THE SETS OF LUSIN POINTS OF ANALYTIC FUNCTIONS

George Piranian and Allen Shields

I. INTRODUCTION

Let the function f be holomorphic in the unit disk D. A point el on the unit
circle C is then called a Lusin point of f provided f maps each circular disk having
eif as a boundary point and lying in D onto a Riemann domain of infinite area. By
using Taylor series with Fabry gaps, Lohwater and Piranian have shown [2] that a
function can be continuous on the closure of D and yet possess a Lusin point at each
point e'f. By means of the direct construction of an appropriate Riemann surface,
Jenkins has proved [1] that a function can be bounded in D, possess a radial limit
of modulus 1 on almost every radius of D, and have almost all points of C as Lusin
points. It is highly plausible that Jenkins’ beautiful example actually has all points
of C as Lusin points; but the proof of this seems to be difficult.

In the present paper we describe a new bounded function (see Sections 2 to 6)
whose radial limit has modulus 1 almost everywhere and for which every point eif
is a Lusin point. In Section 7 we solve the problem of characterizing the sets E on
C for which there exists a function f whose set of Lusin points is precisely the set
E. In Section 8 we consider the areas of the images of subregions of D which are
more general than circular disks.

2. THE EXTENSION OF JENKIN’S THEOREM

THEOREM 1. There exists a function f, holomorphic and bounded in D, with
| chirfnr-ﬂ f(reib)| = 1 for almost all 9, and such that each point €if is a Lusin point
o

This theorem will be proved by means of an example of the form f = lim fj,,

where f =113 .1 g, and

(1) gm(z) = exp in aZ+z)/(z-2,,) (m=1,2,-.).
In (1), the a; are certain positive constants with the property that

2) % a_, <27™,

and the z,,) are points on C.

That f is holomorphic in D follows from condition (2) and the relation
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f(z) = exp 2 a1 Z+2,,)/(z-2,).

m,k

The inequality |f| < 1 follows from the fact that the real part of (z + z,,)/(z - Z K
is negative throughout D, for each z,,x. To see that the radial limit of f had modulus
1 almost everywhere, it is sufficient to write £ in the form

T 2+ els
f(z) = exp J 7 ois du(s);

since u(s) is a pure jump function (with a saltus a,, at the point s, if
Zyk = €Xp is,,;), the derivative p'(s) vanishes for almost all s, and therefore the
real part of log f(z) has the radial limit 0, almost everywhere.

3. OUTLINE OF THE CONSTRUCTION

It remains to choose the constants a,,;c and z,,, in such a way that each point
of C is a Lusin point of f. We begin with certain preliminary considerations con-
cerning the maps of disks which are internally tangent to C at points z .

For a point t on C and a positive constant r (0 < r < 1), let D(r, t) denote the
circular disk of radius r which is internally tangent to C at t. The function

z*(z) = a(z + t)/(z - t)
maps the disk D(r, t) onto the half-plane %iz* < a(l - r™), and therefore the func-
tion Z(z) = exp z*(z) maps D(r, t) onto a Riemann domain which covers the
punctured disk
0< |Z|<expa(l-r

infinitely often; clearly; the area of this Riemann domain is infinite.

More generally, for each fixed pair of indices n and k, suppose that the point
Zn is not a limit point of the set

{zan} (m=1,2,-,m h=1,2,..).

(This is a condition which will be satisfied by the point set {zmk} of our construc-
tion.) Let '

Wi (2) = exp a, (z+2,)/(z-2z,),
and let the function W, be defined by the formula f = w_, W Then
1 1 ]
lfnl > IWnk‘”nkI - |Wnk Wnk.l'

By (1), the function W, is holomorphic at z,, and |W_,(z ;)| = 1; therefore the
inequalities

|Wad > 172, [Wy| < Ay <e
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are satisfied throughout some neighborhood of zjy. Also, |whk(z)] <1 in D, and

[ 1wiao =

D(l‘,znk)

when 0 <r < 1. It follows that

Jj |fiPdo == (0<r<1);

D(r,znk)

that is, z,) is a Lusin point of f,. In order to ensure that z,x is a Lusin point of
the function f as well, it will be sufficient to choose the constants a .., and

z,n, (m > n) in such a way that the ratio f'/f}, is bounded away from 0, throughout
the disk D(1/2, z,i). This detail will receive our attention in Sections 5 and 6.

