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by
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Introduction. For a topological group Q, there
are two obviously different cohomology theories which
have been established in the mathematical literature,
namely, the cohomology theory of Q as a topological
space and that of Q as an abstract group [6] 4).  The
initial purpose of the present work is to study the
possible relations between these theories.

In Chapter I, for a topological group Q which
operates on a topological abelian group G, three kinds
of cohomology groups of Q over the coefficientgroup
G are introduced; namely, the cohomology groups,
the cohomology groups with empty supports, and the
reduced cohomology groups. The methods used here
are more or less analogous to those of Eilenberg and
MacLane [6]. The first kind of the cohomology groups
. of Qover G reduce to the cohomology groups of the
abstract group Q over G if Q is discrete, while the re-
d uced cohomology groups of Q over G are closelyre-
lated to those of Q as a topological space. In fact, it
is proved in Chapter II that, if Q is compact and con-
nected and G is a finite dimensional vector group on
which Qoperates simply, then the reduced cohomology
groups of Q over G are isomorphic with the Cech co-
homology groups of Q as a topological space over the
abstract group G.

In Chapter III, we define a local cochomology
theory of a local group Q over a local abeliangroup
G on which Q operates. It is proved that, if a topo-
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logical group Q has the local extension property with
respect to a topological abelian group G (see §&12),
then the reduced cohomology groups of Q over Gare
isomorphic with the local cohomology groups of the
local group Qover the local group G for the dimensions
greater than unity. As an application of this result
we have generalized the classical decomposition theo-
rem of E. Cartan [3]for compact connected Lie groups
to the category of compact connected groups with Lie
centers, (see Theorems 15.1 and 16.2).

Chapter I. Cohomology Groups of
a Topological Group.

\ Throughout the present chapter we assume that
Q is atopological group, written multiplicatively, and
G is an abelian topological group, written additively.
Further, we shall also assume that Q operates on the
left of G. By this we mean that for each x€Q and
geG there is determined an element xg€ G, subject
to the following conditions:

(i) xg is continuous in x and g simultaneously,

(ii) =x(g1t+g2) = xg1+xgy,

(iii) x;(x,g) = (x1x3)g,

(iv) 1g=g. ,

If for every x€Q and g€G we have xg = g then we say
that Q operates on G simply.

1. The Homogeneous Approach

QP*Tl will denote the (p+1)-fold product of Q
with itself; thatis, QPtl is the set of points (x,; X,
,xp) where x;€Q, i=0,.,...,p. QP*! forms a
topological group in the usual way.

For each integer p 2 O, let us consider the con-
tinuous maps F% Qp+1 =G, Such a map F will  be
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called a p-dimensional cochain of Q over G if it satis-
fies the following homogeneity condition:

(1.1) F(xxo,.,“,xxp)=xF(x0,.,.,xp).

By means of functional addition, the totality of the p-
dimensional cochains of Q over G form an additive
abelian group denoted by CP(Q,G), p = 0,1,
Throughout the paper, we shall not consider any topo-
logy in the groups of cochains or the cohomology groups.

For each FECP(Q, G) we define a continuous map
SF; QPt% g by taking 13)%”1

(1.2) (BF)xgr -+ 5 %4 1)= }:‘ (-1)'F(xg ..« ,Sc‘i,,..,po)

The following propertles of the operation &S c¢an be
easily verified:

(1.3) &OF is a (p+1)-dimensional cochain,
(1.4) &(F+F,) = O6F;+ OF,,
(1.5)  &(6F)

Hence the operator 8 will be called the coboundary"
operator and the cochain &F will be called the co-
boundary of F. The p-dimensional cochains F with
8F = O are called p-dimensional cocycles; they form
a subgroup ZP(Q, G) of CP(Q, G). If p > O, the p-dimen-
sional cochains such that F = OF' for some F' e
cP- 1(Q, ) are calledp dimensional coboundaries: they
form a subgroup BP(Q,G) of CP(Q,G). Ifp = O, wede-
fine formally B°(Q,G) = O. The property (1.5)im-
plies that BP(Q, G) is a subgroup of ZP(Q,G). The p-
dimensional cohomology group H (Q,G) of Q over G
is defined as the quotlent group

(r6)  HP(Q,G). = zP(Q.G)/ BP(Q,G).

' For each integer p'> O and: each cochain F
c® (Q,G), we shall define the support of F as follows.



14

S(F) is the subset of Q defined by the condition:

(1.7) x€Q is not contained in S(F) if and only if there
exists a neighborhood U of x in Q such thal F(xgs .. .
XI;) = O whenever x;€U for eachi=0,.,...,p.

The homogeneous condition (1.1) implies that S(F) is
either Q or the vacuous set [} It follows also {from
(1.1) that

(1.8) S(F) =0 if and only if there exists a neighbor -
hood U of the identity element 1 in Q such that F(x,
xp) O whenever x; €U for each i =0, 1,... )P -

The cochains FECP(Q,G) such that S(F) = form a
subgroup CP(Q9 G), called the grpup of p-dimensional
cochains w:,th, empty supports. LetZP(Q,G) = ZP(Q9 G)
NCP(Q,G). If p > O, we define BR(Q;, G) =6C}~ Ha,6):

if p=0, we set BJ(Q,G) = O. It follows 1mmed1ate1y
from (1.8) that§ maps CPQI(Q G) into Cp(Q, G) for

each p> O. Hence B (Q,, G) is a subgroup of ZP(Qg G)
for every p2 O. The quot,lent group |

(1.9)  HR(Q.G) = ZB(Q.G)/BR(Q.G)

will be called the p-dimensional cohomology group
with empty supports of Q over G.

For each integer p 2 O, let CE;(Q G) denote the
quotient group of CP(Q, G) over Cb(Q,G). Since the co-
boundary operator & in CP(Q, G) maps CP(Q, G) into

(Qg G), it mduces a unique coboundary operator
5 :CP(Q, G) =’ar»cgﬁj“’ (Q,G) satisfying (1.4) and (1.5).
The eﬁements of CQ(Q, G) will be called the p-dimen-
sional reduced cochains of Q over G. By the procedures .
used above, one can define the group ZP(Q, G) Q£ P-
dimensional reduced cocycles and the group B*(Qg G)
of p-dimensional reduced coboundaries. The quotient

group ,
(1. 10) HP(Q,G) = zP(Q,a)/BYQ,G)
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will be called the p-dimensional reduced cohomology
group of Q over G.

