SOME OPAQUE SUBSETS OF A SQUARE

F. Bagemihl

We deal in this note with a fixed Euclidean plane. Let
Q={(x,y):0<x<1,0<y<1}.

We say that a set S is opaque, if (i) S is a subset of Q, and (ii) every (straight) line
that contains a point of Q also contains a point of S. If T is a subset of Q, the dis-
tance set, Ay, of T is defined to be the set of all real numbers d with the property
that there exist points t, t' in T such that the distance between t and t' is d. Let
J be the closed interval [0, V2], and let J*=J - {0, 1, v2}. If T C Q, then clearly
At C J,and if T is opaque, then ApD {0, 1, V2} becausé T contains the vertices
of Q.

A recent article by Sen Gupta and Basu Mazumdar [8]is devoted to showing that
there exists a subset E of Q of first category and measure zero such that (a) every
line that contains a point-of Q and is not parallel to a side of Q also contains a point
of E,and (b) Ag =J,and if 0<d< v'2 then there are infinitely many pairs of points
in E such that the distance between the points of each pair is d. We remark that
there is a very much simpler example of such a set E: the union of the two diagonals
of Q not only satisfies (a) and (b), but is actually opaque, and is obviously a rnowhere
dense perfect subset of Q of measure zero.

There are perfect
opaque sets that are even -
punctiform (that is, they
contain no continuum hav-
ing more than one point);
in fact, Mazurkiewicz

showed [6] that every ”
polygon (to which we /

reckon interior points as
well as frontier points)
has a perfect punctiform

subset that intersects \
every line that meets the
polygon. We shall de- \
scribe a perfect, puncti-
form, opaque set whose
construction is akin to that
of Mazurkiewicz but which ™~
is somewhat easier to see
and to remember.

We begin (see Fig. 1)

by dividing each side of Q -
into eight equal segments,
thereby inducing a division Figure 1
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of Q itself into 64 equal squares (think of a chessboard!). Now we single out four
rectangles—those with the heaviest outlines in Fig. 1—each consisting of ten of these
64 equal squares. The union of these four rectangles we call R,. It is obvious that
if a line contains a point of Q then it contains a point of R,. We divide each side of
every one of the four rectangles constituting R, into eight equal segments, thereby
inducing a division of each of these rectangles itself into 64 equal rectangles. Asin
the first stage of our construction, we combine 40 of these 64 rectangles into four
rectangles; we thus obtain 16 rectangles in all, whose union we call R, (in Fig. 1,
only four of these 16 new rectangles, those appearing in the upper left-hand rectangle
of the first stage of our construction, are shown). It is obvious again that if a line
contains a point of Q then it contains a point of R,. Continuing in this manner, at the
nth stage of our construction we obtain 4" rectangles, whose union we call R,, such
that if a line contains a point of Q then it contains a point of R,. Clearly
R,DR,D*DR,D +-. Let F= n R,. Then F is perfect and punctiform [2, p.
93]. Let L be a line that intersects Q. Then, for every n, R, NL is compact and
not empty, so that FNL = {] (R,NL) is not empty [2, p. 56], and hence F is
opaque. .

Denjoy has indicated the existence of a perfect, punctiform, opaque set “of finite
length” (perhaps the most successful treatment of his example is [3, p. 671]). Using
Denjoy’s main idea, we shall give another example in somewhat greater detail and
show that the corresponding distance set is J.

