THE POINCARE DUALITY IN GENERALIZED MANIFOLDS
Armand Borel

1. INTRODUCTION

The generalized manifolds, that is, topological spaces having the local homology
properties of manifolds, have been studied notably by Cech Lefschetz, Begle [2, 3],
and Wilder [9]; the two last-named authors proved, among other results, a Poincaré
duality theorem which is also valid in the noncompact case. The main purpose of
this paper is to give a simple proof, within the framework of sheaf theory, of such a
theorem. The theorem involves Alexander-Spanier cohomology and Alexander-
Spanier cohomology with compact carriers (in the sense of [4], not of [6]; see below),
and it is proved in Section 3 under a condition more general than Wilder’s, not for
the sake of generality, but because this simplifies the exposition. Its relationship
to the Begle-Wilder theorem is discussed in Section 7; Sections 4 and 5 introduce
local Betti numbers and homological local connectedness; Section 6 is devoted to
some results of Wilder which pertain to these notions and are of particular interest
for generalized manifolds; the latter are discussed in Section 7.

Notation. All spaces considered here are locally compact (and Hausdorff). Y is
the closure of a subset Y of the space X; L stands for a principal ideal ring.
Ci(X, L) or cl (resp. Ci(X, L) or Ci) is the L-module of i-dimensional L-valued
Alexander-Spanier cochains in X (resp. with compact carriers) (as defined, for ex-
ample, in [4a, Exposé VI], under the name of Cech-Alexander cochains of the first
(resp. second) kind). C*(X, L) or C* (resp. C&(X, L) or C&) is the direct sum of
the Ci(X, L) (resp. CL(X, L)), endowed with the usual boundary operator raising de-
grees by one; and H*(X, L) (resp. H&(X, L)) is the resulting cohomology group: the
Alexander-Spanier cohomology group (resp. with compact carriers) of X, and with
coefficients in L. As is well known, H*(X, L) may be identified with the Cech co-
homology based on infinite coverings, and if X =Y - F, with Y compact and F
closed in Y, then H%(X, L) may be identified with the relatlve Cech cohomology
group of Y mod F.

By f* we denote the homomorphism of H*(Y, L) in H*(X, L) induced by a con-
tinvous map f: X— Y. In case f is the inclusion of a subspace, it will sometimes be
convenient to denote by H¥*(XCY, L) the image of f*.

Let U be an opern subset of X. Then C%(U, L) may be identified with the sub-
grating of elements in C&(X, L) having carriers in U; and this embedding glves rise
toa homomorph1sm of H%(U, L) in H¥(X, L); it will be denoted by j* or j};x, and its

image by HY(UCX, L). Recall that, given a closed subset F of X, there is an exact
cohomology sequence
ik

. . J . .
(1) -« —Hi(F, L)—Hit}(X - F, L) - HLF (X, L) - HEN(F, L) — ...,

As far as sheaf theory is concerned, we use the terminology of [4b] and assume it
to be known. Grating will stand for carapace,and S(a) will denote the carrier (sup-
port) of an element a belonging to a grating A. Given a locally finite covering
() (G e, apartition of unity for A, subordinate to (U;), is a family (rj) (i € I) of
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endomorphisms of A (for the L-module structure only) whose sum is the identity,
and such that S(rja)cS(a) N U; for all i € I. If this exists for every locally finite
covering, A is said to be fine. In particular, C}(X, L) is fine.

2. A FINE GRATING

2.1, The duality theorem in Section 3 will be obtained simply by applying the
fundamental theorems of sheaf theory to the grating Cx(X, L), where Cx(X, L) is the
direct sum of the L-modules C;(X, L) = Hom (CL (X, L), L). The boundary operator
d of Cx(X, L) shall be the transpose of d; that is,

da(e) = a(dc) (aeCiX, L) ce Cé'l(X, L);

and we shall denote by H;(C,(X, L)) the corresponding i-homology group.

The carrier S(a) of a € Cx(X, L) is defined by the rule: the point x € X is not
in S(a) if it has a neighborhood U such that a(c) = 0 whenever S(c)c U. Thus S(a)
is closed.

2.2. LEMMA. Let X be paracompact. Then Cx(X, L), endowed with the carriers
and boundary operator defined above, is a fine grating without tovsion, in which locally
finite sums converge,

It follows immediately from the definitions that
S(ea) c S(a), S(a + a')c S(a) us(a'), S(k+a) c S(a)

(a, a' € Cx(X, L), k € L); thus Cx(X, L) is a pregrating: absence of torsion means
that S(k-a) = S(a) for k e L (k # 0); this property follows from the fact that L. isa
domain of integrity.

