PARTITIONS INTO PRIME POWERS
E. Grosswald

1. INTRODUCTION

Let p(n, m; k) stand for the number of partitions of the integer n into k-th
powers of primes p (2 <p < m). Clearly, it is sufficient to consider only m < nl/ k,
If m> n1}1)<, or if k = 1, mention of the corresponding parameter is usually omitted,
and we write simply p(n; k), or p(n, m); the total number of partitions of n into
primes is denoted by p(n). Hardy and Ramanujan [4] proved that

log p(n, k) ~ (k + 1){1‘ (2+%)§ (1 . _112) }k/(k+1)( n )1/(k+1)

logkn

s
so that, in particular,
n ! /2
log p(n) ~ 2':r(3—10?1—1 .

Brigham [2] obtained an asymptotic formula for a certain weighted partition function.
In 1953, Haselgrove and Temperley [5] obtained an asymptotic formula for partitions
into parts (with or without restriction on their number) selected from some pre-
assigned set A of integers, provided that A satisfies certain conditions. The results
obtained are of considerable generality, because most sets of interest satisfy the re-
quired canditions almost trivially; the primes, however, are a borderline case. The
formulae still hold, but the corresponding justification is far from simple, and it is
presented (as are some other points of the paper) rather sketchily. Actually, Hasel-
grove and Temperley’s formula is valid even for the partitions into prime powers
p(n; k), but that is neither justified, nor even claimed in the paper. This may account
for the fact that Mitsui, who in 1957 obtained [8] an asymptotic formula for p(n, m; k),
credits Haselgrove and Temperley only with the determination of p(n, n; 1) instead of
p{n, n; k). The more general formulae of Haselgrove and Temperley and of Mitsui
are not directly comparable, because the former’s restrictions refer to the number
of parts, while the latter’s refer to the size of the summands admitted. While pre-
ceding papers make use of the theory of functions of complex variables, Bateman and
Erdss [1] use a rather elementary approach, in order to prove that p(n, m) is an in-
creasing function of both of its arguments.

2. PURPOSE OF THE PAPER

Previously mentioned results concerning p(n, m; k) do not actually lead to
asymptotic formulae in n, in the customary sense. If one replaces the parameters
occurring in [5] or [8] by their asymptotic values as functions of n, m and k, one
obtains (see [8], Corollaries 1 and 2) results of the form

p(n, m; k) = p(n, m; k) exp { 0@/ &1 10g¢ n)} |
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98 E. GROSSWALD

where ¢ = -2 or -2+ 1/(k +~1) and 13 is built up from elementary functions. Hence
the relation, lim p(n, m;k)/p(n, m; k) = 1 does not hold, in general. Here, and in
what follows, it is assumed that n — « and, subject to specified restrictions, that
also m — «, unless the contrary is stated. The O- and o-notations are used with
their customary meaning; square brackets stand for the greatest-integer function,
and round brackets for the greatest common divisor. p and (sometimes) q stand for
primes, and the logarithm is denoted by log. It is the purpose of this paper

(a) to express p(n, m; k) as a sum of decreasing terms, starting with p(n, m; k),
already known, and, hence, to reduce the order of the error term;

(b) to establish for p(n, m; k) formulae, depending on n, m and k, that are asymp-
totic in the customary sense.

3. ERROR TERMS—THREE POINTS OF VIEW
The formulae that will be established contain error terms, expressed in the O-
or o-notation. Their meaning may be defined precisely, in different ways, as follows:

(i) One may consider the given values of m and n as belonging to a sequence of
ordered pairs, all with the same m, while n — oo,
(ii) It may be convenient to consider (n, m) as an element of a sequence of ordered
. e €3
pairs (n;, m;) with m; = nj?, mj, n; —w, g — 0.

(iii) Given m and n such that m¥*+! < n log m, we define A < 1 by

(1) €t = n? log m.

If mk+l > n log n, define > 1 by

(2) m¥*+l = n logh n

(since m, n and k are integers, mk+! = n log m cannot occur). In case
nlog m < m¥*! < nlogn,

it is most convenient to consider

(1 m**tl = 2Cnlogm (1<2C<k+1).

Then one may consider the given values m and n as belonging to a sequence of

ordered pairs (m, n) with m, n — «, while satisfying (1), (1') or (2), accordingly.

The constants implied by the O- or o-terms may depend on k, A, ¢ or C. For the

same pair of values (m, n) (m¥tl < n), one may take any of these three points of

view. While the precision of the formulae decreases from (i) to (iii), the first two

are “practical” only if mXt1l is much smaller than n; except for Sections 6 and 7, it
will be assumed that (1), (1') or (2) holds.
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4. PRINCIPAL RESULTS

If the trivial condition m < nl/k ig replaced by (1), with A < (k+1)/(k+ 2), an
asymptotic formula of the form

M-1 exp { -k 9(m)}
(M- 1)!

(3)  p(n, m; k) = p3(n, m; k) (1 + o(1)), with p;(n, m; k) = =

holds, where 6(m) = Z log p as usual, and M = 7(m) = Z 1. Here and throughout the
paper, summations without indications of limits are understood over all primes
p < m, unless the contrary is stated.
An asymptotic formula analogous to (3), giving the number of partiltions of n into

n'-
m!{m - 1)!
known for a long time (see for example Szekeres [10]). Relation (3) can easily be
proved by elementary methods similar to those in [1], in case m is kept constant as
n — . This approach succeeds also if m, n — e, but m < Iogh n, for some h < o}
this corresponds to (ii) in Section 3. If k = 1, the elementary method permits the
proof of (3) whenever it is valid. Although the result is known for constant m (see
[9, Vol. 1, Part 1, Problem 27, p. 4]; see also [7]), a short proof of it is given in
Section 6, which owes much to [10]. The elementary proof of (3) for m — « is in
Section 7. More precise results are obtained by nonelementary methods, by means
of a Fundamental Lemma (denoted hereafter by FL), obtained by the saddle point
method of integration (Section 4); this has already been used similarly in [3]. The
main result is contained in

THEOREM 1.

(i) If m is constant while n — «, then

parts (not necessarily prime powers) at most equal to m as ~ has been

(4) p(n, m; k) = p, (n, m; k) (1 + ¥(n)),
where p,(n, m; k) is given by (3), and where Y(n) = O(n~1) can be determined ex-
plicitly.

(ii) If (1) holds, then

4" p(n, m; k) = p;(n, m; k) (1 + v(n, m; k) + E,),

where p,(n, m; k) is the function of the tvanscendental parameters a, A, A, (de-
pending on n, m, k) defined by (12), and v(n, m; k) = v,(m; k) is defined by (25);
E] = O(n~Ylog-1/2n), wheve y is finite but may be selected arbitrarily large.

