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A GENERALIZATION OF A THEOREM BY K. JORGENS
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1. INTRODUCTION

The purpose of this article is to derive certain inequalities satisfied by the el-
liptic solutions of the nonlinear partial differential equation

62
(1.1) det -1
oxt axJ

with n independent variables (x) = (x1, «+-, x®). An elliptic solution of (1.1) is a func-
tion u = f(x) = f(x1, ---, x1) whose Hessian matrix (symmetric matrix of second deriva-
tives) is definite at each point; that is to say, u is locally either a convex or a concave
function (the latter can occur only if n is even) of (x): without loss of generality we
shall consider only convex solutions.

The motivation for studying (1.1) is that it represents a special but significant
case of the more general equation

2%u _
(1.1a) det (axi axj) = ¢(x),

where ¢(x) is a given, positive-valued function; this last equation occurs, for instance,
as a result of an elementary transformation of the one arising from the Minkowski
problem on closed, convex hypersurfaces in Euclidean (n + 1)-space. The outstand-
ing question about the regularity of weak solutions of the Minkowski problem is re-
duced to the question, if the kth partial derivatives of ¢(x) in (1.1a) satisfy a Holder
condition, whether there exists a convex solution u of (1.1a), locally at least, and
whether any such solution has all of its (k + 2)nd partial derivatives satisfying a
Hélder condition.

It has been shown that (1.1a) has at most one convex solution u in a bounded
domain D, if the boundary values of u are prescribed; however a necessary condition
for the existence of such a solution with arbitrarily given, but smooth, boundary
values is that the domain D be strictly convex. Aside from this, in order to estab-
lish the existence of a solution of the boundary value problem by the method of con-
tinuity, one requires some a priori estimates of the bounds for u, for its second par-
tial derivatives, and for their HOlder constants, in terms of the domain D, the func-
tion ¢(x), the boundary data, and their Hlder constants.

The main results of this article (wishfully the first of a series), viewed in the
context of the more general problem, provide information on the a priori bounds,
irrespective of the boundary values of u; the dependence of the bounds on the proper-
ties of ¢(x) is set aside for the time being, by considering equation (1.1) instead of
the more general one (1.1a). Stated briefly, the inequalities established in the present
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paper provide an a p7iori majorant for the third derivatives of a convex solution of
(1.1) in.a domain D at an interior point (x) € D in terms of any uniform bound for
the second derivatives in any neighborhood of (x), and in terms of the distance of (x)
from the boundary of D: this reduces the problem of the existence of a solution u
for the boundary value problem associated with (1.1) to estimating uniform bounds for
the second derivatives in D. Better still, when the number n of independent vari-
ables does not exceed 5, Theorem 2, which is a generalization of the same statement
for 2 variables by K. J6rgens [6] (related to Bernstein’s theorem on minimal sur-
faces), enables us to dispense with uniform bounds for the second derivatives in a
neighborhood of (x): the bounds for the third derivatives at (x) depend only on the
bounds for the second derivatives at (x) and on the distance of (x) from the boundary
of D.

Although most of the results in this paper can be formulated and proved in the
language of partial differential equations, it would seem unfair to the informed reader
to hide the fact that the heuristic reasoning behind them is decidedly geometrical,
pertaining more specifically to affine differential geometry; on the other hand I am
reluctant to make a display of concepts unfamiliar to many nonspecialists, when they
are not essential in understanding the article. For this reason I adopt a compromise
course, using only the well known formal techniques of the Ricci calculus (as in L.

P. Eisenhart’s Riemannian Geometry or in [3]), but interjecting an occasional para-
graph or restatement of a result, interpreting the context in geometrical terms with
special reference to [1].

It is clear that equation (1.1) is invariant under unimodular linear transforma-
tions of the independent variables xl, «es, X7 therefore it should not be too surprising
if most of the analysis to follow should be based on the affine invariants of the graph
of u=f(x) ((x) = (x1, «.¢, x0)) in the (n+ 1)-dimensional affine space E,,;, with this
graph considered as a differentiable hypersurface V,,, immersed in E. ;). As long
as we allow only linear transformations of the independent variables (x), the array
of all partial derivatives of u of any given order k can be interpreted as the com-
ponents of a covariant tensor of valence k, symmetric in all pairs of indices: we are’
chiefly interested in the tensors defined by the second and third derivatives,

(1.2) (0 =2 (g, =1, 2, e, 1)
. gijx "m 1, 1, =1, 4y ¢eey
and

’ | 1 a3u
(1.3) Al = = 3 T oxionk °

Since u is convex and satisfies (1.1), it follows that the symmetric tensor g;; de-
fined in (1.2) is positive definite; it therefore determines, in the domain of definition
of u, a Riemannian metric

(1-4) . .‘ dS2 = gl_] dxi d_xJ ,

associated with the given function in a natural way, as well as the contravariant ten-
sor glJ defined by the inverse of the matrix of gij. We observe immediately from
(1.1) that the determinant g of g;; is identically equal to 1; therefore by differentia-
tion we obtain the relation

(105) giinjk = 0 (k = 1, cu-’ n) .
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[Both tensors gij and Ajjx are affine invariants of the graph V, of u in E, 3.
For the special case of a solution of (1.1), the metric (1.4) is known as the Schwarz-
Pick metric of V,, and the cubic differential form Y = Aijkd.x1 dx’ dx* is known as the
Darboux- Fubini-Pick form. Both the quadratic and the cubic differential forms are
defined in the general case of a differentiable hypersurface in Ep,), but only in the
case of the graph of a solution of (1.1) does their expression take the simple form of
(1.2) and (1.3). The graphs of the solutions of (1.1) characterize by means of certain
affinely invariant, differential geometric properties the so-called improper affine
hyperspherves. For a complete exposition of this subject, see [1], with whose nota-
tion we have tried to conform. ]

If the values of the second derivatives gij of u are known at a point (x), then a
natural norm for the third derivatives at (x) is given by the Riemannian absolute
value of the tensor Ajjk, namely by

(1.6) |v| = (aiika 12,

where Aljk = giagjbgkcp .. Similarly the most natural yardstick for measuring in
some sense the distance of (x) from the ideal boundary of the domain of existence of
u is in terms of the geodesic distance defined by (1.4). Let D denote the interior of
the domain of existence of a convex solution u of (1.1) (we remark here that, for the
purpose of this paper, D need not be a schlicht domain, nor u single-valued). For
any point (x), € D, we define .?xo to be the set of all rectifiable, parametrized arcs

C in D, images of the semiclosed interval {o<t< 1}, such that the initial point

t = 0 corresponds to (x), and the arc itself is a relatively closed set in the topology
of D: in other Words-gl’xo is the set of rectifiable arcs C in D joining (x), with the
ideal boundary of D.