Let us denote respectively by

¢ : CP(Q,G) -+ CP(Q.q),
1: CP(Q,G) —+ cB(Q,qG)

the natural inclusion and projectionhomomorphisms.
Since both { and “Jf commute with the coboundary oper-
ator &, L and Winduce homomorphisms.

C: HP(Q,G) = HP(Q,G),
™. HP(Q,G) — HP(Q, G)

for each integer p 2 O. We are going to define aho-
momorphism +1
HE(Q,G) ~ HY'(Q.G)

for every p 2 O as follows. Let (& be an arbitrary
element of Hg(Q, G). Choose a reduced cocycle Fy €
CI,;(QSG which represents . Sincel maps CHQ,G
onto C.(Q,G), there is a cochain FECP(Q,G) with
NF = F,. Since TSF = S¥F = §F* = O, we have
5F€Zp+1(Q9 G). Hence 8F represents an element
@ of H§+1(Q, G). It is not difficult to see that  de-

pends only on &X. We define the homomorphism &*
by taking 5"'((1) = @

The'following' theorem is a special case of a -.
general theorem of Kelley and Pitcher [13].

Theorem 1.11. The sequence of groups and
homomorphisms

Ho(Q,G) % ... ¥.1P(Q,G) ¥ HP(Q,G)™
* . ptl ¥
1 (. ) By (.0 ¥ ...
is exact in the sense that the image of each homor-
phism coincides with the kernel of the following one
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2. TW&SjSecial Cases

For the first special case, let us assume that
the topological group Q is discrete. Then, for each
p 2 O, every function F: Qp+1 -G is a continuous map.
Hence our definition of the cohomology group HP(Q, G)
reduces to that of Eilenberg and Maclane [6]. In this
particular case, the topology of G has no significance.
For each p 2 O, the following assertion is immediate.

(2.1) For a discrete group Q, FECE(Q,G) if
and only if F(xg,...,xp) = O whenever x; = 1 for each
i=0,...,p.

Now, for each p 2 O, we are going to construct
a homomorphism hp: G = CP(Q, G) by taking
(2.2) (g)(XO’ cees Xp) = Xo8-
Obviously hp is an isomorphism of G into CP (Q G).
Let

cE(Q,G) = hp(G).

Then CP(Q,G) is a subgroup of CP(Q,G) andclearly
we have

(2.3) cb(Q.G) N ci(Q,G) = O.

Lemma 2.4. If Q is discrete, then CP(Q, )___
the direct sum of CP(Q GTand CP(Q, G). ‘

Proof. Let FECP(Q, ) be an arbitrary cochain.
Call g = F(1, It follows from (2, 2) and (2. 1)
that F - h (g) is in CP(Q, G). Hence Cﬁ(Q,G) is the
sum of CP(Q, G) and CP(Q,G) (2.3) implies that the
sum is dlrect Q. E,

Corollary 2.5. If Q is discrete, then the pro-

jection homomorphism T maps the subgroup CP(Q, G)
1somorph1ca11y onto C&(Q, G).

Theorem 2.6, If Qis discrete, then- we have
H_(Q,G)AG and HR(Q, G) = O for all p > O.
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Proof. It follows from (2.5) and the definition
of CP(Q;G) that CR(Q,G) AR2G. LetF, EC(Q,G) be
arbitrarily given. By (2.5), there isan F, ofCR(Q,G)
with * TE, =F,. Since |

| OBy (L 1) =F,(1)- (1) =
it follows that 5 E CD(Q,G)by (2. 1) Hence

SF, = = TFSF = 0.
This implies that ZO(Q G) C*(Q G) Since, by de-
finition, B(Q,G) = O we conclude H2(Q, G) R2G.

Now assume p> O. Let O € HP(Q_,G) be an
arbitrary element. Choose a reduced cocycle F.E
CP(Q,9 G) which represents (X. By(2.5), there is an
Fy €ECx(Q.G) with TE, =F,. By the definitionof

CP(Q, G) ‘there isa g € G such that F# =h (g) Since
© 8Fx = O, we have 'ﬂ’éF# =5 F SF* = O. This
implies SF# € CP (Q, G). If p is odd, then

p+l
SF (1,...,1) = Z (-1)ig = g.
Since SF# P+1(Q, G), we must have g = O. Hence
Fy = 'TI'F = Th (O) = O. This proves (= O for the

case thatpl.s oddp If pis even, let F' =h =1(g) Then
we have OF'(1l,...,1) = g. This implies that the co-
chain F# QSF' is in CP(Q, G) by (2.1). Hence

- §WF! = (B, - OF) =

This proves Fy STI’F' and (= O Hence Hp(Qg G) =
O for everyp> O. Q.E.D.

From Theorem 2.6 and the assertion(4. 1) given
in 84 below, we deduce the following corollary. We
denote by G* the subgroup of G consisting of those ele-
ments g of G such that xg = g for all x €Q.

Corollary 2.7. If Q is discrete, the homomor-
phism '




18
¢ : HY(Q,G) ~HP(Q,G)
is an isomorphism onto for each p 2 2. When p =1,
L* is a homomorphism onto with a kernel 1somorphlc
to the quotient group G/G*.

For the second special case, let us assume that
the topological group Q is compact and the topological
abelian group G is a finite dlmensmnal vector group
with the euclidean topology on which Q operates by
means of a representation of Q with G as the repre-

sentation space. . .
There is a Haar measure in Q with the measure of Q

being 1, [22, p.38].

Theorem 2.8. If Qis compact and G is a finite
dimensional vector group, then we have HP(Q,G)=0O
for all p > O.