(iii) If (1) holds with X < (2k + 2)/(2k + 3), then

4" p(n, m; k) = (27';'M)'1/2 al-M exp{M - ko(m)} (1 + v)(m; k) + E;),
where
k+1
o= (1 T2k +H11)n log m {1+ O(1og™" rn)}) ’

n-2+M2k+3)/(k+1)
k/(k+1) ) .

v,(m; k) is defined by (25), and E; = O(
(log n)
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(iv) If (1) kolds with X < (k+ 1)/(k + 2), then

(4™ ( k) ( k) (1 m'c*2 + E )
1 n, m; = n, m; + 7 3
pin, P1 ’ 2(k+ 1)nlog“m ’

- -1+ Nk+2) /(k+1)
where p,(n, m; k) is given by (3) and E3 = O(n )

(log n)(.21<+1) /(k+1)

v) If (2) holds, then (4') is valid with v = v,(n; K) defined by (27) and
E; = O(n~Y log-1/2 n), as under (ii).

(vi) The transcendental expression (27) for v,(n; K) may be approximated by

1
k+1 k+1
1 -1 150k
K _(1" (4 + k) ) n~" log™n

)T D)

15 k (r(‘s*%))Zkﬂn—l(log n)#-3k - log log n
- 2(61)2 k+1 (1“( - %) )3k+2 (C(l . '11;) )k +0 (n log n)l/(k+1)>'

The Fundamental Lemma (FL) is stated and proved in Section 5. After the ele-
mentary proofs of (3) in Sections 6 and 7 follows the proof of Theorem 1 by use of the
FL; this occupies Sections 8-14. In Section 8, representations are found for F(x),
the generating function of the partitions, and for some of its derivatives. The posi-
tion of the saddle point is examined in Section 9. Then follows the verification that
F(x) satisfies the hypotheses of the FL, the determination of v(n, m; k), and the proof
of (4') (Sections 10 to 12). The proof of Theorem 1 is finished in Sections 13 and 14,
and the results for the most interesting particular case k = 1 are summarized in
Section 15.

v2(n; k) =

5. THE FUNDAMENTAL LEMMA

Except for Sections 6 and 7, where the approach of [1] is used, the method follows
closely that of [3]; the integrals are evaluated by the saddle point method as in [3],
[5] and [8]. The principal tool is the following lemma, wkich is essentially Theorem
12 in Hayman’s paper [6]. The notation of [3] has been changed somewhat in order to
facilitate a comparison with [8]. Results from [8] will be quoted freely as needed.

FUNDAMENTAL LEMMA. Let £(x) = Sneo a,X? be analytic inside the unit
circle and real on the interval 0 < x < 1. Define the functions

a(r) = r________d(lo;(girf(r)) and A,(r) = rdggr)

of r = ]x l, and assume that A,(r) — « as r — 1. Denote by p = pn the root of

(5) a(p) = n,
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which approaches 1 as n — « (for the existence and even uniqueness of this root
under slightly more general conditions, see [6, p. 72]). Assume that for

0<r,<r<1

there exist functions 6(r) and u(r) with the following properties: As n — e« for
some w > 0 and rveal T (1< -1/2 if w = 0),

(a) 8%(p) Ax(p) > 2w log n - ( T+ % ) log log n;

(b) g_ﬁ:() :)) (f(peiﬂ) - £(p) exp { i0a(p) - %92 Az(p)}) e-inf gg

1/2
- (axm) P (ulp) + O™ log™ n);
(c) #(peif)| ag = L0 O (n~® logT n).
O Jafsa 10N 9= g7z © 07 08
Then
(6) a_= £(0) {1 + u(p) + O(n~® log7 n)} .

™7 pP2r A,(p) /2

Remark. The possibility u(p) = o(n~%? log7 n) is not ruled out.

Proof of the FL. By Cauchy’s theorem, integration around the circle of radius
r <1 gives

rieif do;

1 SZ'” f(relf)

n = 9m ), pntlei(ntl)d

consequently,

me L ittty eimsan - L[ ) erin
r= f(relt)e-100 dg = — f(re'Y)e MY dg
T =97 ), 27 L|g>s

+ SZ {f(reia) - f(r) exp { iga(r) -—;—92 A, (r)} } e~1n8 g4g

6 .
+ f(r) S‘ 6exp {19 (a(r) - n) -%62 A, (r) } ds ] .
For r = p, it follows from (5) that the last integral becomes

et an = (sd) " oan (sl) it o,

o0

2
with D = 6(p) (Az(p)/2)1/‘2 and ¢ = g‘ e'XZ dx < e"P“/2D. The conclusion now fol-

lows from the assumptions made, and from the observation that (a) implies
0 <& =0(Mm7Ylog” n).
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6. THE ELEMENTARY APPROACH

The generating function of the p(n, m; k) is

©0

@) Fx)= II @ - xpk)'1 = 22 p(n, m; K)x2.
pSm n=0

Hence,

pP- -
Fx) =(01-0™M II (E XV)

p<m

—_

If p, q are distinct primes, then pX, g€ are coprime; hence all zeros of F(x)~! are
simple, except x = 1, and one has the decomposition into partial fractions

M
(8) F =D A(1-0"+2 T af (- xe2m/ph,
r=1 IS(SPk'l

From (1 - x)™° Z (n +1 x™ it follows that in (8) the coefficient of x™ is

M
p(n, m; k) = E (n+ 1)A + ¢(n), with o) =22 2 ép)em{ZWinf/pk} .
l<(<p -1
-1
In order to determine A, multiply @ by Fx)! =1 -xM II E xY ), obtain-
p<m v=0
ing
pk—l M
1= II ( 2 =) 2 A.(1-xM-r
pSm v=0 r=1
(9) pX-1 (P)
+(1-x)Mn 2 XV)E 2 '(
p<m \ v=0 1<f<pi-11 _ xe=2mif/pk
Setting x = 1 in (9), one gets A = e'ke(m); hence,
(10) b, m; k) = nM-1 e ko) T BW g
Here

M-1
g(n) = (pl(n m; k))_IE (n+ 1) A, = 2 S‘E___ Oo(n-1),
s=1

ns
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and all coefficients @5 can be determined explicitly. The function ¢{n) is periodic,
of period e X(m),

If m is constant as n — «, then ¢(n) stays bounded and can be determined ex-
plicitly, for- example, by settmg n=1, 2, ..., ekd(m) jn (10) and using the periodicity
of ¢(n) for n> eke(m). From (10) now follows (3) with o(1) replaced by the exactly
known expression Y(n) = g(n) + ¢(n) (p,)~*. This proves part (i) of Theorem 1.

