MONOTONE MAPPINGS OF MANIFOLDS, II
R. L. Wilder

1. INTRODUCTION

In [5], I showed that if S is an orientable, n-dimensional generalized closed
manifold (that is, an n-gcm), and £(S) = S'*is an (n - 1)-monotone mapping of S onto
an at most n-dimensional nondegenerate Hausdorff space S', then S' is an orientable
n-gcm of the same homology type as S. In the algebraic apparatus used in defining
concepts such as homology and monotoneity, a fixed field was assumed as coefficient
group. However, if monotoneity is defined over the integers (see also [2]), then S'
need only be assumed to be finite-dimensional.

It is the purpose of the present paper to treat the noncompact and nonorientable
cases. Two new conditions enter here. In the first place, for the noncompact case
the mapping f must be assumed to be proper; that is, the counter-images f-(M) of
compact sets M must be.compact. The necessity for this is seen from the simple
example where S = E!, the open real number interval [x| 0<x<1]. Let S'be the
subspace of the cartesian plane consisting of the sets

A=[xy[0<x<1/2,y=0], B=[(x,y)]4x®-4x+4y?-4y+1=0],

and let p = (1/2, 0). Let £(S) = ' be the identity on A, and map the open interval
1/2 <x <1 onto B - p homeomorphically. Then f is monotone but not proper, and
S' is not a generalized manifold.

In the second place, for the nonorientable case, it must be assumed, for each
x' € S', that there exists in S an orientable submanifold (more precisely, an orient-
able n-dimensional generalized manifold, that is, an orientable n-gm) containing
f71(x"). This is shown, for the case n = 3, by the following example (the assumption
is apparently unnecessary if n = 2; for the classical case, see [3; Lemma 2]): Let
P? be the projective plane, and S! the 1-sphere, and let S = P2XS?; let the field of
coefficients be the integers mod 3. Then S is a nonorientable 3-manifold. For
some x € S!, let M = P2Xx. The open sets containing M that are topologically simi-
lar to P2X E! form a complete system of neighborhoods for M; however, they are
nonorientable 3-manifolds. Hence M, although it is acyclic, has no neighborhoods
that are orientable 3-manifolds (since the existence of such would induce orientations
on sufficiently small elements of the complete neighborhood system described above).
Note that there exists a mapping £(S) = S', where S' is the quotient space of S' in
which the only points of S that coalesce are the points of M, which is 2-monotone,
and that S' is not a 3-gm.

2. THE ORIENTABLE CASE

In a previous paper [6], I have shown that if S and S' are locally compact
spaces, and f(S) = §' is a proper, n-monotone (n > 0), continuous mapping, then
H7(S) = $7(S"). A similar argument shows that f induces a homomorphism of
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$2T1(S) onto $1t1 (S"), for n> 0. We recall that by n-monotone is meant that
counter-images of points are r-acyclic for all r < n, provided the coefficient domain
is an algebraic field %, as we shall generally assume throughout; for other coeffi-
cient groups, the term is used to denote Vieloris mapping of order n as defined by
Begle [1; p. 537]. The group $™(S) is the infinite homology group; it is isomorphic
with the group H™(S; p), where (8; p) is the compact pair formed by the one-point
compactification 8§ of S by addition of an ideal point p.

For the purposes of the present paper, we need an extension of the Vietoris-
Begle theorem (see [1], [2], [4]) to relative homology. This is embodied in the fol-
lowing theorem.

THEOREM 1. Let £(S) = S' be a proper, n-monotone (n> 0), continuous map-
ping, wheve S and S' are locally compact spaces, and let A', B' be closed subsets
of S' such that A'DB'. Then $™(S: S, B; S, A) = $™S': S', B'; S', A'), where
A=fY4A"), B=£{"B'). Also, f, induces a homomorphism of ™*1(S: 8, B; S, A)
onto Sc-)n+1 (S': 8, B"% s, AY),

(By 9™(S: 8, B; S, A) we denote the n-dimensional homology group formed by
the group of n-cycles of S mod B, modulo its subgroup of cycles that bound mod A;
see [8; p. 166, Definitions 18, 28]. Theorem 1 holds for n-monotoneity over any
group G).

Proof of Theorem 1, Let U'=8'-B', V'=8' - A', U=1{7(U"), V=£1(V'");
note that U=S - B, V=S - A, and that UDV. Consider the diagram
90 ——>$ )
Ix i'%

@“(V)T-m)n(v')

where ¢ and y are isomorphisms induced by the mappings f |U and |V, respec-
tively, and j,, j', are the homomorphisms induced by the inclusions j: V—TU,
j': V!> 1U', respectively. That ¢ and y exist follows from the theorem cited above.