Proof. Let (X denote an arbitrary element of
HP(Q,G), p > O. Choose a cocycle FEZP(Q, G) which
represents &, Then F is a continuous map of Qp+
into G satisfying (1.1). Define a continuous map @ :
QP — G by taking for each point (xg,..., Xpnl)er

Q (xgs e Xp-l) = QF(X, Xgs o o0 ,xp_l).dx.,

Then it follows from (1.1) and the left invariancé of
the Haar measure that for each yEQ we have

Hyxgs -« o yxp-1) =SF(x, XYgs -« o » YXp-1)dx

Q
= SF(yx, YXgs o :.yxp_l)dx= SyF(x, XO0s o0 ,xp_l)dx
Q Q
= ySF(x, Xgs o oo ,xp,_l)dxt y@ (xgs ..« Xp-—l)"

Q
Hence ® satisfies (1.1), thatis to say, ®is a (p-1)-
cochain.
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Since F is a cocycle, we deduce from (1. 2) that, for
each x€EQ and (xo, cos ,xpéQp 1, we have

OF (%, %g1+ -y %p) = Flags + o1 %) - ,8( 1)'F(x, %o . -

:’E’i,,.,,xp) = O.
Hence we have p
F(X0)°p ° 9 xp) = iZ__-o-l)lF(x, X 2 0 00 ”}?1’ ’xp)
N i
= Sizgo( 1) F(x, x> O Ry, ,xp)dx
Q
p A\
= Z(-l)l SF(x, Xos »Xis oo ,xp)dx
1=0 Q
p ~ .
= .ZQ(XO,.oo,Xi:ooe,xp) = SQ(XO,t.'o,XP).
i=o

This proves that F is a coboundary. Hence =Q.
Q.E.D.

Corollary 2. 9. Under the assumptions of Theo-
rem 2.8, thehomomorphism & Hﬁ(Q G)—*HP"“ (Q,G)
is an isomorphism onto for each p > 1. When p =0,
STIS a homomorphism onto with a kernel’ 1somor;i'nc
to G*.

3. The non-Homogeneous Approach

The cochains in 81 may be called homogeneous
because of the homogeneity tondition (1.1). The vari-
ous cohomology groups of Q over G may be defined by
means of non-homogeneous cochains which will be des-
cribed as follows.

For each integer p> O, we define the group
CP(Q G) of p-dimensional non-homogeneous cochains of
Q over G to be the set of all continuous maps f: QP -
G with the functlonal addition as the group operation.
For p =0, we set C°(Q,G) =G. For each p > >0, we
shall define a coboundary operator

S: CP(q,c) - CPtl(q, )
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as follows,, If p > O, the coboundary Sf of ‘the co-
chain f & C (Q G) is a cochain 6f € cP (Q, G) de-
fined by

(3.1) (8 f)(xl, oo Xp+1) = x18(x5, .. xp+l) +

= 1 p+l
E(“'l) [(Xl,oeo,Xi i_}_l,oaa 1)+( 1) f(x,

e o O X )
i
If p = O, a cochain fECO(Q G) is by definition anele-
ment fEG " The coboundary of f is the cochain
8§ teC (Q,G) defined by -
(3.2)  B)(xy) =xf - £,  (xERQ).

It can be verified directly that 8 is ahomomorphism
for every p 2 O and that 66 0. '

o For each integer p 2 O, there is a one-one cor-
'r'e'spondence F: <% f between the p-dimensionalhomo-
geneous and non-homogeneous cochains. Ifp> O,
this correspondence'is defined by the formulas

1 =1
(3.3) F(xgrXjse-o ,xp)—xof(x X1sX] K25 ... ,xp lxp)

(3.4) £(x),...,xp) = F(l xl,ng.,,.,.xlxz xp)
If p = O, it will be dgefmed by the formulas \
(3.5) F(xo) = x,f, £ = F(1).

'As verified by Eilenberg and MacLane [6, p.54], this
correspondence F <> f establishes for each p 2> O an
(onto) isomorphism

CP(Q,G) 22 EP(Q, G)
which commutes with the coboundary operators 5
To the subgroup cB(Q, G) of CP(Q, G), it corresponds
the subgroup CP(Q G) of CP(Q G) defzned as follows.
Assume p> O. Then f & CP(Q, G) is in CS(Q, G) if
and only if there is a neighborhood U of the identity 1
in Q such that f(xy,...,xp) = O whenever x; EU for
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eachi=1,...,p. If p=0, we put eg(Q,G) = O, For
each p 2 O, let

CP(a,G) = CP(Q,G)/CB(Q. G).
The correspondence F<> f induces (onto) isomorphisms
ch(Q,q) & P(a,q),  ck(e.6)~=ckQ,q)
commuting with the coboundary operators S . Hence,
in the definition of the various cohomology groups of
Qover Ggivenin 81, we may replace the homogeneous

cochains by the corresponding non-homogeneous ones
and obtain the same groups up to isomorphisms.

4, The cases p =0,1

In.the present section we shall describe the alge-
braic meaning of the various cohomology groups of Q
over G for the cases p = O and 1.

p = O. Denote by G* the subgroup of G consist-
ing of those elements g€G such that xg = g for all
x€EG. Let denote the subgroup of G defined by the
condition that gEG# if and only if there is a neighbor-
hood U of the 1dent1ty 1 1n Q such that xg = g forall

U. Obv1ouslyG . 1tis also clear. - that
"“Glf Qis discrete and that G¥= G if Qis connected.
If Q operates simply on G, then G* = G = G:FF.

A cochain fego(Q,G) is by definition an element
fEG. By (3.2) and GS(Q,G) = O, one can easily see
the following assertion.

*
(4.1) HR(Q,G) =0, H°(Q, G)~G He(Q, G)xcf#.,
p = 1. A cochain ngl(Q, G) is a continuous
map f: Q ~+G, and

(6_{)(x1,x2) = xlf(xz) = f(xlxz) + f(xl)o
Hence f is a cocycle if and only if

(4.2) f(x1x,) = f(x3) + x;f(x2),
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i.e., f isa contlnuous crossed homomorphism of Q
into G. Therefore, Z (Q G) is the group of all con-

tinuous crossed homomorphisms of Q intod G. In order
that £ € BY(Q, G), we must have

JHx) = xg - g
for some constant g€EG. These particular continuous
crossed homomorphlsms are called principal homo-
morphisms. BI(Q G) is the group of all pr1nc1pal
homomorphisms of Q into G. Hence

(4.3) The cohomology group H(Q, G) is:the group of
all continuous crossed homomorphisms of Q into G re-
duced modulo the principal homomorphisms.