7. THE ELEMENTARY APPROACH (CONTINUED)*

The same argument proves the validity of (3) whenever ¢(n) = o(p,). In the gen-
eral case, much better results are obtained by use of the FL; also, the elementary
argument becomes rather involved. Therefore, we shall cons1der in some detail
only the case k = 1, with indications of the general situation. Let ¢ = e2mi/ P; then,
setting x = & in (9) one obtains

1=a?’)(1-§()M II r[) (1 CF ~Y) 1<{<p-1, q primes).
r=0 1<V<p 1

q#p <v<
q<m vl
p-1 q-1 s-1
Since 2 cr( =0, 2 §r( =2 cr( with s = q (mod p). It is known that if
r=o r=o r=o
M, = 2 1, then M, = (M/(p - 1))(1 + O(log™V m)) for every v < «=. Hence,
q<m
q=s(mod p)
q-1 p-1 p-1
a-eHM @ (E ) =@ a-df®) o - e/ (-1
q#¥p \r=o s=1 s=1
q<m

Also, |1 - cf °| = 2 sin (af s/p); hence, with the notation M' = M(1 + &),

1=]|a (p)| H <2s nfs )M'/(p-l)jii Zsin—%z)-(z sing—()—l,

or

where N=-2(M'+ p - 1)/(p - 1). Consequently,

(p-1)/2

Ia}p)lg_z SI=[1 é’!ﬁ) _2(( )((p 1) )-2/(p 1))M'+p 1

* This section owes its existence to a suggestion of Prof. N. Fine,
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Stirlings’ formula shows that this is not greater than
M'!'+p-1

e
2(2p1/(P-1){1 - 1/pp/(p-1) ) )

Except for p = 2, this in turn is less than ZeM'+P’1p"l 'M'/(P‘l); consequently, for

p> 2,

» a(P)Cn[ <2eM‘fp—1p-M'/(p-1),
|ictzon TS

(2)
1

sl =12 T aPel|-o(Z Mitp-1 -M'/(p-1) )
1<f<p-1

= O(eM' SAzm ex—l x-1) -M'/(x—l)dx) = O(GM' Slm e¥y "M'/Ydy) - O(eM'-&m).

while a is a constant. Hence,

This will be o(p,(n, m; k)), provided that
-M+3
eM'+tm _ g nM—le—m_eO(m/logm)_eMM .

If the exponent is divided by m/log m throughout, the observation that the ratios
M(log m)/m and M'(log m)/m both tend to one shows that the estimate holds if
el+logm - g(pl-1/M e-log m (1/1og m)-1+1/2M) or a fortiori, for

(11) m3 = o(n log-o’/2 m)l'l/M .

For k =1, (11) is essentially the condition A < (k + 1)/(k + 2) of Theorem 1 (iv),
needed for the validity of the asymptotic formula (3). In exactly the same way, one

-1 ~
verifies that if n® = O(nl-%m =~ log ™), then ¢(n) =OMm™!.p,). In that case, that is
for every X < 2/3, (4) holds with some (not explicitly known) y(n) = O(n™~%).

In case k > 1, it is necessary to use the fact that not only the primes q, but also
their k-th powers are essentially evenly distributed among the t = p¥-1(p - 1)/d
[here d = (k, p¥-1 (p - 1))] residue classes mod p¥, where they occur. Also, the pre-
vious rough estimate of |¢(n)| becomes insufficient and yields only the condition

(11") exp{m¥k-llog m} = o(nl-1/Mel-klog mp,(k-1)/M (1, /15¢ m)—1+1/2M).

Although (11) follows from (11') for k = 1, the latter condition is in the general case

a much more stringent one and permits to infer the validity of (3) only if m = o(n?)
for every £ > o. In order to overcome this difficulty, one has to use a rather sophis-
ticated method for the estimation of ¢(n), as can be seen, for example, from Szekeres’
handling of a similar problem [10]. Instead of this it seems preferable to make
straightforward use of the FL.
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8. AN AUXILIARY THEOREM

Let A, (p) = A,, log p = -a and log F(p) = A,; then the following theorem holds:

THEOREM 2. The function F(xX) defined by (7) satisfies the hypotheses of the
FL, so that, for appropriate u(p), w and T,

(12) p(n, m; k) = p j(n, m; k) (1 + u(p) + O(n~® log” n)),

where p;(n, m; k) = (2111\.2)'1/Z exp {no + Al} , u(p) = o(1).

It is sufficient to verify that F(x) satisfies the hypotheses of the FL, since (12)
then follows directly from (6). Also, Theorem 1 is an immediate consequence of
Theorem 2. In p,(n, m; k), one recognizes the asymptotic expression of Haselgrove
and Temperley [5] and of Mitsui [8].

The proof of Theorem 2 will now begin; it will run to the end of Section 12.

From (7), with -B=1log x, B > o, one obtains log F(x) = ZE,, -1 V -1 exp (-vBpk).
By Mellin’s theorem, the exponential equals

1 g+100
wBpK)-sT'(s)ds (s=o0+it, 6> 0),

27i
1 Otico -8 ~-ks
so that log F(x) = P B7°r'(x) ¢(s + 1) (=p *°)ds. The interchange in the order
O-ico

of summation and integration is justified by the uniformity of convergence. Chang-
ing s into -s, one obtains

-gtico : +ic0 - -
log F(x) = 211115‘0 ioo B5T'(-5) &1 - 8)X p&S ds = 511; S‘ocr gs r s)';’(l S)Epks ds

-3 Gﬂw(zn)s_ Us) 3 pksgs,

2 _o_ico .1rs
2

the last two equalities being justified by the functional equations of the I'- and the
€-function, respectively. The integrand is meromorphic, with poles at s = 0, 1, 2j
=1, 2, ---). The corresponding residues are found to be

Ry = {M log 4=+ M (0)/2(0) + ke(m)} 240 = - {Mlog 6 + koGm)} /7,

~1)) 2j p(9i A
R = gﬁzpk and  Rpj = (———:) (%) _____C(jZJ) 2ip2ki,

Consequently,

L . 2j .
log F(x) = - (M log 8 + k68(m)) + %BZ} <+ 27 (-1) (%) MZ kaj
j=1 !

(13)

h-+ico ks
‘S‘ (Zﬂ) ssin%—(y‘p s
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with 2L+ e <h< 2L+ 2 - ¢ (0 < g <1) for any positive integer L and
1+e<h<2-¢for L=0.

Consider F(x) as a function of 8, and set log F(x) = {(8). Differentiation gives

L . 2j-1 _

aG) = OB FED - () - H - I Mok %EI 0 ()7 e p2
(14)

__L htico _@_ s-1 C(S) (Z ks)d
+4‘lri.h_ioo (211) 'nF—E— p s,
2
L 2j-2

da(x) way .M 1 i/ B\ . _ .

dlog 5~ A20 = 10 = G o 5B () (£) @-0eeZp
(15)

1 (P BN (s - DEE) 5 s
—gﬂ—Z;S;l_ioo (21T) '—Sl—nlz—s———(zp ) ds.

