THE EQUATION a2?b? = ¢2 IN FREE GROUPS
R. C. Lyndon

R. Vaught made the (unpublished) conjecture that if a, b and c arve elements of a
free gvoup and a?b? = c?, then ab = ba. We establish this conjecture. Our method
rests on an idea of J. Nielsen (see [3], also F. Levi [1], [3]), and it yields signifi-
cant information about the solutions, in free groups, of the general ‘quadratic equa-
tion,’ in which each unknown appears, with exponent +1 or -1, at most twice. With
simple modifications, into which we do not enter, our results carry over to free
semigroups. The method does not apply fruitfully to equations beyond the quadratic,
and no general method is known for deciding such questions as whether a%b3 = c3
implies ab = ba.

1. PRELIMINARIES

Let w be an element of the group X with free generators xj, *-», X,. A solution
of the ordered set (w; X1, ***, X,) is an ordered set (¢; y 1, ***, Ym), where yi, **, ¥
are free generators of a group Y and ¢ is a homomorphism of X into Y such that
¢w = 1; ordinarily there is no ambiguity in saying more simply that ¢ is a solution
of w. Informally, if we write

w = W(xl: °t%y Xn), ‘i’xy = uV(Yls 0y ym)s

this expresses the fact that

W(ul,(yl , oy ym), ee, un(yl’ TN ym)) =1,

If ¢ is any homomorphism of a free group X of rank n into a second free group Y,
it follows from a theorem of Nielsen [2] that the image ¢X is a free group of rank r
no greater than n; the »ank of ¢ is r,.and the nullity is n-r. If ¢: XintoY isa
solution of w, and 6 is a homomorphism of Y into a further free group Y', then
0¢: X into Y' is also a solution of w, of rank no greater than that of ¢; we call 8¢ a
specialization of ¢. If T is any endomorphism of X, and ¢ a solution of Tw, then
¢Tw =1 and ¢T is a solution of w. A set of solutions is complete if every solution
is a specialization of some member of the set.

(Remark. The maximal rank of a solution of w may be generalized by defining
the ‘inner rank’ of an arbitrary group to be the upper bound of the ranks of free
homomorphic images.)

Each element w in X has a unique representation by a reduced wovrd, that is, a
formal product ) C
€] E¢

X, vxy, (6205 v =1,2, 00, 05 £ = 21)
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that is reduced in the sense that, for no i, is y; = ;) ande; = -g;,;. Suppose, for
some h=1, 2, ..., t - 1, that v, # y,,;, and defire an automorphism R of X by

€h _~En+1\th ~“€h _E€h+1\Eh+l
1 Rx,, = (x X ) or (1! Rx = (x X )
(1) “h “h Vn+l (1) Vhl Y “Vhti ’

with Rx,, = x;, for all other x,,. Then R will be called an elementary veguiar tvans-
formation belonging to w. For each h=1, 2, ..., t, the endomorphism S defined by

(2) . vah =1, with Sx, = x, for all other x,,

is an elementary singular transformation belonging to w. An endomorphism T of X
belongs to w if it is a product T = Tp T _p-1+--T1 (p > 0), where each Tj is an ele-
mentary transformation, regular or singular, belonging to T; ;T; 5--- T ;w. Evi-
dently the nullity of T is the number of singular T;.

2. THE NIELSEN ARGUMENT

The length of a word

oy Og
a = y“l see Y”s
in the generators yj, **+, ym is L(a) = s. The length of an element w is that of the
reduced word a representing the element: L(w) = L(a).

With each word a we associate a sequence of integers

S(a) = (s, ByyOqy By =05 Ly, 05y I 3, =0 1, *"% Ky, "al))

and define H(a) = 1, 2, 3, --- to be the lexicographic rank of S(a) in the set of S(a')
for all words a'. For an element w of Y (or a word representing w) we define
K(w) = min (H(a), H(a~')), where a is the reduced word representing w. Evidently
K ranks the elements of Y in a manner compatible with their lengths, and it orders
the finite set of elements of a given length in such a way that two elements have the
same rank if and only if they are either equal or inverse to each other.

LEMMA 1. Suppose that the products

o) g B1 Bs Y1 Y
a:yul -uy#s, b:yulouyus, c:yplu-ypt’

ac, and bc are reduced, and that s < t. If the sequence (i}, 01, 12, A2, ***, Hg, ag)
precedes lexicographically the sequence (vy, By, V2, B2, ***, Vs, Bs), then
K(ac) < K(bc).