The commutativity relation
(1) Vie = 1'39
holds. In addition, the groups $(S: S, B; S, A) and j, 9 ™U) are isomorphic, as are
also the corresponding groups $™(8": 8', B §', A') and j', $"(U'). Applying (1) to
H™(U), we get
(2) Yi, §™(0) = 'y, o™U")
and hence, from (2), the desired relation

YHn(S: 8, B; S, A) = p1(s': 8", B'; S, A').
For the case of dimension n + 1, the proof is similar.

LEMMA 1. Let £(S) = S' be a proper continuous mapping of a locally compact
space S onto a locally compact space S'; for x' €S', let M = f~1(x'), and let P be an
open subset of S containing M. Then there exists an open subset P' of S' containing

X' such that £-1(P')C P.
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Proof. Let V' be an open subset of S' containing x' such that V' is compact.
Then V = f~}(V') is an open subset of x containing M such that V is compact (since
f is proper and Vcf(V')). Let Q be an open subset of S containing M such that
QCcvVnP.

Now the set V - Q is a closed set, and hence the set £f(V - Q) = F' is closed (V
is compact, and f|V, as a mapping of a compact space, is a closed mapping). And as
a closed subset of the compact set V', F' is compact, and hence F = f~1(F') is’'com-
pact and hence closed. Since MN F is empty, the set P, = V - F is an open set con-
taining M. The set P'={(P,) = V' - F' is the desired set.

THEOREM 2. Let f(S) = S' be an (n - 1)-monotone, proper, continuous mapping
of an orientable,n-dimensional, generalized manifold S onto an at most n-dimen-
sional, locally compact, nondegenevate Hausdorff space S'. Then S' is an ovientable,
n-dimensional, generalized manifold of the same homology type as S.

Before proceeding to the proof of Theorem 2, we recall that an orientable, n-
dimensional, generalized manifold, or, briefly, an orientable n-gm, is a locally com-
pact space S such that (1) the dimension of S is n; (2) S is colec™-L (3) for each
X€ S, pyfS, X) = 1; (4) if F is a proper closed subset of S, then every infinite n-
cycle on F bounds on S (see [8; p. 254]); and (5) the group $™(S) is of positive di-
mension. (An n-gm is defined in precisely the same way, except that (5) is replaced
by the stipulation that S is connected.)

Proof of Theorem 2. Conditions (4) and (5) imply that S is connected, and hence
S' is connected.

We note first that f is n-monotone. For consider a set F = f~(x), where x € S'.
Since f is proper, F is compact, and an n-cycle Z™ on F would be a compact cycle
such that Z? ~ 0 mod P, where D is a point of compactification for S. But on a co-
final set of n-dimensional coverings, this implies that-Z® = 0,

Since f is n-monotone, $"(S) = $7(S') by the theorem cited above, and it follows
that $2(8') is of positive dimension.

We prove next that S' satisfies condition (4). If K' is a proper closed subset of
S', then K = f1(K') is a proper closed subset of S. And since f|K is n-monotone,
HUK) = §™K'). Now it follows from conditions (1) and (4) that if F is any proper
closed subset of S, then $™(F) = 0. We conclude, therefore, that $2(K') = 0.

That S' satisfies condition (2) may be shown as follows: Let xe€ S', and sup-
pose U' is any open subset of S' containing x. Then U = f~}(U') is an open subset
of S containing the set M = f1(x). With an appropriate choice of U', we may assume
that U is compact. By [5; Thm. 3], there exists an open set Q such that
MCQCQCU and such that H¥(S: Q, 0; U, 0) = 0 for all r < n. By Lemma 1, there
exists an open subset V' of S' such that x e V'cU' and V = {-}(V')cQ. Clearly,
H*(S: V, 0, U, 0) = 0 for all r such that 0 <r <n. And by [8; p. 258, Thm. VIII 5.9],
. H*(8:8,S-U;8,8-V)=H""%8:V, 0; U, 0) =0 for all r suchthat 0 <r <n.
(Since U, V, and so forth are compact, the § and H groups are here the same.) By
Theorem 1,

H*(S': 8!, S'-U;S,S'-V") = H¥S:S,S-U;S,8S-V) =0,
and since

HY(S':S',S'-U'; S8, S'-V') = H(S: V', 0; U', 0) = 0
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by [8; p. 166, Thm. V 18.31],it follows that S is r-colc for all r such that 0 <r <n.
Hence S is colc®-! (see [8; p. 192, Cor. 6.12]).

