NORMED FIELDS OVER THE REAL
AND COMPLEX FIELDS 1)

by Leonard Tornheim

- A normed field F over a field K, where K is
contained in the complex field, is afiéld containing K

and for which there is a real valued function "y
called a norm satisfying the following conditions:

(1) yll >0ify #o,

(2) y+zl <yl + =],

G vzl < vl D=l

(4) cy| = 1le] Iyl

where y, z are in F and ¢ is in K.

We shall prove the following results:
THEOREM. Every normed field over the real

field R is either the real field R or the complexfield
C.

| COROLLARY. The complex field is the only
normed field over the complex field.

These results are not new. Closely related the-
orems have been stated or proved by Mazur, Gelfand,
Arens, Kaplansky, and Ramaswami (see bibliography).
But all of their proofs use complex variable theory.
Here, however, no use is made of the theory of func-
tions of a complex variable nor of the completion of
F. Ostrowski has proved the weaker theorem which
has equality in (3). '

LEMMA 1. It [ly| £1/2, then [[1/(1-p)] <
2" 1” wherever 1/(1 - y) exists, ' B

For, 1/(1 -y)=1+vy/(1 -y). Hence

1) Presented tothe American Mathematical Society
on September 7, 1951.
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/-yl < Il + Iyl /-yl

Thus for |ly| < 1/2, [[1/(1 -y)l <2 |1].
'LEMMA' 2. The function 1/y i5 continuous
. wherever it is defined. ‘ |
For- lll/y«- l/z” < '1
PR VLR e

Hence as ||z - y| =0, the rlght hand 51de goes to 0,
where we have used (2), Lemma 1, and the fact

that ||(z - y)/z| < ||z - yl- | 1/2].

LEMMA 3. The following functions are contin-
uous: ”x“, X +Yy, XYy. ' '

These are well know facts. The first follows
from | ||y|| - |lz]| | < ly - z||, a consequence of (2),
The proof of the second also ‘uses (2). Finally
fyz-yizi € Iyl -z =210+ (=l +lz0-20) Iy - v
which goes to 0 as || y - y1” and Ilz - 21” go to 0.

" We  shall give a direct proof of the corollary
' first in order. to illuminate the proof of the theorem.

Hence we now assume K = C, the complex field.

We shall show - that for any y in F there is a
~value of ¢ in G-for which y - ¢ does not have a recipro-
cal. - Then, since F is afield, y ~c=0and y=c is
in.C. " |

. - LEMMA 4 For. any y in F havingareciprocal
there is a value k such that " 1/(y - c)” < ll/y” for
every |c| > k for which 1/(y - c) exists. ‘
As || ~oo, [1/(y - )] = [-1/c]- [1/(1 - y/o)|

-0 by Lemma 1 since ”y/c [l Il/cl ”y [i -0,

We now assume thaty - ¢ has a reciprocal for
every c in C. This will lead to a contradiction..



‘Now "c[
absolute value:
"I [[ . Hence !
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is a continous function of ¢ (using
to-measure distance) singe lell = |e| -
1/(y - ¢)| is a continuous function, being

a contmuous function of a continuous functlon There-

“for || 1/(y - <)

- attains a maximum value M on the

——

bounded and closed set [c| < k, where k is glven by

Le mma 4. Thi

1s value M is not attamed for lcl k

since then ||1/(y - ¢)|| < |[1/(y -0)]| < M by Lemma 4.

Let C, be the
Then Cg is clo

set of all ¢ for which Il—l/(y o) = M.
sed, bounded, and non-vacuous.

Let cg be a boundary point of Cj; such a cg éx-=
ists. There also exists a value d such that d is not in
Cobutr = [d - col < l/M Let S be the circle of ra-
dius r and center cg; i.e. ) the set of values C for

which | c - Co

OnSwe

| =r.

take the n equally spaced pomta glven

by c, t ru }v =1, ... , n) where u is the n-th root of

unlty ezq: !

Let
n

1 1

.S(n)z n Z: y=(co+ru‘;')'

v=1
If 'f(‘xy);'z xD - rn:=f]_, (x -'ruV), the logérithmic
de_rivafive is nx?-1/(x? - rD) and equals 21/(}( ruv)
Setting x =y - ¢y = z we see that - v=l \
S(n) = zn-1/(zn - rn)
=1/[z - r(zx/z)2"1].
This expression has meaning since 1/(z® - r?) '=

l | 1/(z - ruv), Hence by Lemma 2,

(5)  lm st = [1/z]} =
since ”r r/z)2 1| < r( r“ l/z“)n"
because r<1/M = ” l/z “
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Now d lies on the circle S and not in the closed
set Sn Cy,. Therefore d lies on a non-vacuous open
arc of S-Cg and hence on a closed arc S' in S-Cgp of
length 29tr /m, i.e., 1/m-th of the circumference, for
m a sufficiently large integer. Hence if mq points
are taken on S equally spaced, q of them will lie on
S'. Because S' is closed and bounded [ 1/(y - c)|
~ assumes a maximum value M'for s in §', and M' < M
since S'n C; ='¢.