DEFINITION 1. Let u be a convex solution of (1.1) in an open domain D. For
each point (x), € D, we define the geodesic distance y(x), of (x), from the boundary
of D (relative to u) as the quantity

(1.7) Y(x)o = infce g (S\c (g;;ax* dxj)l/z) )
(4]

where g;; is defined by (1.2), and the values of y(x), can vange over the inteyval
0 <y(x)y < . Similarly we define the affine distance 6(x), of (x), from the boundary
of D (always relative to u) as the quantity

(1-8) 6(x)(] = infCE gXO(S\C (g]_J((x)o) dxi de)l/Z) ’

7

whevre the metyic tensovr is the tensor whose components arve constant and equal to the
values of gij at the initial point.

We remark here incidentally that, if one replaces the independent variables (x)
through a unimodular linear transformation followed by a translation, so that (x), be-
comes the origin O and g;;(0) = 03 (Kronecker delta) in the new coordinate system,
then the affine distance of %x)o from the boundary is the same as the Euclidean dis-
tance of the origin from the nearest singularity, with respect to the new coordinate
system. Thus 6(x), = if and only if u is a single-valued function, defined over the
whole numerical n-space. In addition, we point out that since u satisfies (1.1), an
upper bound for the second partial derivatives of u determines a positive lower
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bound for the eigenvalues of gij; hence, if one wants to estimate a lower bound for
6(x) for any given (x)€ D, one needs only the Euclidean distance of (x) from the
boundary and an upper bound for the second derivatives of u at (x) itself, while, if
one wants to estimate a lower bound for y(x), one needs in addition a uniform upper
bound for the second derivatives in some neighborhood of (x). Having thus introduced
the principal notations and explanations, we can now state the two main theorems with
their respective corollaries.

THEOREM 1. Let u = f(x1, -+, x*) be a convex solution of (1.1) in an open do-
main D, and suppose that u is of class €3, Consider the Riemannian structuve in D
defined by (1.4) and (1.2), and the corvesponding novm |1[/| for the third derivatives
of u, defined by (1.3) and (1.6), at each point (X) € D. Then the inequality

(1.9) |¢|(x)5:—(j{) (cy < nVD),

holds, wheve y(x) is the geodesic distance of (x) from the boundary of D.

COROLLARY. Let u = f(x}, ---, 1) be a convex solution of (1.1) in an open do-
main D, and suppose that u is of class €5. If the Riemannian structure defined in
D by (1.4) and (1.2) is that of a complete Riemannian manifold, then 1 is a quadratic
polynomial in x1, ---, X1, defined ovev the whole numevical space.

The corollary above, restated in the language of affine differential geometry, as-
serts the following (apparently new) uniqueness theorem.

COROLLARY. (restatement of the previous one). Lef V, be arn n-dimensional,
improper affine hyperspheve, immersed and of class €° in the affine (n+ 1)-space
Eny1. If the Schwavz-Pick metvic induced in V,, is definite, and if V, is complele
with respect to that metric, then V,, is a convex paraboloid in E, ;.

The other main theorem of this paper has been stated [6, 9] only in the case of
two independent variables; here we present its generalization to up to four variables.

THEOREM 2. Lef u = f(x1, -, x™ (n < 5 be a convex solution of (1.1), defined
and of class €3 in an open domam D contammg the open Euclidean ball with radzus
r and center at the origin O. Let g (x) =9 2u/ 3% 8% , and suppose that g:;(0) =
Then

2
n 3 4 M, 2
2”u n
(1.10) i,j,Ek=1 axiogxi Bxk( )) — r2 ’
wheve M,, is a universal constant.

In other words, under the restriction n <5 and the assumptions in Theorem 1,
the inequality

(1.11) |l ) < ;%3

is valid at each point (x) € D, where lr,lzl (x) and 6(x) are defined by (1.3), (1.6), and
by (1.8) respectively. (For upper bounds on the M, see (4.14) and (4.15) at the end
of the paper.)

COROLLARY. Let u=f(x1, «--, x0) (n < 5) be a convex solution of (1.1), defined
and of class €° in the whole numevrical n-space. Then u is a quadvatic polynomial.
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It is natural to conjecture that the assertion of Theorem 2 should remain valid
also for n > 6: this guess is almost forced by the fortuitous way in which the condi-
tion n < 5 occurs in the proof of the theorem. It also seems very likely that the as-
sertions of both Theorems 1 and 2 remain valid without any assumptions on the exist-
ence of fifth derivatives of u; for the sake of simplicity we have not tried to relax the
assumptions in that direction.

2. PRELIMINARY RESULTS

Here and for the rest of the paper, we shall consider u = f(x!, +**, x™) to be a
convex solution of (1.1), admitting continuous partial derivatives at least up to order
5, in an open domain D draped over a region in the numerical n-space R" (domaine
étalé). We introduce in D the Riemannian metric (1.4) defined by (1.2) and the ten-
sor Ajjk defined by (1.3). Both definitions require the fixed coordinate system
(x) = (x1, <=+, x1) or one related to it by a unimodular affine transformation, since in
other coordinate systems equation (1.1) and the definitions of the two fundamental
tensors have a more complicated expression. If we confine our computations to the
coordinate systems affinely related to (x), we verify immediately the equation

(2.1) ghkA;s = Ay = -Tky;,

where I‘kij denotes the Christoffel symbol of the second kind. Since g = det (gij) =1
identically, we verify the fact already mentioned in (1.5),

dlog Vg _ _; D
2.2) ‘“—ag;'g‘ =Tly=-Ayl=giA =0,

and, by differentiating the last two members covariantly,
(2.3) g* A 0= At p=0,

where the index of covariant differentiation is written to the right, following the
comma. ‘

We compute now the covariant derivative Ajjc ¢ of Ajjc explicitely:
1 2%u re
2 axioxd axk ax(

Ajjrg=- P(Apik Amig + Atk Amig * Aijn Anig) »

and we verify that it is symmetric in all pairs of indices; for instance
@.4) Aijicf = Aijf -
Equations (2.3) and (2.4) imply that the “divergence” of Aj;x vanishes:
(2.5) gi(Aijk’f =0.