Let us now show that if S(a) does not meet S(c) (a € Cx(X, L), c € C:(X, L)), then
a(c) = 0. Infact, S(c) being compact, we can find a finite number of open sets
V; (1 < i< k) whose union covers S(c), and such that a is zero on any element with
support in one of the V;. Let now (r;) (0 < j < k) be a partition of unity for cix, L),
subordinate to a covering of X formed by the V; (1 < i < k), and a V, whose closure
is in X - 8{(c). Then r,c =0 and a(rjc) = 0 (1 < i< Kk); hence

k .
ae) = X a(rjc) = 0.
0

In particular, if S(a) is empty, we have a = 0, which means that Cx(X, L) is a grat-
ing.

A family (a;) (i € I) of elements of Cx(X, L) is said to be locally finite if each
compact subset of X meets at most a finite number of the S(a;); in that case, by the
above, for any c € CX(X, L), at most a finite number of the a;(c) may differ from
zero, and their sum is well defined. Thus to the family (a;) there is assigned a sum
ae C*(X, L) by the rule a(c) = =, a;(c), and by definition, this means that the locally
finite sums converge in Cx(X, L) [4b, Exp. XVIII, No. 4].

Let now (Uj) (j € J) be a locally finite open covering of X, and let (r;) be a par-
tition of unity for CcX(X, L), subordinate to (Uj). We define rja by r; a(c) = a(rjc).
Then S(rja) cUj NS(a), and the rja form a locally finite family whose sum is
clearly a. Thus C*(X L) is fine.
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2.3. We denote by #(X, L) (or simply, if it does not lead to confusion, by &) the
sheaf associated with the grating C_ (X, L). The stalk &, above x is then C*/ Cex-x
where C,y denotes the set of elements in C, with carriers in the open set U. Then
Fy is a graded, torsion-free L-module, with a boundary operator lowering degrees
by 1, induced by 8. The homology sheaf of & will be denoted by H(#) or H(%(X, L)).
Thus H{%), = H(F,). The group H(#,) is quite analogous to the homology group in
the point x introduced by Alexandroff [1], and accordingly we may call H(#) the
sheaf of local homology groups. In Section 4, we shall discuss these in connection
with the Betti numbers around the points of X.

For open sets U and V (UCV) in X, let j,: C,(V, L)— C,(U, L) be the trans-
posed map of j° and let j, or 3* tH (C (v, L)) = H,(C,(U, L)) be the induced map
of homology groups. It is readily seen that

H(gx) = lim_, (H*(C*(U, L)), ]EV) ’

where U runs through the open neighborhoods of x.

2.4. A grating A is called complete provided the natural map of A into the
module I'(#(A)) of cross sections of the associated sheaf is an isomorphism. This
is the case if A is fine and if the locally finite families of elements in A converge
in A [4b, Exp. XVIII, Theorem on p. 9]. Thus, by (2.2), C,(X, L) is complete, (or,
more precisely, is & complete with respect to the family & of closed subsets of X).

3. THE DUALITY THEOREM

Let L be a principal ideal ring, and n a nonnegative integer. We consider the
following condition for a space X:

(L-n). X is locally compact, pavacompact, finite-dimensional. For each x € X,
we have H (#(X, L),) = L, Hy(#(X, L)) = 0 (i # n). (The dimension which matters in
this paper is the cohomological ®-dimension with respect to the family ® of closed
sets, as defined in [4b, Exp. XVII, p. 8]. It is majorized by the covering dimension
defined by means of locally finite coverings, and minorized by the cohomological di-
mension introduced by H. Cohen [5].)

A space satisfying (L.-n) will be called locally ovientable (resp. orientable) if the
sheaf Hy(%) is locally isomorphic (resp. isomorphic), to the constant sheaf XX L. If
X satisfies (L-n), so does every open paracompact subspace; if it is moreover orient-
able or locally orientable, then so is every open paracompact subspace.

3.1. THEOREM. Let X satisfy (L-n). Then H, _;(C (X, L)) i=0, +1, +2, +=*) is
isomorphic to the ith cohomology group HYX, H, (%)) of X with respect to the sheaf
H, (%) of local n-dimensional homology groups.