Next we describe a device which will ensure that every point in C - {z,,,} isa
Lusin point of f. For the sake of a later theorem, we replace the consideration of
disks tangent to C by the consideration of regions whose boundaries have contact of
order lower than 1 with C.

Let the finite region R be bounded by a curve 6 = +A(1 - r) (0 <r < 1), where
the monotonic function A is subject to the two restrictions that

AX)/X > o, AX)/x12 > 0

as x> 0. The first condition is equivalent to this, that the boundary of R possesses
a tangent at z = 1; the second condition makes the region R so narrow near 'z =1
that, for every sufficiently small p, the disk D(p, 1) contains the part of R which
lies outside of the circle |z| =1 - p. By R(8) we denote the image of R under the
rotation of the z-plane through an angle 6 about the origin.

With each pair of indices m and k we associate a circular disk Dk of center
Z = Zmk(l - 2a) and radius amk The constants z,,;c and a, i will be chosen in
such a manner that no two disks D,k overlap, that for each index m and each point
eif in C - {z,;} the region R(#) contains at least one of the disks D,,), and that
the function f maps each of the disks D,,)c onto a Riemann domain whose area ex-
ceeds a certain positive universal constant. Clearly, each point in C = {zmk} will
then be a Lusin point of the function {.-

4. THE FIRST ROUND

For m = 1, the index k takes on only a finite number of values. The points zjj
are evenly spaced on C, in counterclockwise order; and the constants a;) are all
equal. The common value a = aj; is chosen small enough so that 27a/A(a) < 1/2;
and the number of points z,, is the integral part of the number 27/x(a). The angu-
lar distance between adjacent points z;; is then of the order of magnitude A(a); that
is, it has the value A(a) (1 + &), where € >0 as a>0. And since a = o(A(a)) and
the angular measure of the intersection of the region R with the circle |z|=1-a
is 2a(a), it follows that if the constant a is small enough, each region R(9) contains
one of the disks D;,. Also,

Ta-= ['%7-;-')] a <1/2.



18 GEORGE PIRANIAN and ALLEN SHIELDS

To obtain an estimate of the value of |f'1 | in the disks D), we write fj in the
form

f(2) = -2f,(@)a T z,(z - z,3) 2.
Now
log |1, ()| = %a X (z+2z,)/(z-2,).

In the disk Djp, the term of index h under the last summation sign has modulus less
than 2a~!. Since

1-r2 ) 1-re
1+r2-2rcosf (1-r)+4r sinz2g/2’

the real part of the kth term under the summation sign, for z in D} and kz h, is
not greater than A, 672, where A, is a universal constant and 6 is the angular dis-
tance between z;y, and z,. It follows that throughout D, an inequality of the form

|£.(z)] > exp {—2 - 2a2A, (Ma)) "2 § p'z} = exp {-2 + o(1)}
1

is satisfied.

To complete the task of obtaining an estimate of |f'1| in the disk D;j, we need
an estimate of the quantity |aZ z15(z - zlk)'2| . For h# k, an inequality of the form

|z - 213 | ™% < Ajlarg 24,/23)72

holds, and therefore it is obvious that

E Z]_k(z - Zlk)-z < A3 (A(a))-z.
k+#h

On the other hand,
|210( - 210) 72| > Aga™?

in Dy, and from the relation (Ma))™? = o(a™) it follows that
a X z;,(z-2z)° % > Aga2,

throughout Dj};. We conclude that
(3) |£1(z)| > Aga™?

in D1n. And we note that since the area of D, is a?n/4, the function f;, maps D,
onto a Riemann domain of area greater than AZn/4.
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5. THE SECOND ROUND

We cover the open set C - {z;} with closed intervals Ly (G=1,2, -«-) which
are disjoint (except for possible common end points) and whlch have the property
that each lies at a positive distance d;; from the set {z1x}. For each index j we
choose a number c,; which will serve as the common value of the constants a,x
associated with the points z i in Ip;. The interval Ip; (of length |Ip;|) is divided
into IIZ_] |/x (c2j)] equal sublnterva.ls, and the m1dpo1nt of each of these subintervals
serves as one of the points zz,. Each of the values c;; is chosen small enough so
that the following three conditions are satisfied.