To show that S' satisfies condition (3), let x, U', U, M be as in the preceding
paragraph. Let Q be an open connected set such that MC QCQc U; the existence of
such a Q follows from the connectedness of M and the local connectedness of S. Let
V' be an open subset of S' such that x € V' c U’, and such that the set V = £f-3(V") is
a subset of Q. (That such a set exists follows from Lemma 1). By [8; p. 258, Thm.
VII5.9], H°(S: V, 0; U, 0) = H*(S: S, S - U; S, S - V). And by Theorem 1,

H®(S': 8',8'-U";S',S-V') = HYS,S-U; S,S - V).

Since dim H°(S:V, 0; U, 0) = 1, it follows that dim H*(S': 8',8' - U"; S',S8' - V") =1.
And since V' is unrestricted, except that f~}(V') must be a subset of Q, the number
p(x; U') is 1 (see [8; p. 190, Section 6.6]). Since U' was also unrestricted (except
that f-(U') = U has compact closure), the number p»(S', x") is also 1.

THEOREM 2'. (This is the same as Theorem 2, except that S' is only assumed
to be finite-dimensional, and the mapping f is assumed to be (n - 1)-monotone over
the integers).

Proof. The proof is similar to that of Main Theorem B of [5], except that it must
be observed that Lemma 4 of [5] holds when f is a proper n-monotone mapping of a
locally compact space S, as does also Begle’s proof [2; Section 6, p. 542] that mono-
toneity defined in terms of acyclicity of inverse images over a field implies monotone-
ity as defined in Definition 3' of [5].

\
3. THE NONORIENTABLE CASE

In both [5] and Theorem 2 above, we have assumed orientability of the manifold,
throughout. We now consider what can be said when this assumption is not made.

LEMMA 2. If 1(S) = S' is a proper mapping of a locally compact space S onto
locally compact space S', then { is a closed mapping.

Proof. Let F be a closed subset of S, and let F' = £(F). Suppose there exists a
point x' of S' - F' such that x' is a limit point of F'. Let M = f-!(x'); then M is
compact, since f is proper, and consequently M is a closed subset of S - F.

There exists, by [8; p. 101, Lemma IV 1.9], an open subset U of S such that
McUcCUCS - F. By Lemma 1, there exists an open set P' of S', containing x',
such that the set P = £~(P') is a subset of U. But this is impossible, since P'n F'
is not empty.

THEOREM 3. Let £(S) = S' be an (n - 1)-monotone, proper, continuous mapping
of an n-gm S onifo an at most n-dimensional, nondegenerate locally compact Haus-
dovff space 8', such that for each x' € S', the set £~ (x') lies in an orientable n-gm
in S. Then S'is a locally ovientable n-gm of the same homology type as S.

Proof. In the first place, S' is an n-gm of the same homology type as S. To
show this, we may proceed as in the proof of Theorem 2. However, in proving that
S' satisfies conditions (2) and (3), use is made of Theorem VIII 5.9 of [8; p. 258],
which is a generalized form of Poincaré duality and requires orientability of the
manifold in question. In order to justify this in the present proof, we may use the
fact that if M is a set f-}(x') (x' € S'), then M is contained in an open subset U of S
such that U is an orientable n-gm. (Every n-gm which is a subset of a locally
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orientable n-gm S is an open subset of S. This is proved in [7].) By Lemma 1, the
set U of the proof of Theorem 2 may be so selected that its inverse £~!(U) lies in the
orientable manifold U whose existence is asserted above. The argument used in
Theorem 2 now follows if we make use of the excision property of homology theory
(that S' is at least n-dimensional follows from the fact that p(S', x') > 0 for all

x' e S".

We have, then, only to show that S' is locally orientable; in other words, that
every point of S' has a neighborhood which is an orientable n-gm. Let x'€ S8' and
M = f~}(x"). By hypothesis, there exists an open set P in S containing M such that
P is an orientable n-gm. By Lemma 1, there exists an open set U' in S' containing
x' and such that U = f~}(U') is a subset of P. The component V of U containing M
is open (since S is locally connected) and constitutes an orientable n-gm. (This is
proved in [7; Thm. 2.2].) And since f is 0-monotone, f-2(V) = V. Thus the mapping
f,: V—1£(V), where f, = f|V, is an (n - 1)-monotone mapping. Consequently £(V) is
an orientable n-gm, by Theorem 2.

To show that f(V) is open, we need only note that S - V is closed; whence, by
Lemma 2, f(S - V) = 8' - (V) is closed.

THEOREM 3'. (This is the same as Theorem 3, éxcept that S' is only assumed
to be finite-dimensional, and the mapping f is assumed to be (n - 1)-monotone over
the integers )
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