We change the degrees in C,(X, L) by writing An-1 instead of C;(X, L). Then
the direct sum A of the A! is a complete fine grating, with boundary operator rais-
ing degrees by 1. Under the assumption (L-n), the homology sheaf H(#(A)) is locally
of degree zero and therefore, by [4b, Exp. XIX, Corollary to Theorem 5],

HY(A) = HYX, HY(#(A),
or, in the origi\nal notation,

H,_C,(X, L)) = HiX, H(#(X, L)),

which is our contention.
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3.2. Assume now that L is a field. Then, by the universal coefficient theorem,
_1(C (X, L)) is the dual space of H2- i(X, L), and the theorem gives

HY(X, H,(#) = Hom(H2"¥(X, L), L) i>0).

3.3. COROLLARY. Let L be a field, and let F be a closed subset whose com-
plement U is pamcompact Then

(a) H (U, 1) =H(F, L) =0 for j>n.
(b) Assume moveover that X is connected and locally orientable.

Then HC(X L) is 1-dimensional or O-dimensional according to whether X is
ovientable ov not, Hy(F, L) =0 if F+ X,

(a). The left-hand side of (3.2) is of course zero for i < 0, whence
Hi(x, L) = #H(U,L) = 0 for j> n;

the equality H%(F, L) = 0 (j > n) then follows from the exact sequence (1) of Sec-
tion 1.

(b). HYX, Hp(%)) is the module I'(H, (%)) of cross sections of the sheaf H,(%); if -
the latter is locally constant, the set of points where a cross section is zero is open
and closed; X being connected, this implies that the dimension of HY(X, H,(%)) is
either 0 or 1. It follows further that H,(%) is constant (that is, X is orientable) if
and only if H(X, H, (%)) is one-dimensional. This proves the first part of (b).

By (a) and the exact sequence (1), the second statement of (b) is equivalent to the
fact that jijx: HY(U, L)—>H2(X, L) is surjective or, equivalently, that

X: H,(C,(X, L))~ H,(C,(U, L))

is injective. But the isomorphism of the theorem, applied to X and U, is compati-
ble with the restriction to U, so that ]* may be viewed as the restriction to U of
the cross sections of H,(%#) on X; since a nonzero cross section has no zero in our
case, this map is indeed injective.

3.4. Remark on ovientability., Hp(C,(X, L)) = H'(X, H, (%)) = T'(H,(#)). Thus our
definition of orientability may be phrased in the following way:

(a) X is ovientable if Cn(X, L) = Hom(CZ(X, L), L) kas a cycle with carvier
equal to the whole space.

If L. is a field, and X is separable metr1c the proof of 3.3b shows that this is
equivalent to

b) X is orientable if Hg(X, L) contains a nonzevo element which is in the image
of iyx for every nonempty open subset U.

Condition (a) is the precise analogue of Wilder’s definition: “existence of an in-
finite cycle which is not carried by a proper closed subset.” Condition (b) corre-
sponds to Smith’s definition (see Section 7).

3.5. Assume again that L is a field, and that X is locally connected. Then the
connected components of X are open, closed, and paracompact. Thus it follows from

1. This will be the case for every open subset if, for example, X is separable
metric,
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(3.3) that if X is locally orientable, the dimension of Hg(X, L) is equal to the num-
ber of orientable connected components of X.

. 3.6. The cup-product pairing. The cup-product defines a pairing of HiX, L) and
H)(X, L) to HLM(X, L); when the latter group is one-dimensional, we may identify it
w1th L and obtain a pairing of H¥X, L) and Hg(X 1) to L. It is said to be ortho-
gonal if in each module the annihilator of the other is reduced to zero. As in the case
of ordinary manifolds, we may in the orientable, connected case strengthen (3.2) as
follows.

THEOREM. Suppose that X is connected, satisfies (L-n), wheve L is a field,
and is orientable. Let t be a nonzevo element of H°(X, L) = Hom (HXX, L), L).
Then the cup-product pairing of H(X, L) and HZ- X, L) to L defmed by
(u, v) = £E(uU V) is orthogonal, and it identifies Hl(X L) with Hom (H2 XX, L), L)
i>0).

As in the proof of (3.2), we write Al for C,_;(X, L); but we use in A the boun-
dary operator 3' defined by

a = (-1t 3a (@ e A);

of course, this does not alter the homology groups. We define a map ¢: Ci(X, L)— Al
by

¢(b)(c) = EbUc) (b e CiX, L), c e C27i(X, L)),

£ being identified with a cocycle. The map ¢ is linear and, clearly, the carrier of
¢(b) is contained in S(b). Since £, being a cycle, is zero on coboundaries, we have

gdbuec) + (-1 &bude) = 0 - (b e Ci(X, L), c e CB-i*1(x, L)),
$(db)(c) = (-1 lp(b)(dc) = a'p(b)(c),

which means that ¢ commutes with the coboundary operators. It induces then a
map ¢*: H*(C*(X, L)) £ H*(X, L) — H*(A), and our assertion is clearly equivalent to
the proposition that ¢* is an isomorphism; we shall now prove this.

