SOLUTION OF A GEOMETRIC PROBLEM BY FEJES T(BTH

Heinrich Larcher

By “distance between two points on the unit sphere” or, in short, “distance be-
tween two points,” we mean the length of the smaller of the two arcs of the great
circle passing through the two points, and for two points that are diametrically op-
posite, one half of the circumference of a great circle. In[1], Fejes Toth conjectured

that the sum of the ( g ) distances between s points on the unit sphere is at most

s27/4 if s is even and at most (s? - 1) /4 if s is odd. In the same paper, the
author proved the conjecture }or s < 6. The conjecture for even s was proved by
Sperling in [2]. In this paper we shall show that the conjecture is true for odd s.

The first part of this paper is parallel to what Sperling did in [2], and we shall
closely adhere to his notation. In the remainder of this paper, s is a positive odd
integer. If Py, Py, -+, Pg are s arbitrary points on the unit sphere (not necessar-

—~

ily distinct), we denote the distance between P; and P j by P; Py, and we put

i,j=1
If P{ is the point diametrically opposite Pj, then one half of the sum of the PTP_% is
E. Observing that the sum of the distances of any point from any two diametrically
opposite points is m, we readily see that for the sum of the ( gs ) distances between

the 2s points Py, ---, Pg, P'l, +»-, PL we have the equality

S
(1) 2E+ 2 P;P}=s?27,
i,j=1

We denote the unit vectors from the center of the sphere to the points P; and Pi'
by x; and xi, respectively. For the inner product of the two vectors x; and x; we
write (x;, xj). Henceforward, by “vector” we mean “unit vector.”

If the ang1|e a has the meaning indicated in Diagram 1, in which the diameters
AA' and P; P; are perpendicular, then o = arcsin (x;, x;). From Diagram 1 we see
that

B, P} = P, P + 20 = P, Pj + 2 arcsin (x;, X)),
which in turn implies that
S

S S S
(2) 2 P?P; = 2 P;P;+ 2 27 arcsin (x3, xj) =2E + 2 2 arcsin (%, xj) .
i,j=1 i,j=1 i,j=1 i,j=1
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P, Let S_ = {x;]i=1, --+, s}. Putting

S

2> arcsin (%3, xj) = h(xg, -, x)
i,j=1

and substituting (2) in (1), we obtain
the equality

(3) 4E + 2h(S,) = s%7.

The proof of the conjecture will
be complete if we can show that for
s arbitrary points on the unit sphere,
h(Sg) > n/2. First we prove three
lemmas exhibiting properties of the
function h(S).

Diagram 1 LEMMA 1. If x is any unit vec-
tor and x' = -x, then

h(xly Ty Xy X, X') = h(X]_, °*%y xs) .

Proof. Since the arcsine is an odd function, the contribution of x and x' to the
sum h is

S 5
2 27 arcsin (x, x;) + 2 2~ arcsin (x', xi) + 2arcsin (x, x') + arcsin (%, x) + arcsin (x', x')
i=1 i=1 :

S S
= 2 27 arcsin (x, x;) - 2 2_ aresin (x, X)) - +g+ %,
i=1 i=1

which is equal to zero. The next lemma follows immediately from the definition of
h(X I °°% xs)'

LEMMA 2. For any t with 1<t<s,

t s
h(xj, ***, Xg) = h(x), **+, Xp) + h(Xypq, -ov) Xg) + 2 2o 2 arcsin (x;, xj) .
i=1 j=t+1

If h(xy, ***, Xg) corresponds to a distribution of s points on the unit sphere, then
for any positive integer n we write h(nxj, ---, nxg) for the function h that corre-
sponds to the distribution of ns points in which every point in the original distribu-
tion appears n times.

LEMMA 3. h(nxp, -+, nxg) = n2h(x], -, Xg).

Proof. The proof is by induction. The lemma holds for n = 1. Let us assume
that it holds for n - 1: h((n - 1)x;, =**, (n - 1)x.) = (n - l)zh(xl, e+, Xg). Then by
Lemma 2,
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h(nxl, ";, n-xs) = h((n - 1)X1; M) (n - l)xs’ X1 s Xs) = h((n - 1)X1! "ty (n - 1)XS)

S S

+ h(xy, **-, xg) + 2(n - Hn2: 2 arcsm(xl,x)
i=1 j=1

(n - 1)2 h(Xl, °tt Xs) + h(Xl, R Xs) + 2(1’1 - 1) h(X]_, "ty xs)

= nzh(xl, e, XJ),

which was to be proved.