9. THE SADDLE POINT

The representation (14), in conjunction with (7), permits us to determine the root
o = -log p of (5), the “saddle point” used in the FL. It turns out that, for fixed n, «
increases with m, until it reaches the value

I‘( 1 ¢ 1 k/(k+1)

2+——) (1+-—)

_ _ k k klog log n -1
a-ao_( n log n 1_(k+1 logn+o(10g n)).

Afterwards, for m¥tl> g (log n)HS, a becomes independent of m.
THEOREM 3. Let mftl = n} log¥ m, with A <1 and with v = 1 if X < 1. Set
@ =min(1, v). Then
(16) a = Cy 51 (log )P E-H/ M) (1 4 o1y,
with

(1-k-1)/(k+1)
A
Cav= (k + 1)

C1,1 - (k+ 1)(2k+1)/(k+1) (k + 3/2)-1 ’

if wv<1,

k/(k+1)

Cyp=Fi= {re + 1/x)t + 1/x)} ifv>1.

In the proof of Theorem 3 and frequently thereafter, we shall need

LEMMA 1. 3 pT = - T (1+o( 1 ))
’ (r+ 1)logm log m :
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Proof of Lemma 1.
v

Epr=2rg‘pxr'ldx=r 27 {wm) - 7w - 1)} xT-lax

Yo 1<y<m v-1

rfr(m)gmxr‘ldx—rS;mw(x)xr'ldx=n(m)mr-rS;m }gic+ 0( x" ))dx

lo logzx
r+1 metl
=1r(m)mr—Lmr+llog’lm+0(m ): (1+O( 1 ))
r+1 log? m (r+ 1)log m log m

Proof of Theorvem 3. With L =0 and h= 1+ ¢ in (14), the Riemann-Lebesgue
theorem and Lemma 1 show that for m¥t! = nX log¥ m and a = O((n log n)-¥/(k+1))
the integral is

o(nM(A-1)ke/(k+1) (100 n);l+(v- ke /(k+1)) = o(n).

In particular, if (1) holds, then by Lemma 1,

2 P’ = (k +Hi};(1)g m (1 * O(loglm)) = 0.

Also, with L=1 and h= 2 + £ in (14), the integral along h =1 + £ is seen to be ac-

tually O(nkz), where A, = {(2k + 1A - k}/(k + 1) < A. (It does not seem possible to
obtain this result directly, with L = 0, since the o-estimate does not hold uniformly
in €.) Equation (5) becomes

M k+1 N
B 2(kT1) Togm L+ O(log~'m)) = n(1 + O@"2™)),

whence
! _M ( mk+1 By )

and (16) holds in this case.
If mktl=nlogh m (u < 1), then ZpK = O(n logh-1 n) = o(n), and by (5) and (14),

(16") @ =21+ o(1)),

and (16) holds again.
If (1') holds, the integral along h= 1 + ¢ is still o(n), but now

mk+1

3 Cn(1 + o(1))
2k + 1)log m

k+1 ’

%Epk (1 + OQlog™! m)) =

and from (5) follows

1 Mg so) = X

16™ o = ——
( ) C+k+1n (n log n)k/(k+1

) (1 + o(1)), where
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1/(k+1)

F= C+k+1(k ’

and (16) follows from (16™) for C = 1/2.

Remark. Since C # 0, ©» in (1'), log m in the denominator may be replaced by
log n, by renaming the constant C.

The proof of (16) for v > 1 is less immediate. For v > 2, Mitsui has shown (see
[8]) that

-

(1e"™) a=0g =

Fy (l_kloglogn

me- (r(2ed) e (10)) .

A slight modification of his proof shows the validity of (16 ") for any v > 1; this will
finish the proof of Theorem 3. For that, one first has to replace Lemma 1 of [8] by

Ck,
LEMMA 2. If mftl =nlog¥n (1 <v < 2), then a = (n Tog rr:)k/(k"’l) , whevre

+ O(log -1 n) ) , where

—;-(1 + 1) < ey, < {60+ DPYEM) (14 60), 616, 0 as n— e

Proof of Lemma?2. For some b > o, set
b_. v-k-1y1/(k+1) -1
B = - min {(n(log n) ) , mlog " m}.

By the assumption in the lemma, m log~! m ~ (k + 1)(n(log n)V—k—l)l/(k-l-l); therefore,
B = b (n"k(log n)V-1-k)1/(k+1) = O(n-k/(k+1))

Hence, mBl/k = (b logV"1 n)l/k. We shall be interested in values of b (not neces-
sarily constant), such that b(log n)V-1 > 1. Then min (1, mpl/k) = 1 and, with the
value of 8 as here defined, (10) of [8] reads

1+ £,
261+1/1< log m

6(1+¢g;)
<a® =20 —mb— < ;
PPk _ 4 Bl+1/k10g m

here the equality follows by differentiation of (7). Replacement of 8 by its value
gives

b-(k‘*‘l)/k (k-v+1)/k

a(x) < 6(1 + sl)log'1 n{log n)

and this is less than n, provided that
k/(ktl ~(v-

b>by = {6(1+¢&;)&+ 1} / (it ) g n)~ ¥ 1)/(k+1)
For such values of b, one verifies that the assumption made,

b log¥"! n = (6(k + 1))/ (k+1) (1og n)(v-1)k/(k+1) 5 1

actually holds, provided that v > 1. It follows that, in order to have a(x) = n, the
root a is obtained from the expression of 8 with some b < b,, that is



PARTITIONS INTO PRIME POWERS 109
a <b; {n‘k(log n)¥-1-k} 1/(k+1) _ {6(1 + £ )k + 1} k/(k+1) (n log n) —k/(k+1),

for every €, > 0; this proves one inequality of the lemma. The other inequality is
obtained in a similar (but simpler) manner. On the basis of Lemma 2 instead of
Lemma 1 of [8], the proof of (16™) proceeds for 1 < v < 2 exactly as for v> 2 in
[8], except for the difference that a certain error term now reads

O(exp { -c(log n) W -1/ (1))
instead of O(exp { -c(log n)k/ (k+1)}); this does not alter the conclusion, provided (and

it is here that the assumption is fully used) that v > 1. The proof of Theorem 3 is
now complete.

COROLLARY 1. If A< 1, then the sevies in (13), (14) and (15) converge and the
integrals tend to zevo, as L and h — oo,

Proof. By Lemma 1 and (16'), the ratio of consecutive terms in the series is at
most (@mk/27)2 = O(n*-1 log m) — 0. Also, by Lemma 1 and the Riemann-Lebesgue
theorem, the integrals admit estimates of the form o(nc-1{(1-}) 10gé n), with c, ¢
constants (different in each integral); hence, for h — « the integrals tend to 0.