Pyoof. Since s < t, S(ac) has an initial segment
(s +t, Mys @3y Pis =Vis **%s Ptos+1r VYi-s+lr Mg as) .

The hypothesis on the sequences of indices from a and b implies that this segment
precedes the corresponding segment from S(bc), whence H(ac) < H(bc). The same
considerations show that H(c~'a~!) < H(c~!b~1), whence K(ac) < K(bc)..
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LEMMA 2. Let vy, ***, v, be elementsof Y (t>0),n0 v; =1, and vy+v;y=1.
Then, for some i =1, 2, -, t - 1, either K(v; vi;1) < K(v;) o7 K(v; vi 1) < K(v;41).

Proof. Assume that, by way of contradiction,
(3) K(v; vir1)> K(vy), K(viey) forall i=1,2, -, t-1.

We may suppose the v; represented by reduced words; then the reduced word repre-
senting v; v;41 will be obtained by cancelling some number k > 0 of letters Yv of
the word representing v; against an equal number from that representing vi].

Thus L(v; v;41) = L(v;) + L(vi,.) - 2k, and, by (3),

(4) k <2 L(v), 3 Lviy1) .

If a; is the initial segment of the word representing v; that cancels in forming the
-1

product Vi-1Vj and a;. the final segment that cancels in v; v;,;, these segments

can not overlap, and we can represent v; by a reduced product v; = a; b; a1+1, where

conceivably bj = 1. In the extreme cases we write vy = b azl , V¢ = agbg.

We show that no b;= 1. That by, b¢# 1 follows from (4). Suppose that b; = 1
for some i= 2, 3, «--, t - 1. Necessarily a; and a{ﬂl are the two equal halves of v;,
and, simplifying notation, we may write v;_; = da-1, v ab’l, Vi+1 = be, reduced
words, with L(a) = L{(b). If L(c) < L(b), then L(v;vj+1) = L{ac) < L{ab) = L(v;), con-
trary to (3); using a similar argument, we have L(a) = L(b) < L(c), L(d). Since
v;#1, a# b. If, as in Lemma 1, the sequence for a precedes that for b, it follows
from the lemma that K(v; v;11) = K(ac) < K(bc) = K(th) contrary to (3), while the
reverse order gives K(v;_; v;) = K(bd~ < K(ad-}) = K(v;_1), again contrary to (3).
Thus b; = 1 contradicts the hypotheses.

But vy:eevy =b) a;jl a by agl ««satby = by bz «+-bt. Each bj# 1, and each
a; b;b; a;}_z is reduced by hypothesis, whence each b; has a last letter and b;,; a
first letter that do not cancel against one another. It follows that by b, «--b; is re-
duced, and not 1 since t > 0, which contradicts the hypothesis that vy -~ vy = 1.

LEMMA 3. If w# 1 and ¢ is a solution of W, then either ¢x,= 1 for some
v =1, 2, -, n, or else theve is an elementary regular transformation R belonging
to w such that

]

E:;:I K(qu_1 x,) < ETK(‘I’XV) .
Proof. Write ¢x,,=u,. Then
u:: =1 @{t>0.
If no u, =1, by Lemma 2 we may suppose, by symmetry, that
< (ot ) <X(% )

for some h=1, 2, -+, t. Then, for R defined by (1), we have
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(8 7n,) - (o () ) - (i) < (452) o).

h+l h h+1

while K(q!)R'1 xy) = K(¢x,) for all other x,,.

LEMMA 4. If w+ 1 and ¢ is a solution of w, then theve is a regular transforma-
tion T belonging to w such that ¢T -1x, =1 for some v =1, 2, +++, n.

Proof. If some ¢x, = 1, we may take T to be the identity. We proceed by induc-
tion on k = ZK(¢x,). For small k, k < 2n, some K(¢x,) = 1 and ¢x, = 1. Inductive-
ly, suppose the conclusion estabhshed for all k' <k, and that no ¢x, = 1. By Lemma
3, there 1s an R belonging to w such that k' = Z}K(qu 1x,) < ZK(¢x,) = k. Since
¢'= qu is a solution of w' = Rw, the induction hypothesis gives a T belonging to
w! such that some qb'T' Xy =1. But then TR 1s a regular transformation belonging
to w such that ¢(TR)-1x =¢R-1T-1x =¢'T !x =1.

