ON THE STRUCTURE OF RECURRENCE RELATIONS II
Imanuel Marx

A previous note [1]was concerned with necessary conditions for the existence of
recurrence relations between contiguous solutions of an equation

(1) d/dZ [P(Z)dY/dZ]|+ Q(Z, t)Y = 0,

for the special case Qz, t) = R(Z)+ tS(Z). For each m, let qulx) and Yfﬁ) con-
stitute a fundamental system of solutions of (1) corresponding to t = t,. Itwas
proved in [1] that a pair of first-order differential recurrence relations, valid both
for

Yy =Y, v v andfor ¥ =Y, v  -v®
n n n- n-1 n n n

1 -1 n-1’

can always be put in the form
(2) P(Z) A,(Z)dY,/dZ + Bn(Z) Y. =Y
3) P(Z) An(Z) dY, _,/dZ + Cn(Z) Y, =4, Y.

(As in [1], capital letters denote functions of Z, and lower-case letters denote quanti-
ties independent of Z.) Relations of the form (2) and (3) which are valid for two funda-
mental systems will be called general recurrence velations, and relations similar to
(2) and (3) which are valid for a single pair of solutions Y., Y, _;—but for no other
pair linearly independent of these solutions—will be called particular recurrence
rvelations.

In this note the problem of sufficiency will be solved, for quite general Q(Z,t).
It will be shown that the solutions of (1) corresponding to t=1t, and to t=t,
always satisfy a pair of general recurrence relations (2), (3), with coefficients that
are unique for a fixed normalization of the solutions; that in addition, corresponding
to each pair of particular solutions Y,, Y, _;, there exists a family of particular
recurrence relations depending on two arbitrary functions of Z; and that these ex-
haust all possibilities.

Here—as also in [1]—the emphasis has been placed on a pair of contiguous solu-
tions Y,, Y,,_; only because relations among these are in general of greatest in-
terest. It will be easy to see that all results apply equally well to the solutions cor-
responding to an arbitrary pair t', t" of parameter values in (1), or indeed (as was
suggested by G. Y. Rainich) to the solutions of any pair of second-order linear dif-
ferential equations after a suitable transformation (e.g., if p= 1 in both equations).

(N

m(’

2
For the present, two fixed sequences {Y {Y(m) } of fundamental systems of

solutions are assumed given, with each solution normalized in some appropriate
manner. As is well known, the Wronskian of the fundamental system has for each
m the value
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(4) w,, = Y ay®/az — a¥ll/azv® - 1/n_p(2).

with h, depending only on m. If the solutions for t=1t, and t=1t,_; possess a
pair (2) and (3) of general recurrence relations, an identity relating A, and d, to
the Wronskians (4) for m=n and m=n - 1 is easily calculated:

(5) P Ay (V) avy)/dz - avl) /az v )= vy - v, P,

©  pa v, ax®az - ax® ez v ]- a, [x, 30 0¥ )

so that
(7) dn = - ‘Nn—l/‘yn= - hn/hn-l'
1
Write equation (2), once with Y_= Yfl ), Y, ;= Yg_)l, and a second time with
2 2
Y = Yi ), Y ;= Yfa-)l’ and eliminate the right-hand sides from these two equations

to obtain an identity relating B, to A. From equation (3), obtain similarly an iden-
tity relating C, to A;:

8) PA, [Yr(ll_)l av?az - av'V/az Yff_)l] +B_ [Yfll_)l v _y(l) y(2) J: 0,

@ P A,{[Y(j) av{?, /az - av'l),/az Yff)] s C, [Yfll) ¥y )= o.

It is now quite elementary to describe the structure of general recurrence relations:

THEOREM 1. For every fixed paiv of sequences Yfrll), Yirzl) of fundamental sys-

tems of solutions of the second-ovder linear differential equation (1), theve exisits a
unique paiv of general vecurrvence relations (2) and (3).

Proof: First it is necessary to show that the right-hand members of (5) and (6)
cannot be identically zero. Suppose Y. Y2, - ¥ ¥(¥ _ 0 for an z. Re-

arrangement and differentiation give the identity

v av? saz - avV saz ¥ v av{P/az - ayVjaz )

) .

or, by virtue of (4), [Y(Z) ]?'/[Y(Z)]2= h /h , so that Y(Z) is a constant multiple
n-1 n n n-1 n-1

of Y1(12)' Together with the originél identity in the guise YSXZ) /Yflz_)1 = stl)/Yg-)p

this result is a contradiction of the hypothesis that the functions of index n and those
of index n - 1 are solutions of distinct equations of the type (1).