COROLLARY 2. (i) Foreverye >0 and A < 1, -

Az =450 = _1\/_12_(1 + o(n-(2-€)(1-A)y),
(84

(ii)

Ay = A, = Gy ,n® M) 1og -1/ Bt g 4 o(1y),

where Gy 1 =C3Y f A<1,Gy,=1+1/KC:L ifv>1,G, ,=0() i (1) kolds,
A1 =Cxn 1,v 1,v 1,1

Proof. (i) is obtained on substituting (16) in the integral of (15), with h= 2 - ¢,
€ > 0. (ii) is obtained on substituting (16) in (i), when A < 1; as a generalization of
(46) in [8], by use of Lemma 2, when v > 1; finally, on substituting (16™) and m from
(1') in the integral of (15), with 0 < h < 2, when (1') holds.

10. PROOF OF THEOREM 2 (I)

Let 6 = 8(p) be defined by
(17) 6%(p) A,(p) = 2ylogn,
where y > 0 is arbitrarily large, but finite. Condition (a) of the FL then holds for

every 7 if w <7, and also for w =y, if 7> -1/2.

It will be easy to verify hypothesis (c); therefore, the main remaining difficulty
is the determination of a function u(p), for which (b) of the FL holds. For that, we
need log F(peif). When x = peif, log (1/x) = o - i0; hence, one obtains
log F(pelf) = £(8), by setting 8 = @ - i6 in (13). Generally,

fla - if) = io) (-ie)"f(")(a)/v! = E) (-i0/a)V f,,

V=o yv=0

where f, = an(V)(a)/v!.' In particular,
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2
o
f, =log F(p) = Ay, f;=-a(p), f£,= *‘2‘—A2(P);

hence,
[~ o]

(13") log F(pelf) = log F(p) + i0a(p) - %GZAZ + 2 (-i@/a)”fy.
v=3

Denoting by D(p, ) the integrand {F(peie) - F(p)exp (i9a(p) - %BZAZ)} e-in8 jp (b)

of the FL, and remembering the definition of p as solution of (5), one obtains
[~ o]
1 .
D(p, 6) = F(p) exp (—EGZA?_) {exp 273 (-19/a)VfV) -1 }
V:

From here on, the procedure is essentially as follows: One obtains estimates for
f,,, uniformly in v; this permits an estimate of Z°;=N+1 |6/a| V1, for lo] < 6 and

an arbitrary integer N. When it is shown that this sum is of{(6/a)N fiy}, the infinite
series in D{(p, 6) can be replaced by E'VN=3 (-i6/a)V £, the dash indicating that fi
has to be replaced by fy = fi(1 + 0(1))%°to compensate for the truncation. Next, one
estimates S = 2"1}23(-10/a)" f, and !E‘FQH SH/u !l . If Q is selected in an appro-
priate way, the last sum can also be written as (§/a)N fyy-o(1), and D(p, 6) becomes

1 it 1 ay -ig\” .
s om ) BB

NQ/2 . 2]
F(p) exp (—%92 Az) ( Zz (-1Y (%) Byj+ f1(9)) :
j=

D(p, )

Here f,(8) stands for an odd function and, by the multinomial theorem,

Oy

Ve

1!-"(11.!,

o
(18) Bpj=211, - f
the sum being extended over the integers v and a satisfying the conditions
1<aj+oy+-+a. <g=[2§ 3], ayvy+-+oa.v =2j,
< << - <v.<N.

The integral of f,(8) over (-8, +6) vanishes, and

-1/2
5 . . oFs) .
S‘ 5 9% exp (—%BZAZ)dQ = ZA‘Z(J“/Z) S w2ig-u?/2 gy

—(J'+1/2)( ® 25 -u2/2 ® )
=2A J du - coe .
R T

i 2 . i
The last integral is O((6AY/ )21 0-8%82/2) _ 0¥ (log n))"/?), while the first,
integrated by parts, equals 1-3-5-.-(2j - 1) (1r/2)1 2, Hence,
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Sa
_6D(p, 6) de

(19) 1/2 o
F(p) ( ;2,}2) (u(p) + o™ 1ogt n))

2J AJ 23

with
NQ/2 B .
i_P2j @)t
(20) u(p) = JZ) (-1) oDl P51

The values of y, and & will depend on estimates of the B 2j- This will prove that
hypothesis (b) of the FL is satisfied by F(x).

11. ESTIMATES FOR f{,

LEMMA 3. (i) Let v = [(v + 1)/2]; then, if (1) kolds, f, = (-I)V%cv, with

00 - . 2 . .
21) cy=1+ (4)”%3{3;(-1)3 (ZVJ) (;‘—W) J%-sz?-lm.

The estimate
(21') lc, - 1] = o 4(1-2)y
holds uniformly in v, as n — .
(i) Ir (1') holds, then 1, = (—1)V%cy with c, = O(1), uniformly in v.

(iii) If (2) holds, there exist constants c and C, independent of v, such that, as

n—»oo,

m <|Cl1/kfy| <C.

(iv) If (2) holds and n — «, then, fov any fixed v,

r(v+5) t(1+5)

fV = (_1)V vl l/ilog (l/a) ( m_) Ly * O(log (l/a) )

l/k
with L, = V/P<V+-112) ¢ (1+ —1-), Jy = S ——u—l—Q&——du and
k o e -1

(22) Sy=-(v-1+2)3,  + 0’ (v-1+1)e(1+1).

Remarks. 1. The case distinction is exhaustive and mutually exclusive. 2. The
constant implied by the O-term in (iv) depends on v.

Proof of Lemma 3. (i) By Corollary 1, if (1) holds, it is legitimate to set L =«
in (13), (14), (15). By part (i) of Corollary 2, A,= o "2 M(l + o(1)); hence, by (17),
6 = a(2y logn- M-1)1/2 5o that
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(23) 3_!._. _27_1‘15_11) 1/z = O(n-M2(H1) (10g n)(2k+1)/(2k+2)y

For B=a - if and L = =, (13) reads

log F(peit) = M (logé - log (1 - ;Tg)) + %(a - 10) 22 p¥ - k6 (m)

+ fbl 0 (&) e (1 - )75 p2ia,

(There should be no danger of confusion between the arithmetic function
6(m) = Zlog p and the angle §.) With expansion of the logarithm and the binomials,
(14) and (15) give

log F(peif) = M log% - ko(m) + %Epk
oo 2j « v
+ 2 () ez (8)7, 1
j=1 v=1

) s 4 2]
gz B e (8) (2, () (2)7) Smees

s 14
= log F(p) + i6a(p) - %OZAZ(P) + M2 (%) vl
v=3

2 e \E LD i0\ ¥\ £(2j)
(e 1) (=19) 7 821 5~ 2k
+.Z;(1) (217) (Z_D(v) (a)) j 2.p :
j=1 v=3
Regrouping of terms yields

- ©0 . V
log F(pef) = log F(p) + i0alp) - 36%A,+ 2L (.1&9) M e,
v=3

with ¢, given by (21). By (15), (1) and Lemma 1, direct computation from (21) leads

to |c, - 1] = O(n_zy(l_”
part of the lemma.