A continuous crossed homomorphism f: QG
is said to be locally trivial if there exists a neighbor-
hood Uof the 1dent1ty1 in Q such that f(x) = O whenever
x€U. Then clearly ZI(Q, G) is the group of all locally
tr1v1a1 continuous crossedhomomorphlsms of Q into G.
Co(Q,G) = O implies B1(Q,G) = O. Hence we have

0 a
proved the following assertion,

(4.4) The cohomology group Hé(Q,, G) with empty
supports is the group of all locally trivial continuous
crossed homomorphisms of QQ into G.

. The following assertions are easy corollaries
of (4.3) and (4.4).
(4.5) If Q operates simply on G, then H (QgG) is the
group “of all continuous homomorphlsms of Q into G

and Hr(Q, G) is the group ofalllocally trival continuous
homomorphlsms of Q into G.

(4.6) If a compact group Q operates simply on a
finite dimensional vector group G with euclidean topo-

logy, then we have

H'(Q,G) = O = HA(Q, G).
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(4.7) If Q is connected, then Hé(Q, G) = O.

A continuous map f: Q -+ G is said to be locally
crossed homomorphic if there is a neighborhood U of
1 in Q such that (4. 2) is true whenever xj and xp are
in U. f is said to be locally principal if there exist a
neighborhood Uof 1 in Q and an element g &€ G such
that f(x) = xg - g whenever x is in U. The following
assertion can be easily proved.

(4.8) The reduced cohomology group Hi(Q,G) is iso-
morphic with the group of all locally crossed homo-
morphic continuous maps of Q into G reduced modulo
the locally principal continuous maps.

5. Topological Group Extensions

The study of the Z2-dimensional cohomology
groups H2(Q, G) and HE(Q9 G)leads ta the topological
group extensions of G by Q having cross-sections.
The corresponding description of the group HZ(Q, QG
needs the notion of topological loop prolongations and
will be studied in a forthcoming paper.

A topological group extension of the group G by
the group Q is a pair (E,g) where Eisatopological
(multiplicative) group containing the group G as a
closed normal subgroup and g4 is an opencontinuous
homomorphism of E onto Q with the subgroup G of E
as the kernel, [1], [17],[19].

A cross-sectionof a topological group extension

(E, #) of G by Q1is a continuous map u: Q = E such that
du(x) = x for each x€Q. A local cross-section of

(E, @) is a continuous map u: U~ E defined on aneigh-
borhood U of 1 in Q such that gu(x) = x for each x&U.
A cross-section u of (E,d) is said to be homomorphic
if it is a homomorphism of Q into E. A cross-section
or a local cross-section u of (E, g) is 'said tobe locally
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homomorphic if there is a neighborhood Vof 1 in Q
such that u(xlxz) = u(xl)u(xz) whenever xj and x2 are
in V.,

A topological group extension (E, ¢) of G by Q is
said to be inessential if it has a homomorphic cross -
section. (E, @) is said to be locally inessential if it
has a locally homomorphic local cross-section, [2].

‘Let (E, 8) be a topological group extension of G
by Q which has a cross-section u: Q- E. Since G is
abelian, one can easily see that for each g€ G and
x€Q the element u(x)gu(x)“lEG does not depend on the
choice of the cross-section u. (E,d) is said to be
corresponding to the given way in which Q operates on
G if

u(x)gu(x)"t = xg

for all x€Q and g&G. In particular, if Q operates
simply on G, then G is contained in the center of E
and (E,d) is called a central extension of G by Q.

Now let us consider the set of all topological
group extensions of G by Qcorresponding to the given
way in which Q operates on G. Any two of suchex-
tensions (E|,#}) and (Ez,g;‘z) are said to be equivalent
if there exists an open continuous “; .isomorphisms:
G :E]R2E; such that §pG = 4] and J(g) = g for : each
gEG. If uy:Q+*E; is any cross-section of (Ej, dl), then

O u;: Q—~E;, is clearly a cross-section of (E,, g,).

Let(E, g) be a given topological group extension
of G by Q corresponding to the given way in which Q
operates onG. Assume that (E, d) has across-section
u:Q - E, Define a continuous map f: Q% -+G by taking

f(xy,xp) = u(xl)u(xz)u(k1x2)°1

for each x;€Q and xp2€Q. This cochain .feez(Qg G) is
called the factor set corresponding to the cross-sec-
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tion u. The associative law in E imposes the follow-
ing condition on f; namely,

(5.1) =x3f(xy,x3) +f(x), x,%5) = (%, x,) + (%1%, x3)

for all x1,x,x3 in Q. NThis condition implies that
St=0, i.e., that f € Z2(Q, G). |

Let u': Q -~ E to another cross-sectionof (E, ¢)
and f': Q2 =G the corresponding factor set. Definea
cochain h€ Cl(Q, G) by taking

h(x) = u'(x)u(x)"1, xEQ
Then itcan be verified [6,p. 57]that f' = f= Sh. Hence

(E,d) determines uniquely an element O(.‘ofHZ(Q, G .
Further, if f & Z2 (Q,G) is any representative
of the element (X, then there is a cross-section
u: Q = E of (E, ¢) such thatfis the factor setcorrespnd-.
ing to u. .

Let (E*, §*) be any extension which is equivalent
to (E,4d). Choose an arbitrary open continuous iso-
morphism : EXRE* such that "0 = ¢ and 0 (g)=¢g
for each g€G. Then u* = guis a cross-sectionof
(E™, *). It is easily verified that the factor set f*
corresponding to u* is identical with the factor setf
corresponding tou. Hence equivalent extensions of G
by Q determine the same element of H2(Q, G).

For any given cocycle f€Z2(Q,G), we shall de-
fine a topological group extension (Eg, 55{) of G by Q as
follows. The space Ef is the topological product GXQ.
The group operation of Ef is defined by the multiplica -

tion-rule

(glsxl)(gz,xz) = (g1+x1g2+ f(Xstz): Xlxz)-

One easily observes that 8f = Oimplies that this multi-
plicationis associative. The homomorphism gKf:Ef--> Q
is defined by

(g x) = x,  (g,x) EEg.
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Since yff is the projection of GXQ onto Q, it is open
and continuous. The kernel of Gg of ;sz is the set of
all pairs (g, 1). G, can be identified with G by means
of the correspondence g <> (g - £ (1, 1), 1).