First, Zayi < 1/4; this requ1rement can be met by choosing each C2j small
enough so that 21rcz3/>\(czj) < 272-3,

Second, throughout each of the disks D(1/2, z,;) and D} the inequality
|[£]2> 2= 1]
must hold. That this is possible follows from the relations

fz(z)

f1(z) g,(2),

' £ .
£}(z) gz(z){1 +T%}

Zaorzok(z - 22) 2
Zayz(z - 21072 J°

1l

£5(2)

£1(2) g;;(z){l N

For since each of the intervals Ip; lies at a positive distance from the union of the
disks D(1/2, z1x) and D)y, the quantlty g2(z) = 1 can be made arbitrarily small
throughout these disks, by choosing each constant C2; small enough; and the same
applies to the fraction in the braces.

Third, the function f, must map each disk D;) onto a Riemann domain whose
area is greater than the universal constant A22712 (see the end of Section 4).
show that this is possible, we note that, in each sector of D which is bounded by an
arc Iz; and the two corresponding radii, the relation

lim Ifl(reiﬂ) | =
r->1
holds uniformly and the quantity f}(z) is bounded. Since

d -
|—(E{exp Coy Z (Z + sz)/(z - ZZk)}i > A6 Czi

zyk€l21

(compare the inequality (3) in Section 4), the inequality

d -
I_d-z{fl (Z) exp ch E (Z + ZZk)/(z - sz)}l > A7 Cz{
z2k€I21

can be made to hold throughout the disks Dk associated with I,;, for any A less
than Ag, simply by choosing c,; sufficiently small. Once c,; is chosen, the con-
stant c,, can be taken small enough so that the contributions to f(z) and to f'(z)
which come from the various points z,, in I,; and I,, do not cancel each other

1
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beyond a tolerable degree, in any of the relevant disks. More generally, the con-
stants c,: (j =1, 2, ---) can be chosen in such a way that f, maps each of the disks
Dy and D,, onto a Riemann domain of area greater than Az2-1/2

6. CONCLUSION OF THE PROOF

The rest is easy. Once the constants z,,x and a1 have been chosen for
m=1,2,--,n-1, we cover the open set C - {zpx} (m=1,2, .-, n-1;
k=1, 2, :--) with closed arcs Inj. For each j, we choose c,j, then divide I,; into
[IInd / A(cnj)] equal subintervals, choose the midpoint of each subinterval as one of
the points z,), and associate with it the constant a,; equal to c,; With the proper
choice of the constants Cnjs the inequality (2) is satisfied. Also, if the Cpj are small
enough, the condition

If;llz > 2-(l—l/n) If;—nlz

is satisfied throughout each of the disks D(1/2, z,,) and D, (m=1,2, ---, n - 1);
and the image under f of each of the disks D, has area greater than A22-Y2,

Since f] > {' uniformly in every closed subset of D, it follows that { maps every
disk D(1/2, z,) onto a Riemann domain of infinite area, and every disk D, onto a
Riemann domain of area at least A22~!, This completes the proof.

7. THE SET OF LUSIN POINTS OF A HOLOMORPHIC FUNCTION

To determine the structure of the set of Lusin points of a holomorphic function f,
we consider a disk R(r, 6, p), of fixed radius p {p < 1) and movable center
reif (0 <r <1 - p), and we denote by A(r, 6, p) the area of the Riemann domain
onto which f maps this disk.

We assert that the quantity

A, p) = lim Af(r, 6, p)
r>1l-p

exists, for each 4, either as a finite number or as infinity. To see this, it is suffi-
cient to note that the area of the image of the intersection of R(r, 6, p) with the disk
|z| <1 - p is a continuous function of r (r < 1 - p; 6 fixed), while the area of the
image of the remainder of R(r, 6, p) is a nondecreasing function of r.

Since the function A(r, 8, p) is continuous for 0 <4< 27 and 0<r<1-p (p
fixed), the set E(p) of values 6 for which A(8, p) == is of type Gg. Clearly the
set of Lusin points of f is the intersection of the sets E(p) (p = 1/2, 1/3, --+), and it
is therefore also of type Gg. By means of a few slight modifications in the proof of
Theorem 1, we shall show that this result is in a certain sense the best possible.