(ii) If in (13) one lets L — «, with h= L + 1 and constant n, then, if (1') holds,
on account of (16"'2 and the Riemann-Lebesgue theorem, the integral is
o(h~1(n log~¥ n)! k+1)) and goes to zero as L and h — . Writing (13)for
L=1L, hj=L; + 1 and then for L = L,, h, = L, + 1, one sees by subtraction that the
sum from j=L; + 1 to L, is less in absolute value than the mean of the absolute
values of the integrals along h = h, and h = h,, respectively. Since these integrals
go to zero, it follows by Cauchy’s criterion that the series converges. Hence, the
analysis from (i) is still valid. The result now follows on setting A = 1 in (21'). For
n, m — o, one can no longer infer that ¢, — 1. In fact, this is no longer true. Indeed,

). Since v > 3, this implies (21'). This proves the first
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one may compute, say, c,, for mitl = p log m, by using (21); one obtains

c;=1-240(4k + 1))~ (1 + O(log™' m) 4 1.

(iii) The series that one obtains by setting L = « in (13) fails to converge if (2)
holds. Therefore, one has to use the first representation of F(x), in (7),

k
f(a) = log F(p) = - Zlog (1 - e"®P"), Differentiation leads to

R e
da e®P _ 1 et -1 u=apk

and, by induction on v,

- oo { 25 (2)]
dav_— du’-1\e® - 1/ ) 5k
£, =—f(V)(a)— ; E( S 1( 1 )) '
eu - 1 u:apk

v-1
Since -4 (eul )—( )VIE pr-le-Hu

duV"l n= =1

whence

m ©0
k
(-1)Yvif, = 25 E —(,uu)Ve ‘”"u) < 2 2 —1(pzoznk)"e“m‘n
p<m \y= 1 B u=apX n=2 p=l H
= pax y e~y dy
e 1 u oy BT/ )

=0(I‘(V+%)c(1+%))

ka /%
V+ —) (1 + 1)
ka l/k

On the other hand,

and |f,,| < O(1), and this proves the second inequality in (iii).

™ 8

2

p=2

1
k v!ie¢ (1+——)
k\V _’J,ap C S ky\V _“ax (6] k .
(papk)’e > —————mg - (paxX)” e dax > Tog n - 7%

T Ms
ot

i
i
this completes the proof of (iii).
(iv) It is known (see (7) in [8]) that for r > s> 1,
Z) P rk - m erdx . O(e—c logl/z m ‘r"E . 1/k)
(eBPk - 1)s 2 (eBPk - 1)°log x

Using this result, decomposition into partial fractions, and Theorem 3, one obtains
successively,
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v V- Y (r)p Y vk
&1 mp(L2(1) D >R LA s GO S
daV du?- et - u—ap r=1 (eaP -1)* r=1 (e@P™ - 1)T

v K p L
m v, 1/2 ™
= 23)/1,(r){51 kx dx +0(e—clog/ m k)}
r=1 2 (e2* - 1)¥logx
m V 7, (r)xVk m Vk v-1
) v ax g x ( d 1 dx+ B
r= 1 (ea!x - T log x 2 08X duv-l el -1 u=q xK

1
1/2

7
with E=O ( e~clog a k) . The integral may be computed, along the pattern

of [8], as follows:

k
" Ll (Sl G = gV g"m ke’ a1/ 1 du
2 log x\ 4,v- l\eu 1 . log (u/a) duu—l\eu _ 1/ (du/dx)

2
1 k
—V—Egam a’-1+1/k gv-1 1
= du ’
log (u/a) au?-1 \e® - 1

20

and
a-1/2 amk

y?al/k(§2a al/z +§a-1/2 + O(@VE).

For u > 2a, log(u/a)> log 2; hence, the first integral is O(al/2k), The last one is
O« -(v-1+1/k)/2 e'a—l/z); hence,

amk a-1/2 G-tk gr-1 1
S - S 1 du + O(al/Zk) .
o C!l/z log(u/a) duV— el _ 1

1
2’

logu

1/2 -1/2
For al/2 <u<a ’Iloga

| <

so that the last integral equals

1 S-a l/zuv 1+ gv-1 1 )du
Iog (1/a) ol/2 au’-! \ev - 1

1 S'Ol_l/z V- 1+—1- dU 1
" log2 (1/a) Jgl/2

u klogu ( ) du + O(log-3 (1/@)).
uV 1 eu .

The extension of the limits ))f integration to (o, «) introduced new errors, ‘the largest
of which, O(log ~1(1/a) - @ /2% is absorbed into O(al/2Kk), Since

1
[> o] 1 [> o]
I - \Sv uV + dV 1 Z) e—!J-u du = (—l)y—lt (1+ ___) (V+ )
v o du”-1 =

u=1
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oo 1
voltg a’-l /1
and integration by parts shows that J, = g u log u ( 1 du satisfies

o dull—l

(22), one finally obtains the estimate

-t L _r -3 1/2k

+ O(a—l/k e-c'logl/zn)

b

whence assertion (iv) of Lemma 3 follows immediately.

COROLLARY 3. There exist constants ¢ and C such that

e log™™ n)/ (1) < | ¢ | <cm? 1og mt/*F1)

Proof. If (1) or (1') holds, parts (i) and (ii) of Lemma 3 yield

c(n 1og n)l/(k+1) < || < cr-t@ 10g7 n)l/(k+1) ;

if (2) holds, part (iii) of Lemma 3 gives the result.

12. PROOF OF THEOREM 2 (II)

By Corollary 3 and (23), for every N > 3 and (9[ <95,

I > ( 16) gN o{%(n,\ log-k m)1/(k+1)}

N+1

N N
0 Y 8"
= E fNO(a-logn) ='El fN'O(l),

so that E°;=3 (-i6/a)V £, = Z;; (-i6/a@)¥ £, as in Section 10. Also,

|s| = _—_;_Q)ny :Iglo((nhlogn)l/(kﬂ)(%)z)’
so that
u=§+1 SH/ut = —‘ 0(( )ZQ+3 n? log n)(Q+1)/(k+1))
-z  tq 0 (M2 ) 1068y ),

where £ =2(Q + 1) - %(k + 1)L, Selecting Q = N, one obtains

D(p, 6) = F(p) exp (- ezAz)( e (g—)ZszJ-+f1(e)),
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where f,(6) is an odd function, B;; is given by (18), and the dash indicates that fyy
which enters in the definition of some Bzj’s has to be replaced by N = IN(1 + o(1)).
From this, (19) follows as seen in Section 10; this proves that F(x) satisfies as-
sumption (b) of the FL with u(p) given by (20).

