A NOTE ON SCHEEFFER'S THEOREM

F. Bagemihl

This note deals exclusively with subsets of C, the linear continuum. We shall make use of some facts concerning Baire category, which can be found in [1, §19].

If S is a set and t is a real number, denote by S[t] the set obtained from S by translating it by the amount t:

$$S[t] = \{s + t : s \in S\}.$$

A theorem due to Scheeffer [2, p. 291] (quoted in [3, p. 55] and [4, p. 52]) can be expressed as follows:

If E is at most enumerable, and N is nowhere dense, then there exists an everywhere dense set D such that, for every $d \in D$, $E[d] \cap N$ is empty.

Our purpose is to show that, in this result, the hypothesis can be weakened and the conclusion strengthened:

THEOREM. If E is at most enumerable, and K is of first category, then there exists a residual set R such that, for every $r \in R$, $E[r] \cap K$ is empty.

Proof. Let the elements of E be

$$e_0, e_1, \dots, e_n, \dots (n < \nu \le \omega).$$

For every $n < \nu$, let R_n be the set of all real numbers r such that $e_n + r \notin K$; then

$$R_n = (C - K)[-e_n],$$

which is a residual set, because K is of first category. Let

$$\mathbf{R} = \bigcap_{\mathbf{n} < \bar{\nu}} \; \mathbf{R}_{\mathbf{n}}.$$

Then R is a residual set and, for every $r \in R$, $E[r] \cap K$ is empty.

An analogous argument, involving measure instead of category, yields the following result:

If E is at most enumerable, and Z is of measure zero, then there exists a set T such that C - T is of measure zero and, for every $t \in T$, $E[t] \cap Z$ is empty.

Received by the editors November 1, 1954.

F. BAGEMIHL

REFERENCES

- 1. H. Hahn, Reelle Funktionen (Punktfunktionen), Leipzig, 1932.
- 2. L. Scheeffer, Zur Theorie der stetigen Funktionen einer reellen Veränderlichen, Acta Math. 5 (1884), 279-296.
- 3. W. Sierpiński, General topology, Toronto, 1952.
- 4. W. H. Young and G. C. Young, The theory of sets of points, Cambridge, 1906.

Institute for Advanced Study