The map ¢ defines a map ¢': F(C(X, L)) »F(A) of the associated sheaves and of
their homology sheaves. Both H*#(C(X; L)) £ H°(X, L) and H°(%¥(A)) are one-
dimensional, and since H(X, L) is generated by the unit element for the cup-product,
¢ ' induces an isomorphism of one onto the other. Since in our case the homology
sheaves HY(#(C(X, L)) and H%%(A)) are constant, the map which to each cocycle of
T (C%X, L)) (resp. I'#(A%), assigns its value at x € X induces an isomorphism of
HO(#(C*(X, L)) onto HY#(C*(X, L))x), (resp. H(#(A)) onto H°(F(A))); hence ¢'
also an isomorphism of HY(F(C*(X, L))x) onto H°(F(A)y), for all x. It is an iso-
morphism of H{F(C*(X, L))x) onto H#(A)x) for i > 0, since both groups are then
zero. Both C*(X, L) and A are fine and complete; and the contention that ¢* is an
isomorphism now follows from the Corollary to Theorem 4 in[4b, Exp. XIX, p. T].
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4. LOCAL BETTI NUMBERS

4.1. Let L be a field. The ith local Betti number pi(x) or pi(x, L) of X around
X may be defined as follows, by means of cohomology [2, 9]: For two open neighbor-
hoods UCYV of x, let

pi(x, U, V) = dim Hi(UCV, L),

and let pi(x, V) be the (possibly transfinite) lower bound of pi(x, U, V) as U varies
inside V. Then pi(x) is the upper bound of the pi{x, V) as V runs through a funda-
mental system of open neighborhoods of x. If pi(x) is infinite, but the pi(x, V) are
finite, it is said to be increasingly infinite. If the pi(x; V) are infinite for a funda-

mental system of neighborhoods, pi(x) is said to be actually infinite. Now

H;(C,(U, L)) is the dual space of Hi(U, L), and jUV is the transpose of j{jy; since
H; (#)x is the inductive limit of the H;(C, (U, L)), we immediately have the following
result.

4.2, LEMMA. If pi(x) is finite and equal to Kk, then so is dim H;(%F)x. If
dim H;(#,) is infinite, then so is pi(x). If dim H;(#), is finite, and if pi(x) is at
most increasingly infinite, then pi(x) is finite.

Thus Hi(#), bears the same relationship to pi(x) as the Alexandroff ith
homology group in x, (see [10]); however, I do not know under what assumptions, if
any, these groups are isomorphic. By [10], the Alexandroff group is the inductive
limit of the Cech relative homology groups of compact pairs in X - x; the group
H; (%) is here H;(C,/C,x_x, L), by definition; when p'(x) is finite, these spaces
have the same dimension and are therefore isomorphic.

4.3. When L is an arbitrary principal ideal ring, we shall, in analogy with the
above, use the following definitions: p(x, L) is equal to k if corresponding to each
open neighborhood U of x there exist open sets WC VC U, containing x and such
that for each open neighborhood W' of x in W, HL(W'CV, L) is a free L-module
with k-generators. If every open neighborhood U of x contains another open
neighborhood V of x such that HY(VCU, L) is a finitely generated L-module, then
pi(x, L) is at most increasingly infinite.

5. COHOMOLOGICAL LOCAL CONNECTEDNESS

5.1. In formulating the concept of local connectedness in terms of cohomology,
we shall use the symbol cle, in order to avoid conflict with the notation of [9]. In
this section, H(X, L) is the reduced cohomology group.

The space X is p-clec (over the principal ideal ring L) at x if, given a neighbor-
hood V of x, there exists a neighborhood U of x in V such that HP(UcCV, L) = 0;
it is cle™ at x if it is p-clc at x for all p < r, and clc at x if this is true for all
r. The space X is p-cle, clct or clc if it has the corresponding property at every
point. Clearly, X is p-cle for all p > dim X. Since X is assumed to be locally
compact, we obtain equivalent definitions using only open or closed neighborhoods.
We are interested only in finite-dimensional spaces, and thus if X is p-clc at x
for all p, then there exists, for a given V, a UCV such that H(UCV, L) = 0
simultaneously for all p.