Continuing these formal calculations, one verifies that the Riemann curvature
tensor Rjjiy has the following simple expression in terms of the Aijk:

(2.6) Rijif = 8™ (A pifA rmjic = AhikA mif

Using (2.2), we shall give here similarly the formulas for the Ricci tensor
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(2.7) R = gJ[Rijkf= gJ[ ghm Angi Amijk
and for the scalar curvature

(2.8) R=g*Ry = AV*A 5 = w2,

where |zp| is the symbol introduced in (1.6).

It is clear from the last equations that the scalar curvature is nonnegative, and
that it vanishes if and only if Ajjx = 0, that is, if the full Riemann tensor Rjjxg van-
ishes. It is also easy to see that the Ricci curvature is nonnegative, a fact of funda-
mental importance in the sequel: indeed, if £' is any contravariant vector, we have

(2.9) Ryt 6% = " el (A8 (A > 0,

equality holding only if Aijkgk = 0. From this fact we obtain also the inequality
(2.10) Ry £ & <Rgy £ K,

as one may verify by choosing an orthonormal basis for the vectors at any point.

[ A1l the equations derived here, (2.1) through (2.8), are special cases applied to
improper affine hyperspheres of standard relations between the Schwarz-Pick metric
and the Darboux-Fubini-Pick cubic form . These two differential forms determine
any differentiable hypersurface in E ;) uniquely, in analogy with the first and
second fundamental forms in classical differential geometry, while the existence is
subject to the integrability conditions, which in the case studied here specialize to
(1.5), (2.4) and (2.6). In other words, all the results to follow can also be formulated
in the language of Riemannian geometry, under the assumption of a positive definite
Rien(lam)liz]m metric (1.4) together with a symmetric tensor Ajjk satisfying (1.5), (2.4)
and (2.6).

We shall prove now an algebraic inequality about the curvature tensors, valid in
every Riemannian manifold with pgsitive definite metric.

LEMMA 1. In any n-dimensional Riemcmm"cm manifold with a positive definite
metric tensor gij of class C?, the following inequalilies pertaining to the Riemann
tensor Rjj.q, the Ricci lensor Ry, and the scalay curvature R are valid at each
point:

(2.11) %RZ <RyRY,
(2.12) 2 ii iik
57 RuRY <R RUM
Proof. Let

1
Rlis = Ry - Ry
then giJR'ij = 0, so that the decomposition of the Ricci tensor given'by

1
Rjj = R'yy + R ey
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is orthogonal with respect to the metric tensor. We have then immediately

. .. 1 1 e .. 1 2
(2.13) 0 <R';RY =R;;RY - (;Rgij) (ERg”) = R;;RY - _R”,

and this proves (2.11). We remark that equality holds in (2.11), at any point, if and
only if R'ij vanishes at that point; it holds identically, if and only if either n=2 or
the metric is that of an Einstein space.

Before proving (2.12) we observe that for n = 2 both terms of that inequality
are identical, so that we can limit our consideration to n > 3. Consider the con-
formal curvature tensor of H. Weyl,

Cijkf = R1Jk( (g1kR il * 8jfRik - g1fR]k ngR ()

bR (g 80 i) s
(- D(n - 2) SikEjf ~ Bif6;K

and let R'jjx¢ denote the difference Rjji CleY Since the contraction of any two
of the four indices of Cjjig with the contravariant component of the metric tensor
gives the zero tensor, the two tensors R'; and Cijk¢ are mutually orthogonal.
Computing the inner product of R'le( w1tl]1 itself, we obtain

.. 4 .. 9
L ijkf . 2 _Rp..R1J_ 2
Rl R { n- iR (n-l(n—z)R ’

so that from the orthogonal decomposition Rijk( = Cijrg + R'ijrg we obtain

2
ijk - ij 2R
(2.14) Rijig R > Ry R 2R ARl e e B

equality holding if and only if Cj; jkf = 0. The latter condition is verified identically
if and only if either n = 3, or the space is conformally flat. Combining (2.14)
linearly with (2.13) so as to eliminate the term containing R2, we obtain the desired
inequality (2.12). We observe that equality holds in (2.12), at any given point, if and
only if it holds in both (2.13) and (2.14). Therefore, in that case, the metric is one
of constant curvature at that point,

s

Ring= R (g1 85 )
1Jk(—m Bik8jf - Bif 8K/ »

a condition which, if verified identically for n > 3, implies by Schur’s theorem that
the Riemannian manifold has constant scalar curvature R whose value determines
the manifold uniquely within a local isometry. This completes the proof of the
lemma.

Before we state the next result, we must generalize the concept of an elliptic,
linear differential inequality (of the type, for example that defines subharmonic
functions with respect to the Laplace-Beltrami operator), so as to make it applic-
able to continuous, nondifferentiable functions. Such a generalization was intro-
duced in [2], where it was shown that every function which is subharmonic in the
generalized sense satisfies the strong maximum principle in the sense of E. Hopf.
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DEFINITION 2. Let L denote a linear, elliptic, second-ovder diffevential oper-
ator with n independent variables, of the form

2

L = ati(x) o

wheve the only assumptions on the coefficients a')(x) and b*(x) ave that in some
neighborhood of each (x), at)(x) and bi(x) are bounded, and that the aii(x) form a
symmetvic, uniformly positive definite matvix. If v = v(X) is any upper semicon-
tinuous, veal-valued function of (x) in an open domain U, then for any given point
(x)o € U and any real number a, we say that

LvI((x)) > a

if and only if, for each €> 0, there exists a neighbovhood Vg C U of (x), and a
Sunction vg(x) of class €2 in Vg which satisfy the following two conditions:
a) v(x) - vg (%) achieves its minimum value over Vg at (x)y;

b) at (x),, the function ve(x) satisfies the inequality

Zv

LvgK(x)) = 2 ((X)o) ((X)o) + b‘((X)o)—-— ((x)g) >a-¢.

ox'

Similarly, if w= w(x) is a real-valued function defined in a subset KC U, we say
that L[v] > W everywheve in K, if for each point (x) € K, have

Lv](x) > w(x)

in the sense just specified. If v(x) is lower semicontinuous in U, and if w(x) is
defined in K C U, we say that L[v] < w everywheve in XK if and only if L{-v]> -w
in K in the same sense as above.