Concerning condition (c) of the FL, it is known (see (43) in [8]), that if
0o = n-1 (na)(k+2)/(2k+3) and 6; = 270, then

S‘ | F(peif)| do = F(P)O(n‘lexp (-e(no) 1/(2k+1)) ,
|o]>81

so that
(24) { | F(oeif)| db = F(p) A31/20(n"%)
l6|>61
holds for every arbitrarily large w. Since 6 < 6, (this inequality is seen to be equi-
o1 .
valent to y log n < 72 Ml/(2k+3)), we still have to estimate I = S ] F(pe' 9)] ds. By
6

(13') and Corollary 3, for |6| < 6,,

log | F(peif)| = log F(p) - %92 A, + y(6),
with
4
Y(6) =0 ((g—) (n log n)l/(k“)) = 6% A, - 0(612 a'4A;_1 (n log n)l/(k+1)) .
By Corollary 2, A'Z1 = O(n'ZH/(kH) (log n) ~1+1/(k+1)), so that, by the definition of
5,, W(0) = 6%2A,¢, with
e = o(n.z/(ak+3)(log n)(41<+3) /(2k+3))
and
19 1 2 1 ! /
| F(pe'®)| = F(p) exp (- 50 Az), A2=A1+¢).
Hence, integration gives
5y ) 61 - S 2
31 | F(peif)] do = F(o) g exp (- %GZA'Z) d9 = F(p) A} 1/25 1 eu/2 gy
] 5 €

2
with €% = 62A", = 2y (log n)(1 + o(1)), and the integral is O(e~8 /2/¢) = Om~Y log~1/2 n).
Consequently, by (24),

§| 9|>6 IF(peiB)I de = F(p)Aél/zogn'y log'l/2 n),

and (¢} of the FL holds for every 7 if w <y, and also for w =y if 7> -1/2. This
finishes the proof of Theorem 2.
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13. PROOF OF THEOREM 1

Part (i) of Theorem 1 was proved in Section 6.

Proof of (ii). If (1) holds, then, by Lemma 3, f,, = (-1)¥p~! Mc,,. Substitution in
(18) yields Bzj = =8, MSVjs = O(Mg), as M — «, for given j, with g = [2j/3] and
)i

Tr

N
ij = E II a1
3,S,Zj ’J,:l e

-1
(CVM vy

Here, and in what follows, the letters above and below the summation sign stand for
the conditions of summation

r r
3< v <vy < <w <N, 2i ay=s, 2 apvy=2.
y,:]. !_L:l

Omission of any letter below or above the Z-sign means that the corresponding re-
striction has been dropped. If

N T o
wig = 2o 1l (v““au!)_l,
3,s,2j u=1

r
then, by (21") and 27 @, = s, V.
i=1

- -4(1-A
is = Wis (1 + O(sn ( ))). Also,

S
5]

—
.

N r o S
3 o1 1 (1 1\° 1 1 — s _
WJS< II (Vu a.u!) —s—!(§-+"'+ﬁ) —a‘(lOgN— 1—5-'}/—8). =3

- 3,S H=1
Here y stands for the Euler constant, 0<g <1, £ = 0 as N — e, and a, = log N,,

N, =Nexp{- (3/2+7 + &)} <N/7. Hence, vjs = a5/s! uniformly in j. Replacement
of all the ¢, by ones leads to an error O(s-n-4(1-A) a5/s!) on vjs, and to an error

g
o(n-‘*(l"’\) > (May) /(s - 1)!) = om~4(1-N M8
s=1
on Bzj; hence,

g
Bys= 2 Mw;g+ O(n #1-N Mg).
s=1
Also, since Bzj= O(M®) and, by Corollary 2, a?A, = O(M) for Q= N, the error term
in (19) becomes

N°/2 .
o) (n'y (log n) -1/2 2 ME-) %—J—])—!l (log n)j) = O(n~Y M-t (log n) 5/2')
j=2

- Oy -M(kt1) (108 n)°1)
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where &, = —g - k/(k + 1); hence, ¥, = A/(k + 1) > 0 and £ = £, in (19). If y is selected
arbitrarily, the FL and Theorem 2 show that the terms of u(p) that are

omn™” log‘l/z n)

will be absorbed into the error term; hence, one keeps in u(p) only terms with

Mg'jz n~? log'l/z n, or u(p) = E;?:Z Czja'z-‘ A3 + O(n™Y log™1/? n), with

. g r a -1
CZj= (—1)J1'3"' (2j - 1) Z} Ms Z) H (Vu“a“!> 5 J = [3y(k+ 1)/A].
s=1 3,s,2j p=1

Having selected some ¥, and having determined J, take N = 2J + 1; then fy (and,
hence, fl'fq), will not occur in any of the sz that are needed. Also, the restriction

v < N becomes vacuous, and it has been omitted. This finishes the proof of part (ii)
of Theorem 1, with

J

-213 -3
J:

Remark. One may select y arbitrarily large, so that the error term in (4') may
be made arbitrarily small. But one cannot make E, — 0 by letting y — «, because, if
J is replaced by «, the series (25) diverges because of the factor 1-3-5.:--(2j - 1) in
Cyzs.

3

Proof of (iii). From (14) with B = ¢, it follows that

co ) 2j )
nae =M - %az pk - 227 (-1Y (%) e(2j) 22 p2ki.
j=1
Adding this to (13), one obtains

log F(p) + ne = A, + na = M log (e/a) - k@(m) - E,,

o0 '

with E; = 22 (-1)3 (2 - 1/4) (@/2m) 2 €(2))20 p?N. If A < (2k + 2)/(2k + 3), then
j=1 =

E, = O(aZEPZk) _ O(n—2+7t(2k+3)/(k+l) (log n)-k/(k-t-l))'

Also, by Corollary 2, Az = « "2 M@ + o(n‘(z‘s)(l'h))). Introducing these into (12),
with w =y, 7= -1/2, one obtains

p(n, m; k) = (ZHM)‘I/zal‘MeM'ke(m)(l - E; + vi(m; k) + Ey),
26
(26) E = om-(2-e)(1-2) , v log'l/2 n) .