5.2. It is a well-known fact that, given x € X and a € HP(X, L), there exists a
neighborhood U of x such that the natural map HP(X, L)— HP(U, L) annihilates a.
1t follows then that for X to be p-clc at x, it suffices that given a neighborhood U
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of x, there exists a neighborhood V of x in U such that HP(VC U, L) is a finitely
generated L-module.

6. SOME RESULTS OF WILDER

Wilder has drawn interesting consequences from homological local connected-
ness or finiteness of local Betti numbers; they will be used in Section 7, and we prove
them here for the sake of completeness. The proofs are Wilder’s, phrased in the
technique underlying this paper, and in such a way that they are valid also in the case
where the coefficients do not form a field.

All cohomology groups are taken with respect to a fixed principal ideal ring of
coefficients L, which will not be mentioned explicitly. ¢“Finitely generated” will
always refer to the L-module structure,

6.1. DEFINITION. Tke space X has property (P, Q) if, whenever QcP (P, Q
open, Q compacl), He(QC P) is finitely genevated.

This notion was introduced by Wilder {9, p. 193].

6.2. PROPOSITION. If X has property (P, Q)p,, and if p™x) is at most in-
creasingly infinite for all x € X, then X has property (P, Q)n.

[9, Chap. VI, Theorem 7.2] Let P, Q be open, with @ compact and contained
in P. I R is an open neighborhood of Q in P, then H2(RC P)> H2(QC P). On the
other hand, if the U; (1 <i <Kk) are open sets in P whose union contains Q, then we
can find open sets V; (1'<i <k) with V; C U;, whose union also contains Q. There-
fore, using suitable finite coverings of Q, and using induction on the number of ele-
ments in the coverings, we can readily see that it is enough to show the following:

Let Vi, U; be open sets in P such that V;cU; and U;CP (i= 1, 2), and let
U=U,UU, V=V,UV, Then,if HYU;CP) is finitely generated (i = 1, 2), so is
Hn(VC P).

To this end we consider the following commutative diagram

\
g, g, HYP).
/
R(V) >H7(U)

lhl l hp
k
v, nv,) —> Hn“(U nu,)

Ho(Vy) + HY(V ) ——-HYU,) + HY(U)

The horizontal arrows are the natural inclusion maps j*, the first two vertical col-
umns are portions of exact Mayer Vietoris sequences (see Section 8). Let A be the
kernel of h,; by exactness, f,(A) = Im f,, and it is finitely generated since H(U; C P)
has this property by assumption (i = 1, 2). The image of h, OJVU is equal to that of
koh,; since Im k is finitely generated by the property (P, Q),41, we can find a
finitely generated submodule B of H (U) such that HY(V € U) CA + B (the latter
sum not necessarily being direct). Then HZ(V c P) is contained in f,(A) + £,(B), and
since both of these are finitely generated, H}}(V C P) is also finitely generated.
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6.3. PROPOSITION. Let X be clc™, and let P, Q be subspaces, with P compact
and Q interior to P. Then HMNQC P) is finitely genevated.

[9, Chap. VI, 3.8.] Since Q has an open neighborhood with closure in P, it is
enough to show that HX(Qc P) is finitely generated. For a proof of this last state-
ment, see [7, 3.5]; the proof there is given in Cech homology; but the translation
into cohomology offers no difficulty.

6.4. THEOREM. Let X be a locally compact, finite-dimensional space. Then
X is cle if and only if, for all i > 0, pi(x) is at most increasingly infinite for all
X € X,

For the “if” part, see [9, Chap. VI, 7.9]; for the “only if” part, see [9, Chap. VII,
2.25].

(i) We assume first that X is clc, and we have to prove that p™(x) is at most
increasingly infinite for all n and x. If n > dim X, this is clear, and we may there-
fore assume by induction that our assertion is true for n + 1; it will be sufficient to
prove the following: Let P be an open relatively compact neighborhood of x, and
let U, V, W be open neighborhoods of x such that Uc P, Vc U, WcV and
H™(UCP) = 0; then HYWC V) is finitely generated.

We consider the following diagram

H™(0) <L H™(P)
/—_—_) Tal i T a,
H(W) ———————» HXV) —-> HZ(0) —>Hn(P)

fe

H-1(T - w)— 2y Ho-1(V - V),

where the maps j;, k; are defined by inclusions, ¢, ¥ Y (resp. ¢') are parts of the
cohomology sequence of (U, U - W) (resp. (V, V -V)), a, is defined by the inclu-
sion of C%(U) in C*(U), and a, is defined in the same way as a,. The commuta-
tivity of the diagram is clear. By assumption, Im k, = 0, hence Im ¥ = 0; this im-
plies that Im ¢ = HZ(W), therefore that

Im jl = Im (]1°¢’) = Im (¢i°k2))

and our assertion follows from the fact (6.3) that Im k, is finitely generated.