We can state now the first result.

PROPOSITION 1. Let u be a convex solution of (1.1), of class €° in an open
domain; let gij be the metric tensor defined in that domain by the second partial
derivatives of u; and let N denote the Laplace-Beltrami opevator with vespect to
8ije Then the scalar curvature R is of class €2 and is nonnegative, and its square
root salisfies (in the sense of Definition 2) the partial differvential inequality

(2.15) I 11)R3/2

Proof. 1t is clear from (2.8) that the scalar curvature R is nonnegative; since
it can be expressed algebraically in terms of giJ and Ajjyx, in a way which involves
partial der1vat1ves of u up to the third order, it follows that R is of class ¥?2, and
hence VR is of class €2 everywhere, except where R = 0; at the latter set of
points \/R is merely continuous. At the points where R = 0, VR achieves its
minimum value, so that, if we apply Definition 2 (rather trivially) with vg replaced
by 0 and L by A, the verification of (2.15) is immediate. Thus we can limit our
consideration in the sequel to the points where R > 0, that is, where VR has the
required derivatives for formal calculation.
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Consider now the Laplace-Beltrami operator A applied to the tensor Aijk de-
fined by (1.3), and the resulting tensor

(DA)s5x = glm Ajjk,fm -
Since the first covariant derivative Ajjk,f of Ajjk is symmetric in each pair of in-
dices by (2.4), we can rewrite the Beltramian (AA)jjk and then apply successively
the Ricci identity and equations (2.5) and (2.6), with the following result:
(BA) 5 = g™ Afik,im = gymA[jk,mi + g(m(A(jk,im - Afik,mi )
_(fmA. ) ,(m(A‘Rh. Az RE.. Ay R )
=1\g fik,/,i + § hjk™ fim* Afhk ™ jim + 8fjh R kim
h h h a h a
= A RPy + AT (AR A% - AP AR )+ AT (AR AR - AP AT

_ abfm a b c
= AT A A Angi Bk * BupicAmi;) ~ 2A%p A7 A N,

This last expression is useful in computing AR in terms of Ajjkx and its deriva-
tives from (2.8); the outcome is the following:

1 . ..
%AR = 5gl™R g, = AlR(AA) + AVSL Ay g

iik h ijk ,a L,b ,c ijk,f
(2.16) = 3AY%A (mAh(iAmjk - 28 A% AT AT, + AT A
B ij ijk ijk, .

the last step can be verified by direct substitution of the curvature tensors by equa-
tions (2.6) and (2.7). Applying Lemma 1, we obtain the inequality

1 n+1 _2 ijk,f
(2.17) -Z-ARZII—(II———].YR + Aijk,(A .

Consider now the first-order Beltrami parameter applied to R: from (2.8), we
have

(2.18) gin,i R,j = 4Aabc'iAabc A_]k{,i Alk( .

We now introduce the seven-indexed tensor

1
Babcijif = 3 Aabe,i Bjkf = AabcAjkg,i) s

and we point out that its inner product with itself can be expressed in terms of the
quantities occurring in (2.17) and (2.18), as follows:

abcijk(__ﬁ_l_ abc,i
= 2A

ik
Babcijkg B A’ [(Aabc,i Ajkg - AabcAjkg,i)

= ‘—,laRAabc,iAabc’i - %gij R;R;>0.

Combining this last inequality with (2.16) and (2.17), we obtain the following identity
and inequality, at all points where R > 0;
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AVE < gin,iR,j ) Rinij + Rijk(Rijkar 2B abeijifB abcijkf
\ R 4R3/2 VR R3/2

n+1 -.3/2,
2n(n-l)R ?

this verifies our assertion (2.15).

We observe that, in order to have equality in (2.15) at a point where R > 0, it is
necessary first of all that all sectional curvatures at that point be equal to each
other (this is seen from the remarks following the proof of Lemma 1). In addition, it
is necessary that the tensor Babcijkf vanish. The first condition is impossible in
any neighborhood, for n> 3; for it would imply by Schur’s theorem that R be a con-
stant, contrary to the proposition just proved. The second condition would lead to a
contradiction, if verified even at a single point where Ajjk # 0, since one can show by
algebraic manipulation that the vanishing of Babcijk( at such a point would contra-
dict (2.5). For this reason it seems that one could improve somewhat the numerical
estimates that will be obtained in the sequel; however, at the present stage it does
not seem useful to seek the best possible estimates.

We quote now as Proposition 2 a well-known theorem, whose proof was first
given by H. Hopf and W. Rinow [5], and later simplified by G. de Rham [11]. The
present statement of the theorem differs from the one in the references in that it
applies to all Riemannian manifolds with positive definite metric, instead of only to
complete ones; the proof, however, is identical, so that it can be omitted; the appli-
cations in the present article will occur mainly in noncomplete manifolds. The defini-
tion of y(p) in Proposition 2 agrees with our definition of the geodesic distance of (x)
from the boundary (see Definition 1, (1.7)).

PROPOSITION 2 (Hopf, Rinow, de Rham). Let X be a Riemannian manifold with
positive definite metric of class €*, and denote by d(p, q) the Riemannian distance
between any two points p, qe€ X (that is, the lowev bound of the Riemannian length of
all arcs joining p and q). Let X'.denote the complement of X in its completion with
respect to the distance function d(p, q), and y(p) the distance (extended from X to its
completion) of any point p € X from X' (if X is already complete, we set y(p) = ).
Then the following statements are true.

(i) The closed metvic ball T(p, r) for any p € X and real number r > 0, de-
fined as the set of points q € X such that d(p, q) < r, is compact if and only if
r < y(p).

(ii) For each p € X, every geodesic avc with p as initial point can be extended

to any Riemannian length less than vy(p); however, if y(p) < «, theve exists at least
one geodesic arc, oviginating at p, whose maximal extension in X is of length y(p),

and with no end point in X.