LEMMA 5. If ¢ is a soiutzon of w, tkere exzsts a transformation T belonging to
w such that Tw =1 and ¢ is a specialization of T.

Pyoof. If w =1, taking T to be the identity gives ¢ = ¢T. We proceed by induc-
tion on n, the rank of X. If n = 0, necessarily w = 1. Suppose that the conclusion is
established for all n' < n, and that w# 1. If some ¢xu = 1, where x,, does not ap-
pear in w, then w lies in X' generated by the remaining x p» and the restriction ¢'
of ¢ to X' is a solution of w. The induction hypothesis gives an endomorphism T'
of X' belonging to w such that T'w=1 and ¢' = 6'T"' for some 8' from X' into Y.
Extending T' to T by Txpy = xpy, and 6' to 6 by 6x,, = 1 gives the desired conclu-
sion. If some ¢xyh = 1, then S, defined by (2), belongs to w, and ¢ = ¢S is a solu-

tion of Sw. Since Sw does not contain X, v , the previous case gives T(Sw) = 1 and

¢ = GT whence (TS)w =1 and ¢ = OTS. Finally, if no ¢x, = 1, Lemma 4 gives
oR-1 x, = 1, and, since ¢R‘ is a solution of Rw, the previous cases gives ¢R' =0T
and T(Rw) = 1, whence ¢ = TR and (TR)w = 1.

Lemma 5 may be reformulated as follows.

PROPOSITION 6. The set of transformations T belonging to w such that Tw=1
constitutes a complete set of solutions of w.

If w has solutions of nullity 0, then there is a transformation T, of nullity 0, be-
longing to w such that Tw = 1. Since T of nullity 0 is an automorphism, w = 1.
This yields the familiar result:

If w+ 1, then w has no solution of nullity zevo. (If n elements uy, *-, u, gen-
evate a free group U, and satisfy a nontrivial velation, then U has rank less than n,)

The question when w has solutions of nullity 1 will be settled, in the special case
that w is quadratic, in Sections 4 and 5.

At the other extreme, the following observations concerning solutions of low rank
are obvious.

Every W has the trivial homomovrphism as its only solution of rank O«

Every w has solutions of vank 1 (in an infinite cyclic group), except in the case
n=1 and w=x{, for a nonzevo integer a.
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3. QUADRATIC EQUATIONS

If w is linear in some x;,, that is, given by a word ux;v where u and v do not
contain x, then it is easily seen that the single solution

¢’XV = XV (V # IJ-), ¢xlj_ = u—l V-l ’

of nullity 1, constitutes a complete set of solutions.

A word is quadratic if each x, occurs in it, with exponent either +1 or -1,
either twice or not at all; if a word is quadratic, the equivalent reduced word is
quadratic, and we call the group element that they represent quadratic. If w is
quadratic, and Sw is obtained by substituting 1 for some x,, then evidently Sw is
also quadratic. Suppose w is quadratic, and R is an elementary regular transfor-
mation belonging to w. Then Rw results from w by replacing two parts (xﬁ xﬁ)”

ay

and xg by x,,° and (x?fl x;,.‘B)6 (o, B, vy, 06 =+1), whence Rw is also quadratic. This

establishes the following lemma.
LEMMA 1. If wis quadratic and T belongs to w,then Tw is quadvatic.

PROPOSITION 8. If w is quadratic, theve is an effective procedure for deter-
mining the maximum vank of a solution of w, and for finding a solution of this maxi-
mum rank.,

Proof. If w is quadratic and T belongs to w, then w' = Tw is quadratic and of
length not exceeding 2n; hence there are only finitely many such w'. For a set W of
such w', let R(W) be the union of W with the set of all Rw' for w' in W and R an
elementary regular transformation belonging to w'; let S(W) be the set of all Sw' for
w' in W and S an elementary singular transformation belonging to w'. The ascend-
ing chain W, R(W), R?(W), -+ will become constant with a term R*(W). Starting with
W = {w}, form successively the sets W, SR¥(W), (SR*¥)%(W), ---, (SR¥*)*(W) = 1. Then
the maximum rank of a solution of w is n - k, where k is the smallest integer such
that 1 is in (SR*)X (W), and the process of construction of the set (SR*)k(W) yields a
solution

T=8Rc 1,5 ;" Br-1,18-1 " S1Ro,r =-* Ro 1
of w of nullity k.