(ii) Let us now assume that pn(x) is at most increasingly infinite for all n and
X. We have to prove that X is clc.

The space X is n-clc and has property (P, Q), for n> dim X. Using induction
and (6.2), we may assume that X is (n+ 1)-clc and has property (P, Q); for all
j >n

Let P be an open, relatively compact neighborhood of x, let Q be an open
neighborhood of x with closure in P such that Hn(Qc P) is finitely generated, and
let U, V be open neighborhoods of x such that VCU UcQ. Let R=Q -V, and let
W be an open neighborhood of U - U with closure in R. By (5.2), it is enough to
show that H*(VC P) is finitely generated.

Let a: H2(P) — H™(P) be induced by the inclusion of C}(P) in C*(P), and let
B=a O]QP‘ it follows from the property (P, Q), that Im g is finitely generated.
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Let r,, r, be a partition of unity of C*(P), subordinate to a covering A, A, of P
such that A, c U, A,c WU (P - U). We want to define an L-linear map y of the
module Z2(P) of cocycles in C*(P) into HE*I(W). Let z € Z™(P). Then

0 =dz = dr,z + dr,z,
whence
S(driz) cUN(WuU(P-T)) =W (k=1,2).

Since S(dryz) is closed in P, and since it is contained in W, which is compact and
interior to P, S(dryz) is also closed in X and is compact. Thus dr,z is a cocycle
of C’éﬂ(W), and we define y(z) to be the cohomology class of dr,z. By property

(P, Q)py1, the image of j”{NR is finitely generated, and we can therefore find a
finitely generated submodule A of Z™(P) which has the same image as Z2(P) under
j’{VRo y. Let A' be the submodule of H™P) defined by A, and let i* be the natural
“map of HYP) in H®(V). In order to show that the image of i* is finitely generated,
it is sufficient by the above to prove that it is contained in i*g(HYQ)) + i*A',

Let z' € H2(P), and let z be a representative cocycle. There exists a € A such
that j}ygoy(z + a) = 0, that is, such that
dr,z + drja = -dr,z - dr,a = dc (c e C(R)).
Thus

Z+a =V, +V,,

where v, = r;z + rya - c (resp. v, =r,z + r,a + ¢) is a cocycle with carrier in Q
(resp. P - V). Let v;, v; be the corresponding elements of H?(P). Then

v, € B(HZ(Q)), and since v, contains a cocycle whose carrier does not meet V, we
get X

i*(z') + i*@") = i*(v),
and therefore
i*(z") c i*(A") + I*B(H2Q)) .

We shall come back to this proof in Section 8.

7. GENERALIZED MANIFOLDS

7.1. DEFINITION. Let L be afield, n a nonnegative integev. A genevalized n-
manifold (an n-gm) over L is a locally compact, finite-dimensional space X in
which p™(x, L) = 1 and pi(x, L) = 0 (i# n) at all points.

This definition is Wilder’s [9], except that we do not require the dimension of
the space to be equal to n; this mild extension is useful in connection with the Smith
theory. Such a space, which we shall call a Wilder n-manifold, is automatically clc
by (6.4). In view of (4.2), a paracompact Wilder n-manifold over L satisfies condi-
tion (L-n), and we can apply to it the results of Section 3. We now want to relate
(3.1) to tHe duality theorem of [3, 9]. Its formulation in the noncompact case makes
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use of new homology groups h.(X, L) and h*(X, L). In our language, the former is
the inductive limit of the cohomology groups Hg(U, L) of the open relatively com-
pact subsets of X, with respect to the maps j’{}v, and it is clearly equal to H{(X, L).
The space h¥(X, L) is the projective limit of the Cech homology groups H,.(K, L) of
the compact subsets of X, with respect to the inclusion maps. The duality theorem
then reads (see [3], [9], Chap VIII, 5.16):

7.2. THEOREM. Let X be a paracompact connected ovientable n-gm. Then
h, (X, L) #h" %X, L (r > 0). Moveover, these spaces have at most countable
dimension.