Since f € Z2(Q,G), the condition (5.1) is true.
One can easily deduce the following equalities from
(5.1):
(5.2) xf(1,1) = f(x, 1) = £(1,x) = £(1, 1)
for each xEQ. (Ejf, yff) has anobvious cross-section
u: Q - E¢ defined by

u(x) = (0, x), x EQ.
Then, for each x&Q and g& G, we have
u(x)gu(x) ™" = (0, x)(g-£(1, 1), 1)(0, %)™

=(xg-x£(1, 1)+(x, 1), x)(0, x) ~1=(xg-x£(1, 1), 1)(O, x)( O, x)
=(xg-x£(1,1), 1) = (xg-£(1,1), 1) = xg.

Hence (Ef,ysz) is corresponding to the given way in
which Q operates on G.

-1

For any two elements x] and x2 in Q, we have

u(xq)u(x,)u(x;x5) "1 = (0, %,)(0, x2)(0, xpx,) ™
= (f(xl y Xz), XIXZ)(O’ xle)"l

-1
=(f(xq, x5)-£(1, x1%5), 1)(0, x1x,)(0O, X1X3)
=(f(xl,x2)-=.f(1,-x1x2), 1) = (f(xl,xz)-f(l, 1), 1)
= f(xq,x%3).
Hence f is the factor set corresponding to the cross-
sectionuof (E¢f, g;). This proves that every element of
H2(Q, G) is determined by some extension of G by Q

which has a cross - section and corresponds to the
given way in which Q operates on G.

Let (E, @) be any topological group extension of
G by Q which admits cross-section and corresponds
to the given way in which Q operates on G. (E, ¢d) de-
termines an element O & HZ%(Q,G). Let f€Z2(Q,G)
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be an arbitrary representative of (. Then there is
a cross-section u: Q =~ E of (E,d) such thatf is the
factor set corresponding to u. Define a map @
E¢ = E by taking

T(g,x) =g ulx), (g %) EEq.

That ( is open and continuous is obvious, J is a
homomorphism because

U(glrxl)° O‘(gz:xz) = gl"u(xl)ogzeu(xz) ’
=g1° u(Xl)gzu(Xl)_l° u(xl)u(xz)=(g1° X182° f(X]_’ Xz))“ U(Xlxz)
=T (g+x 18, +H(x, x,), x1%,) = O_((gl’ x (g2 %))

Sinced 0 (g, x) = x, itfollows that g is anisomorphism.
Let y be any element of E. Letx =g(y)éQand g =
yu(x)""1 & G. Then U(g,x) =Y. Hence g is onto.
Thus we have proved that T :E;f = E, i.e. (E,§) is
equivalent with (Ef, #¢). This implies that, if two
given extensions (E ,gfl) and (Ez,gfz) determine the
same element of HZI(Q,G), they have to be equivalent.

So far we have proved that there is a one-one
correspondence between the elements of H4(Q, G) and
the equivalence classes of topological group exten-
sions of G by Qhaving cross-sections and correspond-
ing to the givenway in which Q operates onG. By means
of this correspondence, these equivalence classes
form an abelian group. Hence

(5.3) The cohomology group H%(Q,G) is iso-
morphic with the group of those topological group ex-
tensions of G by Q having cross-sections and corres-
ponding to the given way in which Q operates on G.

To study the group HIZ:‘(Q,G), let us consider
the set of all topological group extensions of G by Q
having locally homomorphic cross-sections and cor-

responding to the given way in which Q operates
onG. Let(E,#) be one of these extensions. Two
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locally homomorphic cross-sections u,v: Q—+E of
(E, d) are said to be equivalent if there is a neighbor -
hood Uof 1in Q such that u(x) = v(x) for x€U. The
locally homomorphic cross-sections of (E,d) are di--
vided into disjoint equivalence classes. Each of these
equivalence classes is called a slice of (E,4),  The
extension (E, g) together with a given slice s is called
a sliced topological group extension of G by Q denoted

by (E, 4,s), [19].

Two sliced extensions (E, 8;,s;)and(E;, yfz, s7)
are said to be equivalent if there exist an open con-
tinuous 1somorphlsm g:E; NEZ and representatwe S
uj: Q > E;of s;(i = 1,2) such thatd, T =g, guy =u,,
and U (g) =g for each g€G. Equivalent slicedexten-
sions may be considered as identical. By an analogous
investigation as above, one can prove the followin g
assertion. |

(5.4) The cohomology group H%,(Q9 G) with emp-
ty supports is isomorphic with the group of the, sliced
topological group extensions of G by (O corresponding
to the given way in which Q operates on G.

The following assertions are corollaries of
(5.3) and (5.4).
_ (5.5) If Qis 51mp1y connected and loca}.ly con=
nected, then HZ(Q, G) =

Proof: Let (E,d, s) be any sliced extension of
G by Q corresponding to the given way in which Q
operates on G. Choose an arbitrary locally homo-
morphic cross-section u: Q -+ E which represents s,
Then there is a neighborhood U of 1in Q such that
u|U is a local homomorphism of Q into E, [4, p.48].
Since  is locally connected, we may assume that U
is connected. Since Q is simply connected, it follows
from a classical theorem [4, p.49] that u|U can be
extended to a continuous homomeorphism u™: Q - E.
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Since Q is connected, it is generated by U, [4, p.35].
Let x be an arbitrary element of Q, then there are a

finite number of elements Qs oo Xp in U such that
X = XlesoXpo Hence we have
gu*(x) = g(u*(xy)...u"(x))) = s?f(u(xl)- .« u(xp))
A S A

This proves thatu® is a cross-sectlon of (E, 4).
Since u®* is homomorphic, the corresponding factor
set f* = O. Hence (E, @, s) determines the zero ele-
ment of H%(Q, G). This completes the proof.