"Then since q values of ¢y + ruV lie in S',

1 -
[S(ma)ll < o [aM' + (mq -q)M]
by (2) and (4). This gives '
Is(ma) M - (M - M')/m
so that ||S(mq)|| is bounded away from M for all val-
ues of q. This result is a contradicition to (5). Hence

we cannot assume that y - ¢ always has a reciprocal.
The proof of the corollary is completed.

The theorem can be proved from the corollary
by extending the norm to F(i) and then introducing a
new norm in which (4) is true for c in R(i) [Kaplansky,
4, p.400]. Instead we now prove the theorem follow-
ing the pattern of the proof of the corollary. Let Kbe
the real field R. We shall show that for any y in F
there are values of r}, r; in R for which y2 + rjy+r)
does not have:a reciprocal. Since F is a field, this
expression is 0 and y is in the complex field C.

We assume that yz‘ + r1y + r has a reciprocal
for allpairsr), ry in R, and we shall arrive at a con-
tradiction. Let G be the field R(y,i). In G the
xi1forrn ”z" is defined only for those elements ' =z
which lie in F, and thus for all elements in R{y). In
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particular if ¢ = a-+ bi is in C and c is the complex
conjugate of c, 11/(y - c) + 1/(y - Q)| = Il 2(y- a)/[{y-a)2

+ b2%]| and is defined. This expression is a continu -
ous function of a and b by Lemmas 2 and 3 and the
fact that a continuous function of a continuous function

is continuous.

LEMMA 5. The expression 11/(y - ¢) + I(y —_c-)”
is_a continuous function of c.

This follows from the discussion immediately
above and the factthata andb are continuous functions
of c.

LEMMA 6. There existsa value of k such that

”1/ -c)+1/(y -9 < IIZ/y” whenever Icl > k.,
For

Uy - )+ 1/ly -7 = 22/ = /e 4 1/3
’ 1 -y[1/c+1/c]+y2/cc

and as |c| - 00,

2y/ce|| = [1/cz|-[|2y] -0

/e +1/2|| = |1/c + 1/2]- 1] ~o0
yl1/c +1/€]]| = |1/c + 1/c]- |ly] »o0
y2/cc| = |1/ |y4] o,

so that by Lemmas 2 and 3,
| 1/(y - c) + 1/(y - ©)| —o.

This implies the lemma.
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From Lemmas 5 and 6 it follows that ||1/(y -c) +
1/(y -c) "'attains its maximum value M for c in C, and
the set Cy on which this occurs is closed and bounded .
Incidentally C,is symmetric with respect to the real

axis.

. "There exists a boundary point c, of C,> and also

a point d not in G, with r = |d - co] < ‘min (N, L 1/2)

_where L.= [ 1/(y = co)ly - Ql} ana N=f1/(y - cJf +

| 1 Ay - E()” . Let S be the circle of radius_r and center

Co- On S take the n equally spaced points given by cy+
ruv¥(v=1, ..., n), where u = e“%*®; Let

1 11[ 1 1
S = — ' ! .
0= Sy e

Letz =y - ¢4 andz =y - ¢,- Then

S(n) = 1/( z - r(r/z)""1) + 1/(z -r(c/z) 1)
- zZ+ Zg«f' mTh 1

zz(l - r™T,) + r0(zz)-n+l

where Tp =z 0 +Z-1. Now M = || Tlll. To show that
limg, lISnll =M, it is sufficient to show that the norm of
each term involving n has limit 0. First

I Tl < l=-2=+ ="

< (== + =17,
Hence [|t2T,|| < (rN)?-1 and has limit 0 since r < N.
Next, ||rén(zz)-n|| < (r2L)™ and also has limit0 since

1/2 .
< L/Z, = M.
r<I Hence lim ISull =M
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\ The rest of the proof, that on the other hand
[S(mq)] < M - (M - M')/m, is the same as that of
the last two paragraphs in the proof of the corollary
except that M' is the maximumof || 1/(y - ¢) + 1/(y -©) ||
for c in S'. The contradiction arrived at here permits
one to conclude that y2 + r;y + r, does not always
have a reciprocal and must be 0 for suitable real ry,

r, since F is a field. Thus y is in C.

- 'COROLLARY 2. The only normed division al -
gebra over the complex field is the complex field.

By a normed division algebra Q over Cis meant
a division algebra over C with a norm satisfying (1),
(2), (3), (4). Then if y is in D, R(y) is a normed
field over C. Hence R(y) = C and y is in C, by Cor-
ollary 1.

COROLLARY 3. Eyery normed division algebra
over the realfieldis either the real field, the complex
field, or the real quaternion algebra.

The proof given by Arens [1, p. 626]applies here
since we have indirectly shown that every element of
the division algebra satisfies a quadratic equation
with real coefficients.
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