(iii) For any two points p, q € X such that d(p, q) < max (y(p), v(q)), there exists
at least one arc C, necessarily a geodesic, which joins p and q and whose length

achieves the minimum value d(p, q).
(iv) For any two points p, q € X, the inequality

y(q) - d(p, @) < v(p) < ¥(q) + d(p, @)

is valid; in particular y(q) = « if and only if y(p) = «.
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Our next proposition deals with a property which the Riemannian distance function
d(p, q) has for those pairs of points p and q that can be joined by a geodesic of
length d(p, q), as for instance under the conditions of statement (iii) in Proposition 2.
In order to avoid confusion, we adopt a different name and notation for the restricted
distance to which this property gives rise. The proposition itself, related to a lemma
by S. B. Myers [8], is proved in detail in [2]. Here we shall elaborate only the formal
aspects of the proof, since part of it is needed in the proof of Theorem 2.

DEFINITION 3. Let X be a Riemannian manifold with a positive definite melric
tensor of class €. For any two points p, q € X we define the geodesic distance
r(p, Q) fo be the Riemannian distance d(p, q), provided that p and q can be joined by
at least one geodesic in X of length d(p, q); if p and q can not be joined by an arc in
X of length d(p, q), then the geodesic distance shall vremain undefined.

PROPOSITION 3. Let X be an n-dimensional Riemannian manifold with positive
definite metvic of class €3 and with nonnegative Ricci curvatuvre; that is, let

(2.19) R;£'¢1>0 forall £ (i=1, -, n);
let p, be an arbitrary point in X, fixed for the sequel; let

r = r(p) = r(pg, P) (peY-= Ypo)

denote the geodesic distance between p, and p, where p vanges over the domain Y
(depending on p,) for which that geodesic distance is defined; and let ¢(t) be a twice
differentiable function of a veal variable t for t > 0, such that ¢'(t) > 0 for all t
and ¢'(0) = 0. Then the function v = v(p) = ¢(r(p)), continuous for p € Y, satisfies the
inequality

(2.20) v(p) < $"(x(p)) + Pf.f[;%qs'(ﬂp»

in the sense of Definition 2, where A is the Laplace-Beltrami operator; for p = p,
the conclusion is valid, if the vight-hand member of (2.24) is veplaced by its limit as
p approaches p,.

Proof. Under the differentiability assumptions on the metric, there exists an
open, everywhere dense subdomain Y' of Y, in which r(p) is twice differentiable. In
fact, if p,€ Y, let C, be a geodesic of length d(p,, p,), joining p, and p,; then for
each point p in C,, other than the end points, the segment C of C, between p, and
p is the only arc of length d(p,, p) joining its end points (because of the unique con-
tinuation property of the geodesics). Furthermore, since p can not be a conjugate
point of p, along C, there is a connected neighborhood UCY of p, such that for each
point p'e U there is a unique geodesic C' of length d(p,, p') joining p, and p', and
this geodesic can be constructed by the continuity method, that is, by joining p and
p' by a differentiable arc in U, and by obtaining the variational formula by Jacobi’s
equation for the geodesic joining p, with a moving point on the arc. Thus one shows
that the function r is differentiable in U, and that it satisfies the equation

(2.21) gijr’ir’j = 1.
Since ¢(t) is twice differentiable, it follows immediately from (2.21) that

(2.22) AV = A¢(r) = ¢™(r) + ¢'(r)AT
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in the open, dense subset Y' of Y where r satisfies (2.21). Thus the proof can be
completed by showing that Ar < (n - 1)/r, since ¢'(t) > 0.

By formal computations one verifies that in Y' the geodesic hyperspheres defined
by the equation r = (positive constant) are locally like twice differentiable hypersur-
faces. From (2.21) the vector £l = gli r; is the (outward) unit normal vector to each
such hypersphere, and the restriction of the covariant tensor -r jj to any such hyper-
sphere defines its second fundamental form relative to the orientation of the normal
vector £'. Consequently, if we denote by «k,, (v =1, «-c, n - 1) the n - 1 principal
normal curvatures of the geodesic hypersphere passing through each point pe Y' and

by H the mean curvature
1 n-1
H=n—1(z;])=1 KV)’

(2.23) =-(n-1)H.

we obtain the identity in Y'

Let p be a point in Y', C the shortest'geodesic joining p, to p, parametrized by
the geodesic distance r from p, Denote by 1,i(p) (v =1, -+, n - 1) a choice of unit
vectors at p, each of them tangent to the geodesic hypersphere in the (mutually ortho-
gonal) directions corresponding to the principal curvatures k;, respectively. We de-
fine the n - 1 vectors 7,1 elsewhere in C by parallel translation from p along C,
and we let k,,' denote the normal relative curvature of any geodesic hypersphere in
the direction 7,!. Then the Jacobi equation along C yields immediately the following
Riccati equation:

dKV'

L=k + Ry £ ) =1, e m- ),

Taking the average over v in the above equation and recalling the elementary iden-
tity =5 1"1} = (n - 1)H, we obtain the inequality

(2.24) %—Ig n_l(R g 0,0 (x',,) >>H e 1 RUE 2

From the assumptlon (2.19) that the Ricci curvature is nonnegative and from the fact
that H is asymptotic to -1/r as r approaches zero, we obtain the inequality H > - 1/r,
which, combined with (2.23) and (2.22), proves (2. 20) everywhere in Y'.

The extension of the proof to include the rest of Y involves an application of Defi-
nition 2, and, since the details are not needed in the sequel, we merely refer for them
to [2]. The statement concerning the relation (2.20) in the limit as 'p approaches p,
is a trivial exercise. This concludes the proof of Proposition 3.

3. PROOF OF THEOREM 1
We can rephrase the statement of Theorem 1 to read that there exists a positive
constant c¢,, depending only on the number n of variables, such that, if at any point

(x), € D we have

(3.1) l¢] () >a>0
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for any positive constant a, then y((x),) < cp/a (without loss of generality we shall
henceforth take (x), to be the origin O); indeed we shall deduce a contradiction by
assuming that

(3.2) 70 >2.

The estimate ¢, < n ¥2 is obtained from the numerical solution of a certain ordinary
differential equation and by majorizing the result. Its chief interest lies in the fact
that it probably describes the order of magnitude of ¢, as n becomes large.