Let {hn} be a sequence of positive numbers less than one and tending to zero as
n — o (eventually h, will be chosen suitably small). For every natural number n,
we define, by induction, a set H,, H, being the union of 2™ closed (rectilinear) seg-
ments Sk11<2...kn , where kj is either Oor 1 (j=1, 2, .-+, n), obtained as follows

(Fig. 2 shows the sets H,, H,, and H,): Consider the diagonal of Q extending from
po = (0, 1) to q, = (1, 0). At the midpoint m of the diagonal, erect a vertical segment
of length h,, midpoint m, lower endpoint q,, and upper endpoint p,, and define Sk1

to be the segment extending from
pkl to ku (kl = 0, 1). Let n be

a natural number, and suppose
that H  has been defined. At the
midpoint My 1,0k of the seg-

ment Sk, ++kyy erect a vertical

segment of length h ,;, midpoint
My k,---k,» l0OWer endpoint

Ak, Ky * k07 and upper endpoint

pklkz'"knl’ and define Sklkz'"kno

to be the segment extending from
the left endpoint of S, lye ook to
1 n

qklkz-..kno’ and Sk1k2"'kn1 tO be

the segment extending from

pklkz"'k } to the right endpoint
n

of Sk1k2' . 'kn‘

Now define D, to be the set
Figure 2 lim H, [4, p. 104], D, to be the
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set obtained from D, by rotating the latter through 90° about the point (.5, .5), and,
finally, D to be the set D,UD,. If the numbers h, (n=1, 2, 3, ***) are chosen suf-
ficiently small, D is a subset of Q.

According to [4, p. 105, 17-1-13], D, is closed. Not only does every one of the
points Pk, k,+«ky, and Uil ek defined above belong to D,, but, since the length of

Sk koeeek tends to zero as n — «, it is readily seen that every element of D, is a
1 20.. n

limit point of such points of D,. Thus D, is dense in itself, and hence D, is perfect;
consequently, D is perfect.

If the definition of linear measure given by Carathéodory [1, p. 268] is applied to
the set D,, it is evident that the linear measure of D, can be made arbitrarily close
to V2 by taking the numbers h, (n=1, 2, 3, +-*) sufficiently small; and the linear
measure of D can be made arbitrarily close to 2 v?2.

It is clear from the definition of H,, that D, is of dimension zero [4, p. 103];
hence [5, p. 18] D is of dimension zero, and is therefore [4, p. 103, 16-6-1] puncti-
form.

Let L be a line that contains a point of Q and is either vertical or has a non-
negative slope. Then, for every n, H, NL is obviously nonempty, so that [4, p. 107,
17-1-4] 1lim (H,N L) is nonempty; and since [4, p. 104, (1-2)]

D;NL = (lim H,) N(lim L)D (H, NL),
D,N L is nonempty. After applying an analogous argument to D,, we arrive at the
conclusion that D is opague.
We shall show that Ap = J. The point (0, 1) belongs to D,, and obviously
0e€ AD{ Let 0<d< V2, and consider a circle with center (0, 1) and radius d.
This circle evidently intersects H,, and if it intersects Sk1k2"'kn it also intersects
Sk1k2°"kn° U Sk, kpee-k nl- Thus, for every natural number n, there exists a point

z, € H, C Q such that the distance between z, and (0, 1) is d. The sequence {z,}
has at least one limit point z; z € D,, and the distance between (0, 1) and z is d.
Hence ADl =dJ = Apn. ‘

In view of the foregoing results, it might be conjectured that if S is opaque then
Lg = J; but this conjecture is false, as is shown by the following theorem.

THEOREM 1. Let BC J* and |B| < ZN!". Then there exists an opaque set S
such that Ay C J - B.

Proof. We shall define the set S by transfinite induction. There are 280 lines
that intersect Q in more than one point; well-order the set of these lines to form a
transfinite sequence

LO’ Ll: LZ, ) Lgr o (‘E < (-"‘y)’

where wy is the initial number of Z(2N°). Suppose that a < W, and that the point
pz € Q has been defined for every £ < a in such a way that, if the set Py consists
of the vertices of Q and the distinct points in the sequence {pg} <o’ then no num-
ber in B is the distance between any two points in P,. If L, contains a point

pe Py, define py to be one such point p. For the case where L, contains no point
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in Py, we note that, corresponding to each number b in B and each point p in P,
the set LyN Q contains at most two points at a distance b from p. Since

2- al . |B| < 2N _ |La N QI , there exists a point, say Po, in Ly N Q such that no
number in B is the distance between p, and any point in P,. The transfinite se-
quence {p E} §<wy is now well defined. We denote by T the set of distinct points in

this sequence, and by S the union of T with the set of vertices of Q. The set S
clearly satisfies the conclusion of Theorem 1.