The existence of recurrence relations now follows from the fact that the formulas
(4), (7), and
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(10) A =h_ [Yfll) {8 -y Yff)],
(11) B_=h_ P [Yfll_)l av{¥/az - avV/az Yff_)l],,
(12) C_=-h_ P[YS’def}l /az. - ay'" /az Yff)],

reduce (2) and (3) to identities. Formula (10) is obtained from (4) and (5), formula
(11) from (4), (5), and (8), and formula (12) from (4), (5), and (9). If the coefficients
were not unique, the difference of two distinct relations (2) would furnish a first-
order differential equation having two linearly independent solutions, and similarly
for (3).

More generally, the recurrence relations between Yirll) and Yl(ll) or Yirzl) and
ijz)’ for arbitrary m and n, may now be written in a more symmetrical form. With
the notation

u_ =¥ ¥y v@ vy -y ay(?/az - avl)/az v(2),

mn

and with W, and W, as in (4) and (7), one may rewrite relations analogous to (2)
and (3) in the form

Upmnd¥,,/dZ+V_ Y =W_Y,
UmdY, /dZ+V Y =W/ Ym;
Consider next a pair of particular solutions of equation (1), of the form
U, = axMs p¥®, u_ = avM) vl
Any pair of particular solutions corresponding to t=1t,, t=t,_;, respectively, can
be put in this form by a suitable choice of the fundamental systems of solutions. Let
(13) P(Z) E,(Z)dU,/dZ + F,(Z) U, = U, _,,
(14) P(Z2) G,(Z)dU,_,/4Z + H,(Z) U,_, = d, U,

be a pair of particular recurrence relations for U,, U,_;. The structure of the
coefficients is easily deduced:

THEOREM 2. If (13), (14) is a pair of particular recurvence velations for U,,
U, .1, then theve exist functions K(Z) and L.(Z), not both identically zevo, such that

(15) E,=A,+KU,, F, =B, - KPdU,/dZ,
(16) Gp=Ap+ LU, ), H, = C, - LPdU,,_;/dZ.

Conversely, for every arbitvary paiv of functions K(Z) and L(Z), not both
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identically zevo, the equations (13) and (14), with coefficients as in (15) and (16), con-
stitute a paiv of particular recurrence velations for U, and Uy _;.

Proof: Suppose that (13) and (14) hold. The recurrence relations (2) and (3) are
clearly valid for Y, = U,, Yn_1 = U,_1. Subtract (2) with this choice of functions
from (13): the resulting equation

P(E, - A )dU,/dZ + (F, - B, )U_ =0
implies the existence of a function K(Z) such that }
-A =KU, F - B,=-KPdU_/dZ,

and (15) is proved. Similarly (16) is proved from equations (3) and (14), and K and
L cannot both be zero since (13) and (14) are to hold for one pair of functions only.
To prove the converse, note that if the coefficients (15) and (16) are substituted into
the relations (13) and (14), these relations take the forms (2) and (3), respectively,
with Y =U_,, Y, _; =U_ _; —independently of K and L.

In the spec1al case where E = G, it is easy to see that

E_=M(Z) U, F_ =-MPdU_/dZU G,=-MPU_dU__,/dZ,

n 1 n-1?

so that only one arbitrary function appears. If M is chosen to be constant, one has
essentially the case treated in [1], where the coefficient A, of a general recurrence
relation was proved to be of the form

(17) An— 11 (1) (1) an (1) (2) a Y() (1) aZZY(Z) (2)

n n nl’

while B, and C, were derived from A, by quadratures. As follows from Theo-
rem 1, for general recurrence relations the choice of constants is

With al1 an arbitrary constant, a22 =0, and a12 = il —h the function A in

(17) would lead to a pair of particular recurrence relations for Y( ), and s1m11ar1y
for Ygz) . If all four constants in (17) differ from zero, it is impossible to construct
recurrence relations with A, as coefficient.

An illustration is furnished by the recurrence relations for the modified Mathieu
functions of the first kind, obtained by E. T. Whittaker and given in [2] along with two
different representations of the coefficients. If Whittaker’s formulas are rewritten
in the standard form of this note the coefficient corresponding to A, is of the form

(17), with a ;é 0 and with a # -a . It is clear from Theorem 1 that these are

particular recurrence relatmns for the functions of the first kind alone. Compari-
son with equations (10) and (15) shows that

h_= -ail, K(Z) = alnl Ygl_)l + [ai2+ a.il] {2

n n-1
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(in the notations of equation (4) and Theorem 2). Removal of the term K(Z)Yfll) in
Whittaker’s coefficient corresponding to A, and appropriate changes in the co-
efficients corresponding to B, and to C,, would both simplify these coefficients
and extend the validity of the recurrence relations to the Mathieu functions of the
second kind.

For differential equations (1) for which the coefficients of a pair of general re-
currence relations (2) and (3) are known in a representation different from the
formulas (10), (11) and (12), the comparison of the two representations yields identi-
ties among the solutions. Examples of such identities among the prolate spheroidal
functions will appear in[3].
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