From (2.8) and (2.15) (Proposition 1) we obtain the inequality

n+1
n(n - 1)

(3.3) Aly] > lv|?

This relation is the starting point for the whole proof: the rest of the argument fol-
lows from results by E. K. Haviland [4], and from a method due to R. Osserman [10],
generalized by the author [2] to spaces with nonnegative Ricci curvature. The essen-
tial point consists of constructing an auxiliary function v = v(x) in an open subdomain
Z c D with the following four properties:

(a) The domain ¥ contains the ovigin O in its intevior, and the closure of =
relative to D is compact in D.

(b) The function v satisfies the inequality

‘ n+l
(3.4) Avsn(n- 1)v

everywhere in %, in the sense of Definition 2.

(c) The function v satisfies
(3.5) v(O) = a,
where a is the constant occurving in (3.1) and (3.2); at other points in T,
(3.6) v(x) > 0.

(d) As (x) approaches the boundary of Z, v(x) becomes uniformly infinite.

We shall prove first that, if there exists a function v with the four properties
listed above, then we have a contradiction with (3.1). From properties (a) and (d) and
the fact that the function |1//| - v becomes -« uniformly on the boundary of the rela-
tively compact domain 2, it follows that the function attains its maximum value M at
some interior point (x,) of 2. Since, by (3.1) and (3.5), |1,D| - v is positive at the
origin, it follows a fortiori that M > 0. But from (3.3) and (3.4) we would have the
inequality

_ n+ 1 3 _,3 3n+ 1) 2
Al V)>n(n (Ill»‘l )Zm(lﬂ/i-v)v
(in the sense of Definition 2) wherever |l,b| > v, since both |xl/| and v are nonnegative.

In particular, we would have, in a neighborhood of the maximum value point, the in-
equality
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A (l‘x[/l -v)> 0,

contrary to the maximum principle [2] applied to solutions, in the sense of Definition
2, of the above inequality. This contradiction would then prove the theorem.

It is natural, in seeking to construct a function v(x) with the four required prop-
erties, to make it a function whose values depend only on the geodesic distance
r (O, (x)) from the origin (see Definition 3). We abbreviate r(O, (x)) by r(x), and we
let v(x) = ¢(r(x)), where ¢(t) is a function of a real variable t > 0 to be determined.
To ensure that v(x) satisfy (3.4), we apply Proposition 3, using the fact that by equa-
tion (2.9) the Ricci curvature is nonnegative. Accordingly, it is sufficient that ¢(t)
satisfy the ordinary differential equation

3.7 "0+ SEte 0 - S 60° @10 = 0),

provided that at the same time we have

(3.8) o) >0 for t> 0.

The condition (3.5) that v(O) = a is translated into the initial condition
(3.9) #(0) = a.

If we can prove that the solution of (3.7) with the initial condition (3.9) automatically
satisfies (3.8), and that it diverges to +o as t approaches a positive number t, (de-
pending on a), then, if y(0) > t,, the domain of definition = of the function

v(x) = ¢(r(x)) has a compact closure in D, by the Hopf-Rinow-de Rham theorem
(Proposition 2), and v has all the properties needed for the proof of the theorem.
Therefore we examine the properties of equation (3.7). This equation, in a more
general form, has been considered by R. Osserman [10] in connection with the in-
equality Au > f(u) in Euclidean space. Itis worth remarking that, for n = 3, equa-
tion (3.7) is a modified form of Emden’s equation, obtained from the spherically
symmetric, polytropic expansion of gases [7, pp. 559-561].

It is convenient to normalize the differential equation (3.7) and the condition (3.9)
by replacing t and ¢(t) respectively by s and f(x) = y, where

(3.10 =S80yt = 2ot

Then y satisfies the differential equation

n-1 d d
3.11) y'+——=y'=y* (y'=g§, y"=a%y§),
with initial conditions
(3.12) y=1, y'=0 for s=0.

We shall now discuss this differential equation.

LEMMA 2. The differential equation (3.11) with initial conditions (3.12) admits
a unique, analytic solution in the neighborhood of s = 0. This solution is an ever func-
tion; it is monotone increasing fov all s > 0 in the domain of vegularity, and becomes
infinite as s approaches a cervtain number k., which satisfies the conditions
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vn <k, < +2n (n> 4),
(3.13) 0
2
2n <k, < &S (1—%sin29)'1/2d9§ 1.8541 ¥n  (n=2,3).
. 0

One can show immediately that there is a recursion formula for the ex-
pansion of the solution of (3.11), (3.12) as a formal power series in s; also, that all
coefficients of even powers of s are positive, and that those of odd powers vanish.
Comparing the expansion for y with the formal power series expansion for the solu-

tion of lslg—z = z3 with the same initial conditions, one sees that the latter converges
82

-1/2
to the actual solution z = (1 - ;) , and that its coefficients dominate those of

the former. Thus the formal power series expansion of y in terms of s actually
converges to the unique, analytic solution of (3.11) with (3.12). Since all of the co-
efficients of the power series are nonnegative, the series converges for all positive
values of s up to the first real singularity; therefore, for all positive values of s

on the maximal real interval of regularity of y, the solution y as well as all of its
derivatives are positive. Comparing now the power series expansion for y with that
of the solution w of the equation nw" = w3 with the same initial conditions, we find
that the coefficients of the expansion of y dominate the corresponding coefficients for
w. On the other hand, w can be evaluated by gquadratures, and it can be shown to be
the elliptic function defined by inverting the elliptic integral

arcsecw

S = \’FI—lS‘ . do .
0

\/1 -%sinze

Since w becomes infinite as s approaches the value corresponding to the complete
elliptic integral in (3.13), y has a singularity as s approaches a value k, dominated
by that integral. Therefore y is regular in a bounded, open interval |s| < k,,, where

(3.14) vn <k, < 1.8541 -+ \n.

We can sharpen the estimate for k as follows: for n =4, we can express y in
closed form by ;

(3.15) y=8/(8-5s%) (n=4),
so that k, = v8; this is the only known case where the solution appears to be elemen-
tary. In the remaining cases, since all derivatives of y (and in particular the third)

are positive for s > 0, and since y' = 0 for s = 0, we use the inequality, obtained
from the law of the mean,

(3.16) - ——;-y'>0 (s> 0).

