of A from
the right. If x € A and y € A* the effect of the homomorphism y on the element x
will be denoted by (x, y).

The ring F (not necessarily commutative) will be called a principal left ideal
domain if it is a ring without proper zero divisors, and if moreover each left ideal
is a principal left ideal. Any torsion-free module (F, A) over such a ring may be
assigned a unique 7»ank r(A), which is the cardinal number of any of its maximal
linearly independent subsets. The proof of this fact for torsion-free groups in [5,
pp. 29-33] applies here, if one replaces the arguments involving commutativity of
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the integers by the fact that any two non-zero elements of F have a non-zero (least)
common left multiple [6, p. 30]. It follows of course that we may assign a unique
rank r(S) to each submodule S of A. Since each linearly independent set may be ex-
tended to a maximal one, it follows that if S C Q are submodules of A, then

r(8) < r(Q). Similarly, since any non-empty set contains a maximal linearly inde-
pendent subset, the rank of each submodule S does not exceed the cardinal number
of any set of generators of S.

Now, if (F, A) is actually a free module, then every submodule S of A is also
free [4, Theorem 5.3, p. 13]. Since a basis of S is certainly a maximal linearly in-
dependent subset of S, and (F, A) is torsion-free, the cardinality of any basis of S
coincides with r(S). To each ¢ € E(F, A) we may also assign a unique rank,

r(o) = r(Ao), the rank of its range submodule. Now let E,(F, A) denote the set of
all o in E(F, A) of finite rank. Then we have

LEMMA 2.1. E\(F, A) is a two-sided ideal of E(F, A).

Proof. The preceding remarks imply that r(S + Q) < r(S) + r(Q) for submodules
S and Q, and this tells us that E, is closed under addition. Now let ¢ € E;, and
T € E. Then A(70) = (A7)0 C Ao, so that r(r0) < r(o). If we put Ao = S, then
A(o7) = ST and r(St) < r(S), since ST has a set of generators with cardinal number
r(S).

The next Lemma actually proves a small portion of the main result.

LEMMA 2.2. Let (F, A) and (G, B) be free modules over principal left ideal
domains, such that E(F, A) and E(G, B) are isomovphic. Thern r(A) = r(B).

Proof. Let {by} be a basis for (F, A), and let ey be the endomorphism which
projects A on Fb, and annihilates the complementary summands. Then it is easy
to verify that e%, =eyg and eyeg =0 if @ # 8. Let ey — {5 under the isomorphism,
so that fé =1, and f, I3 =0 if ¢ # 8. It can now easily be seen that H = Z, Bfy is
a direct sum of (non-zero) submodules of B, so that r(H) > r(A).

Since H < B, it follows that r(B) > r(A). Since the roles of (F, A) and (G, B)
can be interchanged, we have r(A) = r(B).

LEMMA 2.3. Let a be an isomovphism of E(F, A) on E(G, B), wherve (F, A)
and (G, B) are free over principal left ideal domains. Then o induces an isomovph-
ism of Ey(F, A) on E (G, B).

Pyroof. It clearly suffices to prove that the image of an endomorphism of finite
rank is an endomorphism of finite rank. Let Ao = S, where r(S) = n <, Let {by}
be a fixed basis for A, and let s;, s,, ---, s, be a basis for S. Since each s; is ex-
pressible in terms of a finite number of the b,, there exists a finite set of the b,
[call them bj, by, *+-, bx] such that

k
Sc 2J Fb;=Q,

i=1

where r(Q) = k < . Since Q is a direct summand, we may define the endomorphism
e which is the identity on Q and which annihilates the complementary summand, so
that Q = Ae. It follows easily that oe = 0, so that 0¥ e® = ¢® Let 0% =7 and &% =f,
so that 7f = 7, where f is an idempotent in E(G, B). Since B7 = B(7f) = (B7)f C Bf,
the proof will be complete if r(Bf) < «. But under the isomorphism a, eE(F, A)e is
mapped isomorphically onto fE(G, B)f. It follows by [5, p. 214(a)] that eE(F, A)e is
isomorphic to E(F, Ae) and that fE(G, B)f is isomorphic to E(G, Bf). Hence
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E(F, Ae) is isomorphic to E(G, Bf), so that r(Bf) = r(Ae) = k < « by the preceding
Lemma.