The minimum value of h for all possible dlstr1but1ons of s points we denote by
min h(Sg). Clearly, h(Ss) assumes an absolute minimum, since it is a continuous
function in all its variables, and since its domain of definition is a compact space.
Trivially, min h(S,) = h(S,) = h(x,) = 7/2. Because of Lemma 1, we can write

(4) % = h(S;) = min h(S3) = min h(S5) > min h(S7) > +-- > min h(Sg) > ---

The first three equality signs in (4) are a consequence of (3) and of the proof of the
conjecture by Fejes Toth for s < 6. Our object is to show that equality holds
throughout.

Let us assume that there is at least one strict inequality in (4); and, in order to
be definite, let us consider the smallest odd integer s for which

. T
min h(S;) = m<§.

Actually, m is positive. This fact can be derived rather easily from Sperling’s
work. We omit the derivation, since our proof does not make use of this fact.

We call two vectors x; and Xxj distinct if x; # xj. A set of distinct vectors is
one in which no two are equal. A maximal subset of distinct vectors of a set of
vectors is a subset of distinct vectors that cannot be enlarged to form a new subset
of distinct vectors.

_ THEOREM 1. Let Sg={ki|i=1, -, s} be such that h(Ss) = m. Then
X1, ***, X¢ (1 <t < 8) is a maximal subset of distinct vectors of Ss; and if n; > 1 is
the number of vectors that coincide with x; (i= 1, -+, t), then

X XX
(5) Z) n—_""1 -0 (k=1 1),
i=1 leXXll
ik

where Xy X X; denotes the cvoss product of the vectors xy and x; while |X) X X
denotes ils magnitude.

Proof. It follows from Lemma 1 and the fact that h(Ss) < min h(Sg.2) that
X;# -X; for i, j=1, ---, s. Furthermore, not all s vectors in S; can coincide. For
if x;=x; (i=2, +--, s), the sum E defined earlier is zero; and hence by (3),
h(S,) = s27 > n/2. Consequently, t > 2. Evidently, E;::l n;=s.
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We put h(Sg) = h(xi, **-, Xp) = Z}‘:’j=1 n;n; arcsin (x;, X;), where xj# +x; for j# i
(i, j=1, ---, t). If we move any one of the t vectors, keeping its initial point fixed,

h stays the same or increases. Let x; = (aj, b, ¢;), and let U= {x|(x, x) = 1}.
Then Xi, '+, X¢ is a set of solution vectors for the problem of minimizing

h(xj, :*-, x¢) subject to the condition that x; be in U (i =1, ---, t). We solve the
problem by Lagrange’s multiplier method. Using multipliers A;, we put the gradient

vectors (3/9ay, 9/0by, 9/dcyx) (k=1, -+, t) of

t t
sw/2 + 2 ninjarcsin(ajaj+ bijbj+ cicj) + 27 )\i(af+ biz+ ciz— 1)
i,j=1 i=1 .
J#Fi

equal to zero. We eliminate the A;’s, and we obtain the equations (5) which are nec-
essary conditions xj, -**, X{ must satisfy.

For k # i we define ay;= 1/|xk>< xi] (note that xyx # +x3), and we define ayyr=1
(i, k=1, -, t).

THEOREM 2. If the vectors X1, ***, Xt (t > 2; X # +X; for k # 1) satisfy the
system of equations (5), then they lie in a plane.

Proof. If t =2, the theorem is trivial. Let t > 2, and let p,, denote the plane
determined by x, and x,. We form the inner product, indicated by a dot, of the k-th
equation in (5) with x, and x,, respectively. After applying the distributive law, we
obtain the equations

t t
Eniaki(xkxxi)'xl=0 and Eniaki(kaXi)'xZ=O B<k< ).

i=1 i=1

By multiplying the two equations by suitable constants and adding, we eliminate the
terms (x) X x3)'x; and (XX x3) X, respectively. The resulting single equation
can be written as

t
(6) [Z} n;a;(x; X xi)] "(nja, X+ n,3.,%,) =0.
i=3

Let Xy denote the first vector in the last inner product. Since the second vector
is not the zero vector, equation (6) implies that either
i) Xx =0 or

ii) Xy # 0, but Xy is perpendicular to njayx]x)+ nzaxzXxp, and hence is perpen-
dicular to p,,. In case ii), xi lies in p,,, since x, is perpendicular to Xj. If i)
holds, then by (5)

t
i=

Since the last vector in the parentheses is not the zero vector,

ny 8,y X) + Np a8y Xp = C Xy
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for a suitable constant cy # 0; that is, x lies in the plane p,, (3 <k <t). Therefore
all vectors x; lie in p,,.

However, for distributions all of whose points lie on a great circle we have the
following theorem.

THEOREM 3. IfP; (i=1, :--, 8) ave s arbilrary points on the unit circle, not
necessarily distinct in position, then h(Sg) > /2.

