HOLOMORPHIC FUNCTIONS, OF ARBITRARILY
SLOW GROWTH, WITHOUT RADIAL LIMITS

G. R. Mac Lane

By the well-known theorem of Fatou, if f(z) is holomorphic and bounded in
|z| < 1 then {(z) possesses radial limits almost everywhere. This result was ex-
tended by Nevanlinna to meromorphic functions of bounded characteristic T(r) [4,
p. 189]. A natural question raised by Lohwater and Piranian [2, p. 16] is this: if
the condition of boundedness of T(r) be relaxed to the requirement that T(r) < q(r),
where q(r) — « slowly enough, can one still conclude that some radial limits must
exist? Bagemihl, Erdos and Seidel [1, Theorem 7] have given an example of a kolo-
movphic function without a radial limit for which T(r) = O((1 - r)"®). Lohwater and
Piranian [2] gave an example of a meromorphic function without radial limit for
which T(r) = O(-log (1 - r)). See also Noshiro [5, p. 90]. Mac Lane [3] gave an
example of a meromorphic function, of arbitrarily slow growth, without asymptotic
value (and hence without radial limit). The purpose of the present note is to derive
a similar result for holomorphic functions. The method of proof and the precise
statement of the result are different in the holomorphic case, since a holomorphic
function must possess at least one asymptotic value (along some curve, not neces-
sarily along some radius). For that reason the construction used in our example for
meromorphic functions is completely inapplicable.

Let C_, and C, be two fixed disjoint compact simple arcs in ICI < 1, neither of
which contains the origin, and such that each radius of |C | < 1 intersects both C_,
and C,. For example, we may use the two arcs 27 < arg { < 47 and 6r < arg £ < 87
of the spiral ICI =1- (arg &)~

LEMMA 1. Tkhere exisis a function ¢(£), holomovphic in [g’] < 1, and a constant
M > 1 such that

® ls@<Mmlel (el <
and
Re(§) <-1  (LecC.y,
(2)
RNp(g) > 1 (geCy.
Pyoof. The three sets {0}, C_, and C, may be enclosed in simply-connected
neighborhoods, D,, D_,, D,, whose closures are disjoint. Define the function ¢,(¢),

holomorphic in D, U D_, UD,, by

$o(§) =0 (£ €Dg),  ¢o(§) =-3 (§ €D_y), ¢,({) =3 (£ €D,).

Then, by Runge’s theorem (see for example [6, p. 15]), there exists a polynomial
P(¢) approximating ¢,() well enough so that
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|po)| < 1,

|P()+3| <1  (cec.y,

|P@®) - 3|<1 (cecCy.

Set ¢(¢) = P(¢) - P(0) and let M denote the maximum of Iqb(C)] on |§| = 1. Then (1)
follows from Schwarz’ lemma. Also, since |P(0)| < 1,

|6(€) + 3] = |P(©) + 3- P(O)] < |P©) + 3|+ | PO)]
<|P@+3|+1<1+1=2 (CecC.,).

Thus R¢(€) < -1 on C_,, and the first equation of (2) follows. The second is proved
in a similar fashion.

THEOREM 1. Let u(r) be a function on [0, 1) satisfying
(3) 0< u(r) T« (r11).
Then theve exists a function 1(z), holomorphic in Iz| < 1, satisfying
(4) |fz)| < u(r) (O<r=|z|<1),
and, for all @,

(5) lim sup 9 f(reie) = oo, lim inf %f(reif) = - .
r—1 r—l

Proof. We shall construct f(z) as a series

o]

(6) f(z) = 3 Ane(z™),

n=1

where ¢(£) denotes the function of Lemma 1. Here the A, will be positive constants
and the A, positive integers, which we determine inductively. Once A, is deter-
mined, we shall denote by K__ and K _, respectively, the preimages of C_, and C,

under the map z — z)\“. Also, by p, we shall denote the minimum p such that K __
and K,, are contained in |z| < p < 1. Note that if {An} is an increasing sequence,
then {p_ } increases.

Let A, = 1, and choose A, so that
A -
(7) Ao <2 tuz) (2l <D,
which is possible by (1) and (3). Once A;, Ay, A,, Ap, «-, A _;, A, _; have been

determined, choose A, so that

(8) R Y A, dz?)
v=1

< -n (z € K_,)
{>n (z € K)).
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That such a choice of A, is possible, and doesn’t depend on A, which is still to be
chosen, is easily seen: (8) follows from (1) and (2) provided

n-1
A,>n+ M2J A,
v=1
Then choose A, > A, _3 large enough so that
An -n
&) Anle@™] <27 (|z] < pp_y)
and
An -n
(10) ApleE™|<2mpu(z])  (zl<D,

which is possible by (1) and (3).

Clearly it follows from (10) that f(z) is holomorphic in Izl < 1 and satisfies (4).
Recalling the definition of p,, and the fact that p,, 1 (since A, 1), we see from (8)
and (9) that, for z € K,

ffz)>n- Y 2Y>n-1.
V=n+l

Considering K _,, in a similar fashion and noting that each radius of ‘z| < 1 meets
every K,,, we see that (5) follows and Theorem 1 is proved.

THEOREM 2. Let p(r) be a function on [0, 1) satisfying 0 < p(r) T w. Then
there exists a function ¥(z), holomovrphic in |z| < 1, such that

(11) |F@)| <p(lz]) O<lzl<),
and, for every 0,

(12) lim sup lF(rei9)| =40, lim i{lf | F(reif)| = 0.
Ir—

r—1

Also, F(z) has no zeros in Izl < 1.
Remark. That F has no radial limits is a trivial consequence of (12).

Pyroof. Assume for the moment that p(0) > 1. Take u(r) = log p(r), and let £(z)
be the corresponding function of Theorem 1. Set F(z) = ef(z). Then (11) and (12) are
simple consequences of (4) and (5). If p(0) < 1, use p*(r) = max (2, p(r)) < 2p(r)/p(0)
to obtain a function F*(z), and set F(z) = p(0) F*(z)/2.

Remark. We have constructed F(z) so that its maximum modulus, M(r), satis-
fies the condition M(r) < p(r). As is well known [4, p. 220], T(r) < log M(r), hence
we can clearly replace (11) by a condition of the form T(r) < q(r).
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