We shall show that under the continuum hypothesis there exist opaque sets having
even thinner distance sets than the one described in Theorem 1.

THEOREM 2. Assume that 2N° =N,. If B is a subset of J* of measure zevo,
then theve exists an opaque selt S such that AgC J - B.

Proof. We define the set S by transfinite induction. Well-order the N, lines
that intersect Q in more than one point, to form a transfinite sequence

LO’ Ll’ LZ’ oo, L:ﬁ’ ces (g <w1) .

Suppose that a < w, and that the point p¢ € Q has been defined for every £ <a in
such a way that, if Py consists of the vertices of Q and the distinct points in the
sequence {p¢}z<qy, then no number in B is the distance between any two points in
P,. If L, contains a point p € P,, define p, to be one such point p. Suppose, how-
ever, that Ly contains no point in P,. Let p € P,, and denote by h the (positive)
distance between p and L,. Since B is of measure zero, it follows, by applying [7,
p. 251, Theorem 3], that the set of real numbers

{ v’ hZ h <x < V2, x € B}.

is of measure zero. This implies that, if E, is the set of points q in LyN Q such
that the distance between.p and q is a number in B, then Ep is of measure zero.

Since |Pa| < Ny, the set Upepa E, is of measure zero. But LyN Q is of positive

measure, and therefore there exists a point, say p,, in Ly N Q such that no number
in B is the distance between p, and any point in Py. The transfinite sequence
{p g} E<w, is now well defined. We denote by T the set of distinct points in this se-

quence, and by S the union of T with the set of vertices of Q. The set S clearly
satisfies the conclusion of Theorem 2.

COROLLARY 1. Assume that 2R° = N,. Then there exists a subset C of J of
first category, and an opaque set S, such that Hs = C.

This foilows from the fact that there exists a residual subset B of J* of mea-

sure zero.

THEOREM 3. Assume that 2R° = N,. If B is a subset of J* of first category,

then there exisls an opaque set S such that hg C J - B.

This can be proved by a category-theoretic argument so analogous to the measure-
theoretic proof of Theorem 2 that we omit the details.

COROLLARY 2. Assume that 2R° = N,. Then there exists a subset C of J of
measure zevo, and an opaque set S, such that Ag = C.

This follows from the fact that there exists a subset B of J* of first category
such that J* - B is of measure zero. '
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Remark 1. An analysis of the proof of Theorem 2 shows that the assumption that
2 o = N, can be replaced in that theorem and in Corollary 1 by the assumption that
the linear continuum is not the union of fewer than ZN" linear sets of measure zero.

Wo _

Similarly, the assumption that 2 N, can be replaced in Theorem 3 and Corollary

2 by the assumption that the linear continuum is not the union of fewer than 2 o
linear sets of first category.

Remark 2. If S is an opaque set, is it necessary that Ag be everywhere dense
in J? If so, then A= J for every closed opaque set T.
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Added in proof. Remark 3. If S is a linearly measurable opaque set, how small
can the linear measure of S be? Since the orthogonal projection of S onto a diagonal
of Q is that diagonal, the linear measure of S is at least V2 (see W. Gross, Uber
das Fldchenmass von Punktmengen, Monatsh. Math. Phys. 29 (1918), 145-176); and
since the orthogonal projection of S onto any line has linear measure at least one,
the linear measure of S is greater than 7/2 (see H. G. Eggleston, Problems in
Euclidean space: application of convexity, New York, 1957, p. 35).
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