(5.6) If Qis a free topological group [16, p.17]
then we have H2(Q,G) = O

Proof. By definition Q is the free topological
group of some completely regular space X which is a
closed subset of Q, [16, p.16]. Let(E,d) be any
topological group extension of G by Q with a cross-
section u: Q~-E. Since Q is the free topological
group of X, it follows that [16, p.16] the continuous
map u|X can be extended to a continuous homomor-
phism u*: Q -~ E. Since Q is generated topologlc ally
by X [16, p.13], it is easy to show that u™ isacross-
section of (E,g). Since u™ is homomorphic, the
corresponding factor set is ¥ = O. Since (E, 8)
arbitrary, we have H (Q, G) =0. Q.E.D.

(5.7) If G is a finite dimensional toroidalgroup
and Qis the directproductof a simply connected com-
pact Lie group and a finite dimensional toroidal group,
then HZ(Q, G) = O.

Proof. Let (E,d) be any topological group ex -
tension of G by Q with a cross-section. By a theorem
of Calabi and Ehresmann [1, Prop.5], (E, d) is the in-
essential extension of G by Q. This implies that
H2(Q,G) = 0. Q.E.D.
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Chapter II. Cohomology Groups of a
Space with Operators.

Throughout the present chapter, we shall as-
sume that a multiplicative topological group Q is act -
ing as a group of transformations on a topological
space Y. By this we mean that for each x€Q atrans-
formation

Ty Y—+Y
is given such that
(i) T,(y) is continuous in x and y simultaneously.
ii T, . =T,T |
( ) Xlxz l Xz ,

1ii T, is the identit transformation of Y.
1 Lty : ,

If for every x€Q and yEY we have T,(y) =y then we
say that Q operates on Y simply.

We shall also assume that G is a finite dimen-
sional vector group with the euclidean topology and Q
operates on G by means of a representation P of Q
with G as representation space. For each x€Qalinear
transformation Px : G- G is then defined satisfying
conditions analogous to (i) - (iii).

6. Cohomology Groups of Y

YPH will denote the (p+1)-fold topological pro-
duct of Y with itself; that is YP+lis the set of points
(YosV1soees Yp ) where yiEY, this setbeing topologized
in the usual way For each p 2 O, a continuous pa'm‘ap
of YintoG is a continuous map g: YP+1--G. The con-
tinuous p-maps of Y into G form an abelian group
MP(Y,G) with functional addition as the group opera-
tion. '

For each continuous p-map ¢ of Y into G, we
shall define the support of ¢ to be the subset S(g) of Y
defined by the condition that y¢S(¢ ) if and only if there
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is a neighborhood. U of y in Y such that g(ygs ... Yp ) =
O whenevery; &€ U for alli = 0O,...,p. The contmuous
p-maps of Y into G with empty supports form a sub-
group ME(Y,G)of MP(Y,G). The cosets of MB(Y,G) in
MP(Y,G) are called continuous p-cochains of Yw1th Cco-
efficients in G. They form an abelian group

cP(Y,G) = MP(Y,G)/MP Y, G).

For each continuous p-map déMp(Y G), we de-

fine a continuous (p+l)-map 5S¢ emP (Y,G) by taking

1
(6:1) (BH)(rge -+ V1) = 3 (-)ilrgr o Fir vy, )

1=0

The following properties of the operat1on8 MP(Y,G) -
mP El(Y G) can be easily verified.

(6.2) S isa homomorphism,
(6.3) 66 =0, |
(6. 4) & maps ME(Y,G) into MPYL(y,G).

Hence the operator & will be called the coboundary
operator and 8¢ will be the coboundary of 4. (6. 4)
implies that S induces a coboundary operator :
cP(y,c) - cPtl(y, q).

As in 81, one candefine the subgroups ZP (Y, G)
and BP(Y,G) of CP(Y,G), namely, the group of con-
tinuous p-cocycles and that of continuous p-cobound -

aries. The p-dimensional continuous - cohomology
group HP(Y,G) of Y over G is defined as the quotient
group

(6.5) HP(Y,G) = zP(Y,G)/BP(Y,G).

The following theorem is rather well-known.
For a proof, one may refer to [11, 85].

Theorem 6.6. If Y is a compact Hausdorff
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space and G a finite dimensional vector group with
the euclidean topology, then the continuous cohomo -
logy group HP(Y,G) is isomorphic with the corres-
ponding Alexander cohomology group and hence also
with the corresponding Cech cohomology group.

Now let Y and Z be topological spaces and
T: Y -+2Z a continuous map. For an arbitrary =
MP(Z,G), define a continuous p-map T*deMP (Y, Q)
by taking
6:7)  (THd)ygr vy Vp )=#(Tyor Ty s -2 Ty,)
for every point (y5, 5. - ,y ) of YPt1 | The corres—
pondence g - T 4 defines a homomorphlsm

™. MP(z,G) -~ MP(Y, G)

which commutes with the coboundary operator 8 and
maps  MB(Z,G) into MP(Y, G) Hence T induces a
homomorphlsm

T*: HP(Zz, G) - HP(Y, G).

7. Equivariant Cohomology Groups of Y

For each x&Q, .the linear transformation PX:
G = G of the vector group G induces an endomorphism
P#- MP(Y, G) - MP(Y, G)
as follows. For each ¢ € MP(Y, G) the continuous p-
map P#gf is defined by
(7.1) (B (Yor Y1r -+ +»¥p) = Pyl B(¥or Y1s - -+ 7))

for every point (yg,yys--.; Yp ) of Yp+1° Obviously,
P commutes with the coboundary operator $ and
maps ME (Y, G) into itself.

A continuous p-map d E Mp(Y,G) is said tobe
equivariant if
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(7.2) THg = Py
for each xEQ. A continuous p-cochain c€CP(Y,G) is
said to be equivariant if it can be represented by an
equivariant continuous p-map. The equ1var1ant con -
tinuous p-cochains form a subgroup C (Y G) of
CP(Y,G). Since both 'I# and P# commute Wlth the co-
boundary operator S, 1t follows that the coboundary
895 of an equivariant continuous p-map ;z{ is equi-
varlant This implies that 8 maps Cp(Y G) _into
Cp (Y G). Then we may define the subgroups Zp(Y G)
and Bp(Y G) of CP(Y G) in the usual way, namely, the
group of equivariant continuous p-cocycles and the
group of equivariant continuous p-coboundaries. The
p-dimensional equivariant cohomology group HE(Y, G)
of Y over G is defined as the quotient group

(7.3) uP(v,G) = zE(Y,G)/BL(Y,G).