In the proof, we use the following elementary facts about direct and inverse
limits: let

V= lim‘__(Vi, fij)! W= lim_.,(Wi,gij) (i = 1, 2, °")

be respectively inverse and direct limits of sequences of vector spaces over L. As-
sume that there is a pairing ¢; of V; and W; and that fjj VJ—’Vi and gjj: Wi— Wj
are the transposes of each other with respect to ¢, ¢; (1 <1i<j). These pairings
induce in the obvious way pairings ¢;; of Im f;; and Im gjj and a pairing ¢ of V and
W. Then if ¢; and ¢; are orthogonal, so is ¢o1_,. If all the ¢; are orthogonal and if
the spaces Im f; (or equivalently the spaces Im gj;) are finite-dimensional, the pair-
ing ¢ is orthogonal

Being connected, X is paracompact if and only if it is the union of an increasing
sequence of compact subspaces K; (i =1, 2, ***), and we may assume that K; is in
the interior Int Kj4+; of Kjij, and that Int K; is connected (i =1, 2, +--).

Since HZ(Int K;CInt K;,1, L) is finite-dimensional by (6.2) and (6.4), h (X, L)
has at most countable dimension. Analogously, it follows from (6.3), or more pre-
cisely from its homological counterpart [9, Chap. VI, 7.9], that h*(X, L) has at
most countable dimension.

Let us now define h:(X, L) as the projective limit of the cohomology spaces
H¥(K, L) of the compact subspaces of X, with respect to the maps i*., We have here

hI(X, L) = lim_ HY(K;, L) = lim_ H*(Int K;, L);

and since H*(K;CcKj4, L) is finite-dimensional by (6.3), hj(X, L) can be considered
as a projective limit of finite-dimensional vector spaces and hence has at most
countable dimension. Now H*(K;, L) and H.(K;, L) are paired in the standard way;
the pairing commutes with the injection maps, and by our initial remark, it is
orthogonal. Hence, by the same remark and the above, we have

h(X L) £ h"(X, L),

and (7.2) will follow if we show the existence of an orthogonal pairing of hR-¥(X, L)
with H(X, L). At least in the case where the Int K; are paracompact, thls follows
by the prev1ous argument from (3.1), because the latter implies that

H”"*(Int K;, L) £ Hom (H (Int K;, L), L).

It also follows then that H*(X, L) and hi(X, L) are isomorphic if one of them is
finite-dimensional. It is not so otherwise, because hj(X, L) has countable dimen-
sion, whereas H* (X, L), being dual to an infinite-dimensional space, has an uncount-
able base,
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In order to derive (3.1) from (7.2) in the case of an orientable n-gm, one should
know a priori that H¥*(X, L) and h}(X, L) are isomorphic if one of them is finite-
dimensional. We do not know whether this can be proved directly, perhaps more
generally for a locally compact, paracompact and clc space.

7.3. By (4.2) and Section 6, a paracompact n-gm can also be defined as a space
which is clc and satisfies the condition (L.-n). Both definitions can be formulated
for an arbitrary principal ideal ring (by means of (4.3), in one case); but we do not
know whether they are equivalent, or even whether one implies the other when L is
not a field, because, seeing no reason why C%(X, L) should be projective, we cannot
assert that H, (C (X L)) and HC(X L) are related by the universal coefficient for-
mula. In the same connection, we may ask the following question: if X satisfies
condition (Z-n) (where Z is the ring of integers), and is clc over Z, connected and
orientable, does one have, as in the case of ordinary manifolds, an exact sequence

0—Ext(H (X, 2), Z) —H*"4(X, Z) - Hom (H (X, 2), Z) —07?

7.4. Smith manifolds. In [8], Smith considers a space X (we shall call it a Smith
n-manifold) with the following properties:

(i) X is locally compact, finite-dimensional and clc over L.

(ii) Property P,: Each x € X hes an open neighborhood U such that (2) given
y € U and an open neighborhood V of y in U, there is an open neighborhood W of y
in V such that

H.(WCV,L)=0 (i#+n), HXWCV,L)=L;

(b) for each open V in U, H2(VCU, L)+ 0.

(iif) Property Q: Given x and an open U containing x, there exists an open V
with x € VC U such that, given y € V and an open neighborhood U' of y contained
in V, there exists an open neighborhood V' of y in U' such that the map of relative
cohomology modules H¥(X - V', X - V, L)—H*(X - U', X - U, L) induced by the
inclusion (X - U', X - U)c (X - V', X - V) has zero image.