Multiplying the left member of this inequality by (n - 4)/4 and adding it to (3.11), one
obtains the differential inequality
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3
n 3n >y (n>4),

n, 924
(3.17) 29"+ 75

<y3 (n< 4)

for all s > 0. If we replace the inequality signs by equality, we obtain a differential
equation, whose solution with the same initial values as in (3.12) is

(3.18) h(s) = 2n/(2n - s?).

One can now apply the principle of the maximum (respectively, minimum) to the func-
tion y - h(s) from the inequality (3.17) for n > 4 (respectively, n < 4); according to
this, y - h(s) can not attain its maximum (minimum) value in the interior of the seg-
ment 0 < s < min( v2n, k,). On the other hand, by comparing the coefficients of the
power series expansions of y and of h(s), one sees that, in a neighborhood of s = 0,
y > h(s) for n> 4, and y < h(s) for s < 4. Therefore the same inequalities hold
throughout the whole interval in which both y and h(s) are regular. This yields im-
mediately the inequalities

kn< V2n  (n>4),

an \/271 (n<4)’

which together with (3.14) imply (3.13).

It remains to be proved that y becomes infinite as s approaches k. To this end
we subtract (3.16) from (3.11), with the result of the following inequality (always for
s> 0)

(3.19) lsly' <y?;

for if y did not become infinite, then, being monotone increasing, it would converge
to a finite number; (3.19), y' would also be bounded and, being monotone, it would
converge to a finite number. This would imply that for s = k,, the limiting values of
y and y' could be taken as initial values for a further regular continuation, which is
impossible. This completes the proof of the lemma.

We return now to the function ¢(t) defined in terms of y = f(s) by (3.10). This
function, which is the solution of (3.7) and (3.9), has now been shown to be monotone
increasing for t > 0 (see (3.8)), and to diverge to infinity as t approaches c,/a,
where

¢ =k, yn(n - 1)/(n+ 1).

From the estimates (3.13) on k, it follows that ¢, <n \'E, as was claimed in the
statement of Theorem 1 in the Introduction. Thus the auxiliary function v(x) = ¢(r(x))
becomes infinite uniformly on the relative boundary in D of the subdomain ZCD
which consists of those points (x) € D whose geodesic distance r(x) from the origin
is less than c¢,/a. By Proposition 2 (Hopf, Rinow, de Rham), Z is relatively com-
pact in D, provided that y(0) > c,/a; hence, if this last condition is satisfied, then v
meets the four requirements (a), (b), (¢), (d), including (3.4), (3.5), (3.6); these show
that (3.3), (3.1), and (3.2) are incompatible. This completes the proof of Theorem 1.
The corollary is clearly a special case.



CONVEX FUNCTIONS WITH UNIMODULAR HESSIAN 121
4. PROOF OF THEOREM 2

We shall rephrase the statement of Theorem 2 in a way analogous to the reform-
ation of Theorem 1 at the beginning of Section 3. Assuming, (as we do in the Intro-
duction) that the function u is a convex solution of (1.1) in a domain D containing the
origin O in its interior; that

azu
(4.1) - - (O) = 6ij
ax' ox’ ’

and that |:,D| (O) > a > 0; we shall seek to construct a curve in D, from the origin to
the boundary of D, whose Euclidean length in terms of the rectangular coordinates
(x) can be bounded in terms of the positive constant a. It follows from Theorem 1
and Proposition 2 that under these assumptions there exists a geodesic C with re-
spect to the Riemannian metric (1.2) (namely a shortest possible curve with O as
initial point and no end point in D) whose Riemannian length y is finite and satisfies

(4.2) y =7 <2 (ea<nvD).

a
It is a remarkable and fortunate fact that, for n <5, this same geodesic C with re-
spect to the Riemannian metric has bounded Euclidean length, as we shall prove. As

in the case of Theorem 1, the ultimate step depends on a lemma in ordinary differ-
ential equations. For the proof of this lemma, the author is indebted to N. Levinson.

Let the shortest geodesic C with initial point O and no end point in D be para-
metrized by its Riemannian length s from the origin; let its total length be y, where
v satisfies (4.2); and denote by o = o(s) the corresponding Euclidean length. Then
the following inequality holds.

do dxiddd . T
0 <5 =\Sijasas < V&0 =n(s) = p.

Differentiating the distortion parameter p with respect to s, we obtain

ij dxK

d 3 d
(4.3) : s (87033 = 20 B-25;A kgs

ds

directly from (g(l). We regard this last expression as the Riemannian inner product
between the tensors éij and Ay dxk/ds, and prepare to apply the Cauchy-Schwarz
inequality, in majorizing that expression by the product of the Riemannian absolute
values. Actually a slightly better inequality is obtained by exploiting the fact that the
6;; form a positive definite matrix, while the A%y dxk/ds form a matrix with trace
zero with respect to the metric 8ij- Let

2 . . .
aij = 513 - _pﬁ—gij’ all) = glk g.]f akf;

then the decomposition Oij = ajj + (pz/n)gij is orthogonal with respect to the metric
gij at each point, and the second term is orthogonal to A%, dxk/ds. Thus we have

.. k .. .. k ( 1/2
ij dx < (aij al_])l/Z (Al_] dx A ax '

5. Al dxk
1A kg | = K ds

ik kds 4iilds
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The norm of the a;; is majorized as follows:

(4.4) =aLJa”—g1ng’7<3 6k('—<p (1-—)

while the squared absolute value of Aijk dxX/ds can be computed from (2.9):

i dxh dxk dxh dxk
1) m
(4.5) gi( gij h™qg Af ks hk ds ds °

In what follows, we shall denote by K(s) the function

(4.6) K(s) ;\/th‘il’; f‘;;k :
Combining (4.3) through (4.6), and applying the Cauchy-Schwarz inequality, we obtain
p %Ps- < (n;l) 1/Z‘o?'K(S),
from which we deduce the integral inequality
s sy 1/2
(4.7) o(s) < x/ﬁS exp[S (“; 1) K(sz)dsz]dsl 0<s<y),

0 0

because of the initial conditions ¢(O) = 0, p(O) = V'n, the latter being a consequence
of (4.1). Our purpose now is to prove, by means of the available information on K(s),
that the integral (4.7) converges as s approaches y.