LEMMA 2.4. Let (F, A) be free, over a principal left ideal domain, and let ¢
be an automorphism of E(F, A) which leaves the elements of Ey(F, A) elementwise
fixed. Then ¢ is the identity.

Proof. Let {ba} be a fixed basis of A, and ey the projection on Fby which
annihilates the remaining basis elements. Let o € E(F, A). The following state-
ments are obviously equivalent: o = 0®, by 0 = by 0® for all a, by(ey 0) = by (eq o?)
for all @, ey 0 = eq 09 for all a. Clearly ey € Eo(F, A) for all a. Since E; is a
two-mded ideal, ey 0 € Eg also. Hence eg = ey and (ey o)? = = ey 0. Hence we have

(for each a) e, 0®=ef 0¢= (e, 0)? = ¢, 0, and the proof is complete.

3. THE RING E((F, A)

If S is a subset of A, then its annihilator in A* is the submodule S of elements
f € A¥ for which (S, f) = 0. If T C A*, we similarly define T', the annihilator of T
in A. A submodule Q of A or A¥* is called closed if Q" =(Q"'=Q. If P is any
subset of Ey (R, A), then % (P) denotes the totality of ¢ in E, for which Po= 0.
Similarly £ (P) denotes the left annihilator of P. Also, N(P) is the totality of x in
A for which xP = 0, and AP is the set of elements ap for a€ A and p € P. We
refer to the ideals %(P) [ 2(P)] as right [left] annihilators. If S is any subset of
A, then R(S) is the totality of p in E, for which Sp = 0, and L(S) is the set of @ in
E, for which Aa c S.

In this section, (¥, A) is a free module of arbitrary rank, over a principal left
ideal domain F, and E (¥, A) is always the ring under consideration.

LEMMA 3.1. (a) AL(S) = S, for all submodules S of A.

(b) N[R(S)] =S if and only if S is a closed submodule of A.
(¢c) If the submodule S is a divect summand, it is closed.
(d) R(S) = %[L(S)] for all submodules S of A.

(e) L(S) = 2[R(S)] for closed submodules S.

(f) 8(J) = L[N(J)] for any subset J of E.

(g) RIN(W)] =J,if J is a right annihilator.

(h) To each vight annihilator J theve corvesponds a unique closed submodule S
such that J = R(S), and the mapping S — R(S) is a lattice anti-isomorphism of the
lattice of closed submodules of A and the lattice of vight annihilators of E,.

Proof. All the statements in the lemma are proved in [9] for the ring E(F, A).
The proofs go over unchanged, since all the endomorphisms used in the proofs are
easily seen to be of finite rank.

LEMMA 3.2. Every left ideal H of E (F, A) has the form L(S) for a unique
submodule S, and H = L(AH).

Proof. This is proved in [9] for the case in which A has finite rank. Only minor
modifications are necessary. The proof of Lemma 19 and the inclusion H < L{(S) re-
main unchanged. Now let p € L(S), so that Ap € S. Let sj, s, **-, Sk be a basis for
Ap, so that s; € S. Then there exist fj, f;, ---, f; in A* such that xp = Z; (x, f;)s;.
The remainder of the proof is the same as in [9].
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LEMMA 3.3 Let A=P@® H, where P is a cyclic submodule, Then theve exists
an isomovphism vy of the ving F onto the subving R(H) N L(P) of the ring E, (F, A),
and an isomovphism o of the additive group A upon the subrving R(H) of E (F, A)
such that

(@) xa)® =xYa® for x e F, ae A (so that (y, a) is a semilinear transforma-
tion),
(b) 8% = L(S) n R(H) for every submodule S of A.

Proof. We can follow the proof of Proposition 5, p. 176 of [3] for the case of the
ring E(F, A) with F a division ring. No changes are necessary, since the endo-
morphisms x¥ and a® constructed there are of finite rank, and the only special
property of F that is required is that (F, A) be torsion-free.

LEMMA 3.4. If ¢ is a one-to-one semilinear transformation of the module
(F, A) onto the module (G, B), then o-*L(S)o = L(S%) for every submodule S of A.

Proof. The mapping n — o~'7no is an isomorphism of E(F, A) onto E(G, B).
Hence, by Lemma 2.3, 5 € E,(F, A) if and only if 07 'no € E,(F, B). With this in
mind we may now use the proof in Lemma 3, p. 185 of [3].