Proof. This is more easily shown by working with E than with h; either will do,
since the two are related by equation (3). We pick P, and rename the remaining
points, if necessary, in such a way that P,, ---, P5 appear counterclockwise in this
order. If two or more points coincide in position, we pick one of them and assign
successive subscripts to the others. Let P;.g = Pg4; = P;. Evidently,

S

27 P;Py < 2.
i=1

In general,

1]

PP <2k (1<k<(s-1)/2).
i=1
To prove this, we observe that

(7 PiPi1c < PiPiy1+ Py 1Pyt + oo + Pigk1Pige (i=1, -, 8),

since PTPHk is the smaller of the two arcs into which the unit circle is divided by
P; and Pj4yx. It is understood that when °n Pj and Pj+k coincide, the smaller of the
arcs is of zero length. For fixed i, P P1 S+ appears on the right-hand side of

exactly k inequalities of (7); namely, of those for which P1o—r+s P10-r+k
(r=0,1, *»-, k - 1) is the left-hand side. Thus we have the inequality
S

_21 P; Py <k Zi P; P;;) < 27k,
1= 1::

as asserted above. From the statements
— T T ——
P; Py = Piyk Pi = Ptk Pits = Pitk Pitk+(s-K)
we infer that

S S

Z) P; ] iPitx = 2 P1+kP1+k+(s -k) = 2 P?Pji-(s—k) 1<k<(s- 1)/2).

i=1 i=1

Hence,

(s-1)/2 s _ s s
2. 2 PiPyy= L 2. PiPix

k=1 i=1 k=(s+1)/2 i=1
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and
s s (s-1)/2 s s s
E=%E PAP-=—;-( 2 X PBPig+ X EPPwk)
j=1 i=1 k=1 i=1 k=(s+1)/2 i=1
(s-1)/2 s
= 2 LB P <2m(1+2+ -+ (s-1)/2) = (s - /4.
k=1 i=1

Introducing the last expression in (3), we obtain the desired conclusions.

We have shown that if there is a strict inequality in (4), then that set of s points
for which min h(Sg) = m < 7/2 must lie on a great circle. But, for such a set of
points h(Ss) > 7/2 by Theorem 3. This is a contradiction, and therefore the mem-
bers of the sequence in (4) are all equal. We have thus proved the following proposi-
tion.

THEOREM 4. If P; (i=1, -**, s and s odd) are s arbitrary points on the unit
sphere, then

=_;. _z P; < (s - /4.

Finally we shall determine which distributions satisfy the system of equations
(5).

LEMMA 4. For distributions that salisfy the hypothesis of Theorem 2, n, is an
odd integerv and n; =njy (i =2, -, t).

Proof. Let such a distribution be given. All its points lie on a great circle,
which is drawn in Diagram 2. The vectors (x; X xi)/l X 1X xi| (i=2, ..., t) are unit
vectors perpendicular to the plane through the great circle. Since Z;_; n;= s, the
first equation of (5) will be satisfied if and only if s - n; is even and half of the vec-
tors (each counted as often as nj; indicates) lie on one side of the diameter AA' in
Diagram 2, and half of them lie on the other side. Thus n,; is necessarily odd. Evi-
dently, the same holds for
k=2, -t

In Diagram 2, we imagine the
diameter AA' rotated about O coun-
terclockwise until it coincides for the
first time with a vector of our set,
say 'Xko' Then Xy, can only coincide

with OA. For, it is easily seen that,
if it were to coincide with OA', the
k,-th equation of (5) would not be
satisfied. However, if Xko coincides

with OA, the k,-th equation is satis-
fied provided n = m;. Continuing in

this way, one proves the lemma.

THEOREM 5. For a distvibution
Diagram 2 of s points (s odd) for which the
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vectors Xy, -+, X4 satisfy (5), E = (s% - 1)n/4 if and only if x + +x; (k#1i and
i, k=1, - 8.

Pyroof. In order for (5) to hold, it is sufficient that xy # -x;. Let n=n, in
Lemma 4, and let us assume that n > 1. By Lemma 3, we have the relations

h(nx, -+, nxy) = n? h(xy, «-, X¢) > n? 7/2 > n/2.

On the other hand, if all vectors are distinct, that is, if x # x; for k # i, then n=1;
and (5) implies equality throughout (7). This in turn implies that E = (s2 - 1)n/4.

All distributions of s points for which E = (s2 - 1)7/4 or h(Sg) = 7/2 are now
known. They have the property that, for some t (0 < 2t <), 2t of the s points can
be paired so that each pair consists of a point and its diametrically opposite point;
while for the remaining s - 2t points, the vectors xj, ---, xg_2¢ are all distinct,
lie in a plane, and have the additional property that a diameter coinciding with any
one of these vectors divides them in such a way that (s - 2t - 1)/2 vectors lie on
one side of the diameter and (s - 2t - 1)/2) on the other.
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