The inclusion map A[: CB(Y,G) - CcP(Y,Q)in-
duces a natural homomorphism of the cohomology
groups

(7.4) m*: vYy,q)~H

Ply,q).
The following theorem will be proved in $8.

Theorem 7.5. If QQ is compact then Tfkmaps
HE(Y,G) isomorphically into HP(Y, G).

Following the method of Chevalley and Eilen-
berg [5, p.89], one can deduce a more detailed anal -
ysis of(7.4) from the decomposition of the representa -
tion Pintoirreducible components. Such a decomposi-
tion always exists if Q is compact. Let G = G 1t
+ G, be a direct decomposition of the vector space G
1nto irreducible invariant subspaces and let P; be the
corresponding representation of Q in Gj. There re-
sult direct sum decompositions
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HE(Y,G) = J_HE(Y,G;), HP(Y,G) = LHP(Y,G,)

i=o0

and an appropriate decomposition of (7.4). Hence we

may concentrate our attention on irreducible repre-
sentations. ‘

The following theorem will be p:tjovgci in 88,

Theorem 7.6  If the space Y is compact, the
group Q is compact and connected, and- thé repres,enb,am
tion P of Q in G is irreducible and non- trivial, ;then
| ﬁW_Y _T O for each p2 Q.

' The following theorem is a restatement of the
Theorem 10.2 in [11],

Theorem 7.7. If the space Y is compact, the
group Q is compact and connected, the group G is the
additive group of real numbers, and the representa-

tion P is trivial, then “f* is an isomorphism onto,
i.e., HEB(Y,G) =HF(Y,G) for each p 2 O. |

8. The Averaging Process

In the present section, we assume Q to be com-

pact. This implies the existence of a Haar measure
with the measure of Q being 1, [22, p.38].

Given a continuous p-map ¢ & MP(Y, G) of Y into
G, consider the famlly of continuous p-maps P lT#ng
for all x€Q. For each point (yos...,yp) of YP"}'c
have .

(PE 1T (v -+ ¥p) = Px=16(Txyos + - - » Tocyp)-

It follows that (P_-1Tx#)(yos - - - s yp) is continuous
in x and (ygs...»syy) Simultaneously. Hence we may
define a p-map Ig by taking

(16)(ygr -+ ¥p) = § BF1T8)(y0r .. . yplax
Q
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for each point (y ,..., yp) of YP*1, The p-map Ig
thus obtained as the following properties:
8.1) Ig is continuous,

8. 2) S(1g) = 1S 4),
3) Ig is equivariant,
.4) if 4 is equivariant than Ig = ¢,
5) If 4 is of empty support then so is ¢.

These properties canbe verified by the methods
analogous to those used in 83 of [5] and in 88 of [11].

Proof of Theorem 7.5. Let (X_beanarbitrary
element of HP(Y G) such that M*(QA) = O. Choose an
equivariant p -cocycle cect (Y,G) which represents

(L. Then there is an equ1var1ant continous p- map
g such that c is the coset of ME(Y,G) in MP(Y,G) con-
taining g. T () = O 1rnp11es c€BP(Y,G). Ifp = O,
this implies ¢ = O and hence QL = O. If p> O, this
means that there exist EéMPQl(Y,G) and quE(YgG)
such that g = 8§+77 . Obviously the operationI  de-
fined above is homomorphic. Hence, by (8.4) and
(8.2), we have

4d=14=108 + ip = 81E)+ If/f,
By (8.3), 15 is equivariant. By (8.5), 17 € MAY,G).

Hence cEBg(Y,G)9 that is» A = O. This completes
the proof.

Proof of Theorem 7.6. Let (X be an arbitrary
element of HE(Y, G). Choose an equivariant p-cocycle
c € Zp(Y G) which represents (. Then thereisan

equlvarlant continuous p-map ¢¢ C. By definition,
we have 'I#gf P#;z{ for every x&€Q. Define a con-
tinuous p-map 55* by taking

B¥(ygs e e e» Yp)= ST:ip’(yo, oo Yp)dx= 5P§;z{(yo, ees yp) dx
Q Q
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for each point (yg, ... yp) of YPH, Let=z be an arbi-
trary element of Q. . Then we have

Pold*(yor -+ ¥p)) = Py PolBlygr - - vl
J .

= Cj\PZX(¢(YO’ s yp))dx = \pr(d(Yos RIS Yp))dx
Q Q

- ?‘g(Yo’ ° °°»Yp)
Since thls holds for every ZGQ and- since the repre-= '
sentation P is irreducible and non-trivial, it follbws
that g* = O. According to the fundamental lemma9. 1
of [11], there exist EEMP1(Y,G) and nEMR (Y, G)

such that

d=¢-F=58+7
This implies that ™) = O. It follows from Theorem
7.5 that (A= O, Hence Hp(Y, G)=0. Q.E.D.

9. Reduced Cohomology Groups of
Topological Groups '

In the present section, we shall consider the
special case where Y = Qand Q operates on Y by
means of left translations. It turns out naturally
that the reduced cohomology group HY(Q,G) is iso-
morphic with the equivariant cohomology group
H2(Y, G).

Let O be an arbitrary elementof HY(Q, G) in the’
homogeneous approach given in §1. Choose areduced
cocycle cE:'CI;(QgG) which represents . Let FE&
CP(Q, G) be an arbitrary p-dimensional cochain in the
coset c. (l.1)implies that F is an equivariant con-
tinuous map of Y into G. FécEZp(Q G) implies
that gF is in Mp+1(Y G). Hence o represents an
element K (X) of HE (Y G) which clearly depends only
on (X, The correspondence Oiﬁ-li’(a) defines a natural
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h omomorphism,

p
K : HE(Q,G) ~ He (Y,G).
(9.1) The natural homomorphism K maps
HE(Q, G) isomorphically onto HE(Y, G) for each p > 0.