Actually, Smith considers this only when L is the field of integers modulo a
prime p, and X is compact and also locally paracompact; and he formulates his con-
ditions in homology. The extension of it mentioned here has been studied by Yang
[11], who expresses it in Cech homology with a compact abelian group of coefficients;
but there is of course no difficulty in going over to cohomology. The property (iia)
means that p(x, L) = 1, pi(x, L) = 0 (i # n); therefore, by (6.4), the condition clc is
redundant, and X is a Wilder n-manifold. In view of (iia), (iib) clearly implies that
x has a connected neighborhood U such that H2(U, L) contains a nonzero element
which belongs to H2(Vc U, L) for each open V in U. Thus (iib) implies local
orientability (see 3.4). Yang has shown [11, Appendix] that (iii) follows from the
other conditions, so that the notions of a Smith n-manifold and of a locally orientable
Wilder n-manifold are equivalent. In [11], Corollary 3.3 of the present paper is
proved directly, for a Smith n-manifold, for any principal ideal ring L and any open
subspace U. As a consequence, if a proper closed subset of a connected Smith n-
manifold is a Wilder m-manifold, then m < n; in fact, for any boundary point x of F
and any connected neighborhood U of x in X, we have HL(FNU, L) = 0 for j > n,
and therefore the jth local Betti number of F around x is zero for all j > n. o
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8. A MAYER-VIETORIS SEQUENCE IN &COHOMOLOGY

The map y in the proof of (6.4ii) also defines a map y* of H™P) in HIZTL(W),
leading to an exact sequence of the Mayer-Vietoris type, which we shall now discuss
briefly.

Let & be a family of closed sets in X, satisfying the usual conditions for $-
cohomology [4b, Exp. XVII]; and let A be a fundamental grating over L for X, (for
example, let A = C¥*(X, L)), and let Ag be the subgrating of elements in A with car-
riers in &. Then the &-cohomology group Hg(X, L) of X with coefficients in L is
by definition H*(Ag. If Y is an open subspace of X, and @' is the set of elements
of & contained'in Y, then H*(Ag) = H§i(Y, L), and the inclusion of Ay in Ag

defines a homomorphism of Hgl(Y, L) in HZ{,(X, L); this homomorphism generalizes
j@x, and it will be denoted by the same symbol.

Let now X be the union of two open subspaces X,, X,, and let &,, ¢,, ®,, be the
famihrr1 of elemenger}n & contained in X,, X,, X, NX,, respectively. A map
y*: Hp(X, L) »Hg (X, NX,, L) is defined in the following way: let z' ¢ HXX, L)

12
and z be a representative cocycle. Consider a decomposition z = z, + z, of z with
S(z;) c®; (i =1, 2); using a partition of unity as in (6.4ii), one sees that there is al-
ways at least one such decomposition. Then dz, + dz, = 0, hence S(dz,) cX;N X,,

and y*(z') is by definition the class of dz, in H‘%E(Xl NX,, L). Itis a routine exer-

cise to verify that y*(2') does not change if we use another decomposition of z, or
another cocycle of z', and that the following sequence is exact:

j* K* +1
—Hg (X,NX,, L) > Hgl(xl, L) + ng(xz, L) = Hg(X, L) — Hg. (X,NX,, L)—,

where
@ = i x,® - i0,x,®  (U=X,0X, xe¢ Hgmm, L)),
K+ %) = 0%, %) + 0%, x (%) (x5 e HE (X L), 1= 1, 2).

If X=Y,UY,, with Y; open and containing Xj, one obtains in the obvious way a map
of the Mayer-Vietoris sequence of (X, X,, X,) into that of (X, Y,, Y,). When & is

. the family of compact subspaces, we get the Mayer-Vietoris sequence for cohomol-
ogy with compact carriers used in (6.2).

We now use the notations of (6.4ii) and take for & the family of all closed sets on
P. Then the elements of & with carriers in Q (resp. W, R) are precisely the com-
pact subsets of Q (resp. W, R) and we have a commutative diagram

K
H2 (W) Iwr | #™'(®) ,
y\’i" V
H™(P)

[

HY(Q) + Hy(P - V)
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where y¥ is the map of the Mayer-Vietoris sequence of (P, U, WU (P - 7)), and ¥
is the family of elements of & contained in P - V. Then (6.4ii) follows from the
facts that Im jiyg and k*(H2(Q)) = B(H2(Q)) are finitely generated and that

i*I* (Hy (P - V) = 0.

In this proof, we assume tacitly that P is paracompact, since the elements of a
family & are paracompact; but in fact this condition does not play any role here if
we take A = C*(P, L); in any case, the first version of the proof did not require that
assumption.
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