A THEOREM ON TWO-DIMENSIONAL VECTOR SPACES
John S. Griffin, Jr. and J. E. McLaughlin

In classical projective geometry, homogeneous coordinates for the line are
customarily introduced by means of an algorithm. If one wished to give a formal
definition, one might begin by observing that projective lines can be manufactured
from two-dimensional vector spaces in a natural way; then a system of homogeneous
coordinates for a line L in a projective space might possibly be defined as a one-to-
one mapping, from L onto a line so constructed, which preserves projectivities.

More specifically, if V is a two-dimensional vector space over a division ring
D, let IIy be the family of all lines of V which pass through the origin; and for any
nonzero vector v of V, let [v] be the unique member of IIy to which v belongs. A
map p: [y — [y will be called a projectivity if there is some nonsingular linear
transformation a: V—V such that [v]p =[va] for all v € V. Then, if L is a line in
a projective space P, the map h constitutes a system of homogeneous coovdinates
for L provided, for some vector space V over a division ring D, the map h: L —1IIy
is one-to-one onto and p: My —Ily is a projectivity if and only if hph™! is a projec-
tivity of L (where projectivities of L are defined, as classically, to be sequences of
perspectivities in P).

The question arises whether such a system of homogeneous coordinates is neces-
sarily equivalent to the one given by the classical algorithm. Put algebraically, this
question becomes: if V and W are two-dimensional vector spaces over division
rings D and E, respectively, and if f: Ily—IIyw is a one-to-one onto map which pre-
serves projectivities, does there exist a semilinear isomorphism from V onto W
which induces f? The map f induces a special isomorphism from the projective
group of V onto the projective group of W, and a classical result due to Schreier
and van der Waerden [5] tells us that if D and E are commutative and contain more
than five elements, then any isomorphism between these groups yields an iso-
morphism of D onto E. Once we know that D and E are isomorphic, then Hua’s
determination of the automorphisms of the two-dimensional projective groups [4]
yields the fact that f is indeed induced by a semilinear isomorphism of V onto W.

We shall show, below, that in general the map f induces either an isomorphism
or an anti-isomorphism of D onto E and then, again by Hua’s result, f is induced
either by a semilinear isomorphism of V onto W, or by a semilinear isomorphism
of V onto W* (the dual space of W), followed by the canonical map from W* to W.

We emphasize that our isomorphism of the projective group of V onto the pro-
jective group of W is a speci2l one; and whether or not an arbitrary isomorphism
yields an isomorphism or anti-isomorphism of D onto E remains an open question.

We thank the referee for several important remarks concerning our theorem.

THEOREM. Let V and W be two-dimensional vector spaces over division rings
D and E, respectively, and suppose f: lIyy — Ily is one-to-one onto. Suppose further
that if G and H denote the vespeclive projective groups, then the map f*: G— H
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given by pf* = f~1pf is an isomovphism. Then either D is isomovphic to E, or D
is anti-isomorphic to E.

Proof. Choose bases {v,, v,}, {w,, w,} for V, W respectively so that
[viJf = [w,], [volf =[w)], [vy+ v,]f = [w + w,].

This defines a map ¢: D—E given by [v, + xv,|f = [w, + xXOw,]. Clearly, o is one-
to-one onto and 09 = 0, 19 = 1.

With respect to these bases, linear transformations (and hence projectivities)
are represented by matrices from D, and E,. Recall that two matrices represent
the same projectivity if and only if one is a nonzero central scalar multiple of the
other. Our first observation is that if p € G is represented by a matrix all of whose
entries come from the center of D, then any matrix representing pf* has all of its
entries in the center of E. For suppose p is represented by (zij), where the ele-
ments z;; are in the center of D; then p commutes with all members of G which
leave [vlf, [v)), and [v, + v,] fixed. Hence pf* commutes with all members of H
which leave [w,], [w,], and [w, + w,] fixed, and this in turn implies that if (xij)
represents pf*, then for each u# 0 in E there exists a z in the center of E such
that uxiju'1 = 2Xij In other words, the subfield of E generated by its center and
the element x;; is setwise invariant under all inner automorphisms of E, and by the
Cartan-Brauer-Hua Theorem ([1],[3]) it is contained in the center of E—in par-
ticular, x;; is in the center of E.

Our aim is to show that the map o defined above is either an isomorphism or an
anti-isomorphism. We begin by showing that o is additive. Suppose p € G is repre-
sented by (%) i‘); then pf* is represented by a matrix of the form (f(:) }g‘g;) , and

invoking the relation pf* = f~! pf we obtain, for all x € D,
(a+ x)9 = f~1(a) g(a) + £-1(a) xTh(a). .
Setting x = 0, we have g(a) = f(a)a’; and setting a = 1, we have
1+xP =1+ x%f1(1)h().

Now p has [v,] as its only fixed point, and therefore pf* has [w,] as its only fixed
point. Hence f-*(1) h(1) = 1, and we have (1 + x)° = 1+ x? for all x € D. This in
turn yields f(a) = h(a) for all a € D. If we denote our projectivity by pa, and t is
any projectivity leaving [v,] and [v,] fixed, then tp,t-! = py,, for some b € D. This
must carry over to Ily, and computation with the corresponding matrices yields the
fact that f(a) lies in the center of E. Now we can argue as before about the fixed
points of p,, and obtain (a+ x* = a¥% + x¥ for all a and x in D.

Now suppose p is represented by ( (1) (1)) . This matrix has entries from the cen-
ter of D, and p interchanges {v,] and [v,] while leaving [v, + v,] fixed; ((1) (1)) is a

matrix which represents pf*. Since

(01) 1a (01 _ (10
10 (01 10/ “ \a1/’
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it is clear that if g is represented by (:1 (1)) , then gf* is represented by ( :10 (1)

Finally,

G- G)6 T NEDETY.

and if p is represented by the matrix on the left, pf* is represented by

(10) G*1%) (ate 1) (6 717)

Multiplication and the observation that pf* leaves [w,] fixed give the result that pf*
gy-1
is represented by ((ao) go) . Since pf* = f™1pf, we obtain (axa)? = a%x%a%, for

all a and x in D. A theorem of Hua’s [2] then tells us that o is either an isomorph-
ism or an anti-isomorphism. This completes the proof of the theorem.
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