THEOREM 2. In orvder that a set E on C be the set of Lusin points of some
Junction holomovrphic in D, it is necessary and sufficient that E be of type Gg.

The necessity of the condition has already been established. To show the suffi-
ciency, we suppose that E = n G, mn=1,2, ...), where each set G, is open, and
where G, D G, ;.

The first modification which we introduce into the proof of Theorem 1 is this,
that the set of intervals I, i=1,2, ) is made to cover not the set
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C-{zZmk} (m=1,2, ..., n- 1), but only the open intersection of this set with the
open set Gp. At each point of the complement F,, of G, we establish a tangent
circular disk of radius 1/2. Like the disks D(1/2, z_,,), the circular disks just
established must be protected, at all later stages, from excessive disturbances of the
derivative f;,: but while in the one case we had to take care to keep the ratio f'/f!
bounded away from 0, the new protected region requires a finite upper bound on the
ratio f'/fl,. That this finite bound can be obtained follows from the fact that each
interval I,; (m > n) lies at a positive distance from the set F;.

Our second modification is designed to meet the requirement that every point of
the set {zyx} must be a point of the set E. To this end, we increase to [47/A(cy;)]
the number of subintervals into which an interval I,j is divided, and we examine the
subintervals In;1, Injz -+, Injp (assumed to lie in I,; in the order of increasing in-
dices p) for points o E

If I,;; contains points of E, we choose any one of them to serve as one of the
base pomts Znk if Inji contams no points of E, then no points z,)x are needed in
Inj1, and therefore we pass over this interval. Slmllar treatment is accorded to
Ihj2, Inj3, =+, with this proviso: if at some stage no base point can be chosen which
does not lie at a distance greater than Xc,;)/2 from any of the base points previously
chosen, then no point shall be chosen at that stage. A rule of this sort is necessary
in order that the argument which leads to the inequality (3) should remain valid. We
also rule that the common endpoint of two adjacent intervals I,; and I,; shall be
considered as belonging only to that interval whose second index is larger. This rule
ensures that each interval I,; lies at a positive distance from the set of points z,,)
which have been chosen prior to the treatment of the interval Ipj.

With these provisions in force, the discussion of Sections 2 to 6 can be carried
through, mutatis mutandis, to prove Theorem 2.

8. MORE GENERAL BOUNDARY DOMAINS

Our proof of Theorem 2 supplies each point eif of the set C - E with a “pro-
tected disk” of radius 1/2 whose image under f is a Riemann domain of finite area.
There is no difficulty in replacing the protected disk by a more general protected
region R*(g), provided the boundary of R*(9) is interior to D except for the point
eif, In other words, the protected regions can have contact of arbitrarily hlgh
order with the unit c1rc1e C.

Similarly, the disks which are mapped onto Riemann domains of infinite area can
be replaced by regions with contact of arbitrarily low order with C. The only reser-
vation to this statement concerns the disks tangent at the points z_, . The following
theorem gives a detailed description of the state of affairs.

THEOREM 3. Let E be a set of type Gg on C; let R* and R be lwo regions in
D, with boundaries which lie in D except for one point of tangency at z = 1; and let
R*(8) and R(9) denote the images of R* and R, undev a votation through an angle 6
about the ovigin. Then there exists a function £ with the following properties:

i) £ is holomorphic and bounded in D, and on almost all vadii of D the radial
limit of £ has modulus 1;

ii) if eV lies in C - E, the function £ maps the region R*(8) onto a Riemann
domain of finite area;

iii) for all €% in E, except possibly a denume'rable set, f maps the region R(9)
onto a Riemann domain of infinite area; and if €9 belongs to the exceptional set,
then €0 is a Lusin point of f.
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We omit the proof of this theorem, since it is implicit in the proof of Theorems
1 and 2. The statement in part (iii), concerning the denumerable exceptional set in
E, may well be superfluous. But it seems that in order to eliminate the statement,
it would be necessary to replace the function u(s) (see Section 2) in the proof by a
continuous function. Such a change would undoubtedly make the computations
enormously more difficult.
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