The algorithm just described can be elaborated to give a systematic enumeration
of a complete set of solutions of quadratic w. The chief complication lies in the
existence of cycles, that is, of nonidentical transformations T belonging to w' such
that Tw' = w'. This leads to solutions containing integer parameters (telling how
many times the transformation T is iterated on w'), as with the Vaught equation,
where the complete solution can be given by a = y®, b =yB, ¢ = y®+B, for @ and g8
integer parameters. However, consideration of the equation a%b?c?d? = 1 already
suggests that a complete set of solutions cannot always be given in this form by
means of only a finite Humber of integer parameters.

The Vaught conjecture is evidently equivalent to the assertion that w = x?x2x3
has no solutions of rank greater than 1. This is contained in the following some-
what more general theorem.

PROPOSITION 9. A quadvatic element w has a solution of nullity less than 2 if

and only if some cyclic permutation of the veduced wovrd for W has explicitly one of
the forms
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(1 aabecb™?, (2) abcbac™?, (3) abca~lb~lc™1,

The possibility that some of a, b, ¢ be emply is notl excluded, and leads to the follow-
ing special forms

(4) aabb,  (5) abab™?, (6) aba~ib"1, (7 aa, (8) 1.

If w has a solution of nullity 0, then w = 1, as noted earlier. Suppose
then that w# 1 and that w has a solution of nullity 1. Then Tw = 1 for some T be-
longing to w and of nullity 1, hence of the form T = R'SR, where R' and R are
regular, R belongs to w, and S is an elementary singular transformation. This
means that w' = Rw reduces to 1 when one of the x;, is replaced by 1. It follows
easily, since w' is quadratic in x,, that w' has the form w' = uxllf—lu“1 vx}}l vl
Since w = R™!w' (R an automorphism of X), it follows that w has the form

w = uvut* v! for some u and v.
To complete the proof it will suffice to show, more generally, that if w = uvuftl v
for any u, v, and for u; a cyclic permutation of u, then w satisfies the conclusion of
the proposition. We note that the conclusion for any conjugate of w implies the same
for w. We proceed first by induction on L(u). In the initial case L(u) = 0, we have
u=1 and hence w = 1. Assume inductively the conclusion for all w' = u'v’ u, iyt

with L(u'") < L(u). We proceed now by a second induction on L(v).

* In the initial case, L(v) = 0, we have v=1, and w = uulil. We can suppose, re-
placing w by a conjugate if necessary, that u is cyclically reduced: L(uu) = 2L(u),
or, explicitly, the last letter of the reduced word for u is not inverse to the first.
Then we can write u = pq, where pq is a reduced product, and u, = qp, also reduced
since uu = pqpq is reduced. In the case of exponent +1, this gives w = pqgp. We may
write p = aba~!, q = cdc™!, reduced products, with b, d cyclically reduced. Then

w = aba~!cddc~'aba~!, reduced. Setting a~!c = e, we have ba?wab~! = bbedde™?!, of
form (1). In the case of exponent -1 we have w=pgp™!q~: I g=1 then w=1,
while otherwise this falls under the inductive hypothesis with p, q for u', v', and
L(p) < L(u).

For the induction on L{v), we assume the conclusion for all w' of the given form
with L(u") < L{u) or L(u') = L(u) and L(v') < L(v). If uv is not reduced, that is, un-
less L(uv) = L(u) + L(v), we have u = ab, v = b™!¢, reduced, with b # 1. Then
w = acuif' ¢™'b and bwb~! = baculil ¢ !, where u,, as a permutation of u = ab, is a
permutation of ba. Since L(ba) = L{u) and L(c) < L(v), the inductive hypothesis ap-
plies if vuil or uli v ! is not reduced. Since the initial cases u=1 or v = 1 have
been dlsposed of, we are left with the case w = uvuft v 1, reduced. Setting u = pq
and u, = qp as before we obtain either w = pqvqpv~!, of form (2), or

w = pqvp~lqTivT!,

of form (3).

This completes the proof that every quadratic w with a solution of nullity less
than 2 has the stated property. For the converse it suffices to consider w of form
(1), (2), or (3). For w of form (1) (w # 1), the equation abc = b will be linear in any
letter appearing in a or c¢, hence will have a solution of nullity 1, which is also a
solution of w= 1. For w# 1 of form (2) or (3), a solution of nullity 1 of the equation
ab = 1 provides a solution of w = 1.
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