We now prove an important uniqueness result. The argument is a modification
of a proof of Baer [2, Lemma 3.3, p. 199].

LEMMA 3.5. Let r(A) be at least two. If ¢ is an automovphism of Ey(F, A)
which leaves each left ideal invariant, then ¢ is the identity.

Proof. Let S be any submodule of A. Then since R(S) = ®[L(S)],
R(S)? = R[L(S)?] = R[L(S)] = R(S).
Now let a € A, a € Ei(F, A). Then the following statements are equivalent:
ae =0, a € R(a) = R(Fa), o € R(Fa), aa?®=0.

Similarly, @ maps A into the submodule S if and only if a?® maps A into S.

Let B be a basis for A, andlet b€ B, g € A. Let a(b, g) be the unique element
in E,(F, A) which maps b onto g and ann1h11ates the remaining basis elements.
Smce Aa (b, g) C Fg, it follows that Aa®(b, g) c Fg. If g+ 0, ba(b, g) # 0, so that
ba?(b, g) # 0 and ba¢(b g) = e(b, g)g, where e(b, g) € F and e(b, g) = 0 if, and only
if g=0. Also, a®(b, g) annihilates the remaining basis elements. From

a2?(b, b) = a(b, b) it follows that e?*(b, b) = e(b, b), and since F has no proper zero
divisors, e(b, b) = 1. This gives a¢(b b) = a(b, b). From

a, b+g)=a(,b)+ al, g

we infer that a®(b, b + g) = a®(b, b) + a®(b, g). Suppose now that b and g are
linearly independent over F¥. Then, since

ba®@®, b + g) = b[a®(®, b) + a®®, g)] = b + e(b, g)g
and

[e(b, b+ g)b+ e, b+ggl=eb b+gb+g=DbePb,b+g),
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we have e(b, b+ g) =1 and e(b, b+ g) = e(b, g). Hence e(b, g) =1 and
a®(b, g) = alb, g).

Suppose now that b and g are dependent. Since r(A) > 2, we can find w € B,
w # b. Then w and g must be independent. For suppose the contrary. Then, be-
cause the module A is torsion-free, there exist x, y, u, v in F, all different from
zero, such that

XW = yg and vb = ug.
Let ¢ be the (non-zero) least common left multiple of y and u, so that ¥y =,y and

y = y,u. Then (y,x)w = (y, V)b, so that w and b are dependent, a contradiction.

But since a(b, g) = a(b, w) -a(w, g),
a®(b, g) = a®(d, w) - a®(w, g) = a(b, w)-a(w, g) = a(b, g).

Hence a®(b, g) = a(b, g) for any b € B, g € A. Now we may repeat the last para-
graph of the aforementioned proof to show that ¢ is the identity.

4. THE ISOMORPHISM THEOREM

In this section, (F, A) and (G, B) are free modules of arbitrary rank over prin-
cipal left ideal domains.

LEMMA 4.1. Let o be an isomorphism of E,(F, A) upon Ey(G, B). If S is any

%

submodule of A, define S° = B[L(S)]?. Then

(@) o* is an isomorphism of the lattice of submodules of A upon the lattice of
submodules of B.

(b) for each submodule S of A, L") = L(S)?;

(c) if S is a closed submodule of A, SU* = N[R(S)]® and R(S“*) = [R(S)]°

Proof. (a) The mapping S — L(S) is an isomorphism of the lattice of submodules
of A and the lattice of left ideals of E,, by Lemmas 3.1(a) and 3.2. The map
L(S) — L(S)Y is a lattice isomorphism of the left ideals of E,(F, A) and E(G, B) in-
duced by the ring 1somorph1sm Lemmas 3.1 and 3.2 applied to (G, B) and E,(G, B)
say that the map L(S)° — BL(S)? is an isomorphism of the left ideal lattice of
E,(G, B) and the submodule lattice of B. The product of these three mappings is the
desired isomorphism.