From the definition (4.6) of K(s) and from (2.10), (2.8), and Theorem 1, and using
the obvious identity y(x(s)) = y(O) - s = ¥ - s, we obtain the inequality

cn
(4.8) 0 <K(s) <75

If one could prove the stronger inequality K(s) g for some € > 0,

1l-¢ ( n 1/2
s\n-1 )
then the convergence of {4.7) as s — ¥ would be 1mmediate. It seems doubtful, how-
ever, that this hypothesis be true, especially for high values of n (as a matter of fact,
we did not succeed in proving it even for n = 2). Therefore some other property of
K(s), restraining its rate of growth, has to be used: the crucial inequality in this case
is the Riccati inequality (2.24), where the “unknown” function H(s) is the relative
mean curvature of the geodesic hypersphere with center O that passes through the

point (x(s)). Thus in the present notation we have the following majorant for K(s):

(4.9) 0 < K(s) < N 1)(dH(S) H (o))
where H(s) is a differentiable function of s in the open interval 0 < s < v, satisfying

(4.10) H'(s) = S5 > B2 (s).
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We shall now quote Levinson’s lemma.

LEMMA 3. Let H = H(s) be a continuously diffeventiable, real-valued function of
s (0 < s <y <), satisfying (4.10). Then, for every € > 0 and every constant
c' <2,

(4.11) S‘yexp[c' S s\!'H'(sl) - Hz(sl)dsl]ds < oo,

€ £
Pyroof. We perform the substitution
(4.12) s=y(1-e,
and introduce the following two functions of t:

w = w(t) = ye"tH(s) - —%—

and

z = z(t) = ye"t\/d%ésl - H3(s).

These substitutions lead to the following restatement of the lemma: if z = z(t) is a
continuous, nonnegative function of t for all t > 0, such that the Riccati equation

dw _ 2 2

| =

has a continuous solution w = w(t) on the whole half-line t > 0, then for every &' > 0
and every constant c¢' < 2 the following statement is true:

00 t
yS exp [C'S‘ z(tl)dtl]e'tdt< oo,
&' g

In order to see this, we consider w = w(t) as a solution of the differential inequality

dw 2
_tZW -

] -

obtained from (4.13), and we compare it with the solutions of the corresponding equa-
tion (obtained by replacing the inequality by equality) that are regular on the whole
positive half-line of t. We obtain immediately the bounds

1 t 1
—ECOth—Z'SW(t)SE.

From these we obtain the following inequality, for every t > g":

gt z(t)) dt) = 5:. (wiey - wie) + 7 ) Y2 46 < 5:. (wien+2) 12

sl
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Jt-¢' [ gt (w'(tl) +%)dt1] 1/2; [(t- £') (w(t) - wieh) + t_48')] 1/2
g

IA

'
et

ef -1

%[(t—s) +2(t-8')(1+coth;)] 1/2<t'2*”"+

Consequently the left-hand member of (4.11) can be majorized by direct computation
as follows: for any constant c' < 2,

S‘Y exp [c'g: _\/H'(sl) - Hz(sl)dsl] ds

€

©0 t
=y§8'exp[ C'S‘S,Z(tl) dtl]e’tdt< :(2'2(’/ )exp(c w/€),

where g'= log(;;,-)_-/—é ), according to fhe reverse of the substitution (4.12). This
completes the proof of the Lemma.

We remark that the condition c¢' < 2 under which the assertion of Lemma 3 is
valid is the best possible one; in fact, if we take, for example, v = 1 and
H(s) = (2 - 2s)71, then the integral (4.11) diverges for every c' > 2.

We now conclude the proof of Theorem 2. The function K(s) occurring in the
integral in (4.7) has two majorants, given by (4.8) and (4.9) respectively: using the
former in the interval from 0 to ¢, for any £¢ (0 < € <), and the latter for s > ¢,
and setting ¢' = (n - 1)/ Vn, we can evaluate the limit of the integral in (4.7) as s ap-

proaches vy in terms of &' = log 7 7_/ = If ch,>1 and c¢' < 2, that is, under the con-
dition n < 5, the result of the computation from (4.9) is

/— - 1 8!
. a Y vn (cp-1)€ _ 2y vn _ , c'e
Sl:n;/o(s) = o(y) <—————-Cn — (e 1) + 5 g1 XD (cp-1)E" + MPCay

In order to simplify the last expression, we use thé inequality

€
e¥ 1.y
ef -1 €
and set &' = Je'/(c, - 1); we write Jc'(cn - 1) = C,, and use the assertion of Theo-
rem 1 that y < ¢, /a; this gives

5(0) < oty) <=2,

where, for n= 2, 3, 4, 5,

Cc \/i—l C 2c V"Il (ch+cl)

n
Mn<—c—-—_'—1'( -1)+———é-,—



CONVEX FUNCTIONS WITH UNIMODULAR HESSIAN 125

Using the upper bound from Theorem 1, ¢, < n ¥2, and the definitions of the remain-
ing constants, we have calculated approximately the following numerical estimates for

M,:
(4.14) M, < 127; M, < 2660; M, < 40100; M; < 653000.

This concludes the proof of Theorem 2 and, as a special case, of its Corollary.

The extreme wastefulness of our method of estimating the constants M,,, result-
ing in (4.14), is evidenced by comparing our upper bound for M,, the only M, whose
existence has been reported so far in the literature, with the bound calculated by J.
Nitsche [9], by means of complex variable techniques. By direct computation in terms
of the local complex parameter

0=x1+a—ul+ —1(x2 +ﬂ)
ox

ox*

and of the holomorphic generating function

f(o) = x* _fu j(a—u-xa) ,
ox! 0x?

where o and f(o) are Nitsche’s notations, one obtains the identity

4|f"(cr)|

= (1 - Ifl(o_)lz):i/z

From this and from Nitsche’s arguments one obtains the following, considerable im-
provement on the upper bound for the constant M,, appearing in (1.10) and (1.11) for
n=2;

(4.15) M, < 4.

It is not surprising that the results obtained by complex variable techniques for n =2
should yield much sharper estimates; on the other hand, the methods used in the pres-
ent paper are applicable to any number of variables; the weakness of our numerical
estimates for n = 2 is a strong indication of the room for possible improvement for

n > 3, including the very likely possibility, mentioned in the Introduction, that the
assertion of Theorem 2 may be valid also for n > 6.
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