Since y is arbitrarily large and & > 0 is arbitrarily small, the dominant error term
is E,. Also, by (16') o has the value asserted in part (iii) of Theorem 1; this finishes
the proof of part (iii).
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@v) If A> (k+ 1)/(k + 2), then v, = u(p) = O(M™Y) is absorbed into E,. If, how-
ever, A < (k + 1)/(k + 2), E, = o(v,), and, at the same time a can be expressed with
sufficient precision in terms of n and m to lead to a true asymptotic formula. Re-
placing o in the second member of (26) by its value (16'), one obtains

2

aM-1 e"ka(m)((ZH) 1/ZMM’I/Ze'M) "1(1 + v, (m; k) + %(k + 1)'1 n~! m<t? log™ " n+ E3>,

all error terms of (26) being absorbed into

k+2 -3 m) = O(n—1+h(k+2)/(k+1) (log n)—(2k+1)/(k+1)) )

Ej= O(n"lm log

If also o A, in (25) is replaced by M(1 + €), where ¢ = o(n’(z‘g’)(1 '}‘)), this becomes

J J
J=2 _]=2
Ny s % ) =
=2 (—1)JM'J—ij_—'Z m® 2, II Vilai!) +Es= 2 MMt + Es,
j=2 2751 g=1 3,s,2j i=1 p=1
with
2p

t o= (D" T (-1)* (2s + 2u)! » I ( fxi i!)—l
# s=1 25T (s + )1 3.5 2(pts) i=1 e

and Eg = o(n~2+M2k+1)/(k+1)+€ (150 o/ (k1) g0 every € > 0; this is

O(n-1+h(k+2)/(k+l) (log n)—(2k+1)/(k+1)) )

If b, denotes the Bernoulli numbers (b = -1/2, by = 1/6, by = -1/30, --+;
sz+1=0 for j>0) and )

(J+1)/2 2511
gM) =exp( - 27 M 7 b,/2i(2j - 1))
j=1

is expanded in a power series g(M) = Z;):o h, M™%, one has hg, =1, h, =t, for

1< v < (J+ 1)/2. (An indirect, but very simple proof for this expansion is obtained
by equating the value of p(n, m; 1) from (26), with vy = = ﬂ;ll t, M-# + Eg, to its
value B;(n, m; 1) (1 + O(n-1), obtained for X < 2/3 in Section 7.) Hence,

1+ vy (m; k) = g(M) (1 + O(M-7-2)) and, by Stirlings’ formula for factorials, (26) now
reads

nM-1 g-ko(m)
(M - 1)!

(26') p(n, m; k) = (1 + %(k + 1) 1l M2 10g7% n E3).

-J-2

Indeed, the last error term is O(M , and it is absorbed into E; for

k+4/k+1
T2 (krz-)-

This finishes the proof of (4™), that is, of part (iv) of Theorem 1.
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Proof of (v). If (2) holds, f,, is given by (iv) of Lemma 3. Substitution of these
values in (18) leads to

g

r
Bj = 2 qbﬁ 2 I Yi(vg), ¢ =C (1+ %) a"l/k log’lé,
p=1  3,u,2j s=1

i F(VS + l/k) -1 1 _2 1 C!s-,
=gy (5 (1 o7 oo 1 1))

By Theorem 3 (see (16" )), @ depends now only on n; hence, on setting

(18')

N2/2
i ~2j o-j (20)!
(27) u(p) = v,(n; k) = Z?z (-1)IB,;a ZJAZJE—J,—]_—'Jr E,
j= !

with By; defined by (18') and Eg = O(n-7-1/(k+1) (1og n)5/2)+k/(k+1)) assertion (v)
of Theorem 1 is proved. The estimate for the error term follows from (19) and
(with a slight anticipation) an estimate of the individual terms in (27).

14. EVALUATION OF u{p)

If a larger error term is accepted, the unwieldy expression for v,(n; k) can be
much simplified. Since Y (v;) = O(1) and ¢y = O((n log ¥ n)! (kt1 ),

B,; = H,; ¢f (1 + O((n~1 logk n)1/(kt1)y)

where the Hy; are numerical constants, depending only on j and k. Also, by Theo-
rem 3 and part (ii) of Corollary 2, azAz = O((n log~k n)! (kﬂ)). Hence, in (27) the
individual terms are O((n log-k n)(g-3)/(k+1)) the largest being the first two, corre-
sponding to j = 2 and j = 3, which are both O((n-1 logk n)1/(k+1)), We observe that
B, contains only one term. If each of the B2j’s is replaced by its largest term, it
now follows that one introduces into (27) an additional error O((n-1 logk n) 2/(k+1)y,
However, already the third term (j = 4, g = 2) is only of that order and is absorbed
into the error term. Retaining, therefore, in (27) only the first two terms
1-3B,a™A;2-1.3.5Bga"%A;3, and replacing B, and Bg by their values (18'),

one obtains

v, (n;K) = 3{1"(4 + %)C(l + %)(1 - L,log-! é+ O(log'2 é—))a‘l/k(log‘l é)/ll} o~%tA5?
- (3-5/21){1*(3 +%)§(1+ %) (1 - Ljlog-1 2

2
+ O(log‘zzlr-))a‘l/k (log‘1 é)/m} -~ A53+ E,

with E; = Oo(n-1 logk n) 2/ (kt1), Finally, replacing here a and A, by their values
from (16" ) and Corollary 2, one obtains
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2k+1 -1/(k+1)

=i r (a0 {(g(1+2)) ((2+2)) nios*n)

3kt2
ey w0 ) {(2(123) ) (m(208)) 7 miosn)

-1/(k+1)

E = log log n .
8 (n log n) i/(k+1) /)’

this finishes the proof of Theorem 1.

15. THE CASE k=1
In case k = 1, some of the preceding results are simpler. We summarize them
as follows:
THEOREM 4. (i) If m is constant, then

M-1 _-0(m)
p(n, m) = 2 (Mf o1 {1+ym)},

where Y(n) is O(n™) and can be determined explicitly.

(ii) If m® = n? log m, X < 1, then p(n, m) = p,(n, m; 1) (1 + v,(m) + Ey), where
p,(n, m; 1) is defined by (12),

1+ O(log'1 m))} ,

M{ m?
o =

n " 4nlog m

e 5 j 1 a \%4 . 2

na+A1=Mloga-9(m)—E(—1) (2——.) (2—) C(Z])Ep J,
j=1 3ooAen

Az =M 'n?%(1 + 0@ 1Y), vi(m) = vy(m; 1) as given by (25), and Eg = O(n~Y log=1/2 p)
(y> 0, arbitrary).

(iii) If, furthermore, X < 4/5, then
p(n, m) = (ZWM)'I/Zal'MeXp{M - 6(m)} (1 + vi(m) + E, ),
with o and v,(m) as under (ii), and E 9= O(n -2+5)/2 log'l/2 n).

(iv) If, furthermove, A < 2/3, then

M-1_-g(m) 3
n e m
o, ™) = -1 lmE)

with Eq, = O -113/2 105 -3/2 )
v) If m#=nlog* n, u > 1, then

p(n) m) = p(n) = pl(n’ m; 1) (1 + Vz(n) + E]_z) ’
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with p,(n, m; 1) defined by (12), v,(n) = v,y(n; 1) given by (27), and
E = on~Y log‘l/2 n)

(0 <y < o, arbitrary).
3V3 (L()g__g)#z (1+O(log10gn) ) .

(vi) vy(n) = - 167 n log n
Theorem 4 follows almost trivially from Theorem 1 and its proof, on setting
everywhere k = 1.
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