(b) L(S)? = L{BL(S)?}, since H = L(BH) for left ideals of E,(G, B), by Lemma
3.2. But L{BL(S)°} = L(S®") by definition.
(c) Using the fact that 2(J%) = [2(3)]% and (a), (f), and (e) of Lemma 3.1, we have

N[RE) = BL{N[R®S)]°} = B[RO = B{¢[RE)]}° = BL(S)® = 57

Since R(S) is a right annihilator (Lemma 3.1(h)), the same is true of R(S)°, and
therefore R(S®) = R{N[R(S)]°} = R(S)?, by (g) of Lemma 3.1.
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LEMMA 4.2. Suppose E(F, A) and E(G, B) are isomorphic and A =P @ H,
where P is a cyclic submodule. Then we can find submodules P* and H* of B
such that B = P* @ H*, where P* is cyclic.

Pyroof. By Lemma 2.3, the given isomorphism ¢ induces an isomorphism o of
E,(F, A) onto E,(G, B). Define. P* = P and H* = H’*, using the notation of the
preceding Lemma. Since A =P @ H, it follows from (a) of the preceding Lemma
that B = P* @ H*. Now let e be the unique endomorphism in E (F, A) which is the
identity on P and annihilates H, so that P = Ae. It can be verified exactly as in
Proposition 1, p. 178 of [3], that L(P) = E,;e. By (b) of the preceding Lemma,
L(P*) = L(P)°. Thus L(P*) = [Eq(F, A)- el’ = E((G, B), where f is the image of e
under o.

Thus P* = BL(P*) = BE,f = Bf. (BE, = B, since if a € B, we can take for b, a
fixed basis element of B, and E, contains the endomorphism under which b; — a
and which annihilates the remaining basis elements).

But in the proof of Lemma 2.3 we showed that if e is idempotent in E(F, A) and
eY = f, where o is an isomorphism of E(F, A) and E(G, B), then Ae and Bf have
the same number of basis elements. Hence P* = Bf is cyclic.

We are now in a position to follow the arguments of Baer [3, p. 186].

THEOREM 4.1. Let (F, A) and (G, B) be free modules of arbitrary rank over
principal left ideal domains. If o is an isomovphism of E(F, A) upon E(G, B),
theve exists a one-to-one semilinear tvansformation w of (F, A) upon (G, B) such
that n% = w-1nw for each n € E(F, A).

Proof. By Lemma 2.2, r(A) = r(B). If r(A) =1, then E(F, A) and E(G, B) are
isomorphic to F and G, respectively, and the Theorem is easily seen to be true.
Assume therefore that r(A) = r(B) > 2. The isomorphism ¢ induces an isomorphism
(which we also call o) of E (F, A) onto E (G, B). By the preceding Lemma, we can
write B = P* @ H*, where P* is cyclic. By Lemma 3.3, there exists a semilinear
transformation 7 of (F, A) upon [R(H) n L(P), R(H)] such that S7 = L(S)N R(H) for
each submodule S of A. Similarly there exists a semilinear transformation y of
[R(H*) N L(P*), R(H*)] upon (G, B) such that T? ' = L(T) n R(H*) for each sub-
module T of B. By Lemma 4.1 (b), L(P*) = L(P)Y, and by (c) of the same Lemma,
R(H*) = R(H)?, since H, being a direct summand, is closed. Thus o effects a semi-
linear transformation of [R(H) N L(P), R(H)] upon [R(H*) N L(P*), R(H*)]. Hence
w = 70y is a semilinear transformation of (F, A) upon (G, B). Now, if S is any sub-
module of A, then

ST0 = [L(S) N R(A)]® = L(S)° N RE) = L(s°") N R(E) = (5",

*
Hence S“ = 8% for every submodule S of A.

The semilinear transformation w induces an isomorphism (also called w) of
E(F, A) upon E(G, B) defined by n* = w™lnw for each n € E(F, A). Let the restric-
tion of this ring isomorphism w to E (F, A) also be denoted by w. Then
L(S)¥ = w ! L(S)w = L(S¥), by Lemma 3.4. Hence

L(S)T = L(S"") = L(S¥) = L(S)¥

for each submodule S of A. Let @ = ow~!. Then a is an automorphism of E(F, A)
which leaves invariant all the left ideals of E (F, A). By Lemma 3.5, a is the iden-
tity on E,(F, A). By Lemma 2.4, it is the identity on all E(F, A), so that o0 = w and
79 = w=lnw for all 7 € E(F, A).
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