Proof. Letf EHE(Y, G) be arbitrarily given.
Choose an equivariant cocycle dECg(Y, G) which re-
presents 9. Then there is anequivariant continuous
p-map F contained 1n the coset d. That F is equi-
variant and FedEZe(Y G) implies that FECP(Q, G)
and SFEC (Q, G). HenceF determines anelement
a e Hp (Q, G) and obviously Ii’ P . This proves
that /1 is onto.

Let OL be any element of HE(Q, G) such that

/7: (@) = O. Choose a representative FECP(Q, G) of
& as in the definition of K (X). Ii(O{_ = O implies
that the equivariant continuous p-map F represents
and equivariant coboundary [F] &€ BE(Y,G). 1f p=0,
this means [F] = O and hence FEMP(Y G). This im-
plies FECP(Q,G) and hence L= O If p >0, then
there ex1st an equivariant §&EMP" 1(Y,. G) and an
q CMP(Y G) such that F =68+ 1) . It follows .thdt
’] F-8% isalso equ1var1ant Since § and are

equivariant, we have & ecP-! (Q,G) and 77€CP(Q, Q).
F= 08§ +f] implies O( = O. Hence f, is an isomor-
phism, Q.E.D. : \.‘_

The -following theorem is-aneasy consequence
of (9. 1) and the theorems in §7,

Theoremr 9. 2. If a compact connected group Q
operates on a finite dimensional vector group' G with
the euclidean topology, then the reduced cohomology
group HE(Q,G) of Q over G is isomorphic with the
Cech cohomalogy group HP(Q, Gy)ofthe topological grap
over the vector group Gx which consists of the totality
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of the elements g € G such that xg = g for all x € Q.

A topological group Qis said to be semi-simple 5)
if it contains no connected solvable normal subgroup
other than the trivial subgroup 1. If Q is a Lie
group, then this definition reduces to the classical
one, [18, p. 267]. |

10, Compact Connected Semi-Simple Groups |

Lemma 10. 1, A.compac nnected semi

simple group Q is the pré)jective limit of an invers e

sz.stem 1Q, » h@m} of c?mEac,t c'oannected semi-simple
Lie groups Q_ , thatis, Q =lim {Qo(_ ; h,gq_}-.

Proof. Let {Nd.} denote the collection of all
closed normal subgroups Ny of Q such that the quo-
tient group Qg = Q/Na_ is a Lie group. Since Q is
compact and connected, sois Q, . We definea par -
tial order in the indices {&¢} by [ >0l if and only if
Ng &Ny . If B>0 , then there is a natural open
continuous homomorphism hpge : Q > Qq of Q on-
to Qy ‘defined by the inclusion NﬁCNO,_ . It is well -
known [22, p.89] that Q :éi_;r_r_:_{Qd,, }Pa It remains to
prove that Qqis semi-simple for every index (.

According to E, Cartan [3, §52], for each A,
there exist in Q  a compact connected abelian sub-
group Ay which is the connected component of the
center of Q, and a closed normal semi-simple sub-
group Sy, such that Q, = AySy and A, /1S, is a finite
group. Further, the homomorphism hgy : Qﬂ"’ Qy
maps Aﬁ onto Ay and S/g onto S, . If we denote by
kgq : Aﬁ_’AaL the partial homomorphism of hg, re-
stricted on A , then we obtain a inverse ' system
fonc , k “} of compact connected abelian groups Ay .
The projective limitZA =éi__n‘;=A0L ; kﬁoc.} is a compact
connected abelian group and is contained in the center
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of Q, [22, p.89]. Since Q is semi-simple, A contains
only the identity of Q. Let Tly: A—=A, be thenat-
ural projection. Let aQLEAa be an arbitrary ele -
ment, Since the groups A are compact and the
homomorphisms k , )’>l® , are onto, it follow s
from a theorem of Steenrod[14, P- 32] that there is an
element a €A such that 77;(21) = ay . Since A contains
only one element, so does Ay for all (. Hence we
obtain Q , =8y and Q, is semi-simple for all K.
Q.E.D.

Theorem 10.2. If a compact connected semi-
simple group Q operates on a finite dimensional  vec -
tor group G with the euclidean topology, then the re-
duced cohomology group HE(Q, G_) =O whenp =1, 2,4,

Proof. Let Gyxdenote the subgroup of G consist-
ing of all elements g € G such that xg = g for all x €Q.
By Theorem 9.2, H (Q, G) is isomorphic  with the
Cech cohomology group HP(Q GJ,) According to
Lemma 10.1, Q is the pI‘OJCCtlve limit of aninverse
system {QOL h,sot.} of compact connected  semi-

simple Lie groups Q. . Since the groups Q, are
compact, it follows from the Continuity Axiom [20,
p.419] that HP(Q » Gy is 1somorph1c with the limit

group lim { (QOL . GJ,), hﬁocz' of the direct system of
cohomology groups Hﬁ'(QoU ) with the hornomorph1srns
hgg H#(QOL,G )~ Hy(Qga , Gy) induced by hayt Qe Qu
Since G is a finite d1mens1onal vector group and Qg
is a compact connected semi-simple Lie group, we

have: Hy(Qy sGx) = Owhenp=1,2,4, [5, p.109].
Hence
P
H, (Q.G) ~Hy, (Q, Gy)~ting SHR(Qqy - Gu), 17@« =0
when p = 1,2,4., This completes the proof.
Chapter III. Cohomology Groups of Local Groups
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Throughout the present chapter we assume that
Q is alocal group[18, p.83], written multiplicatively,
and G is an abelian lacal group, written additively,
Further, we shall also assumie that Q operates on the
left of G. Bythis we mean that there exista neighbor -
hood Q) of 1inQ and aneighborhood G,0fO jn G such
that, for each xEQl and gEGO, there is determined an
element xg&€G subject to the following conditions:

(i) xg is continuous in x and g simultaneously.

(ii) 1f gIEG and g,EG, are such that g +g,
is defined and is in G, then, for every xéQl, xg) +
)égz is defined and

x(g) +8,) =xg; + ngzo —
(iii) If x1€Qy, x,EQ;,. g€G, dre such that
xlgeqo and XX is defined and is in Qj, then
x5(x1g) = (x,%1)g:
(iv) For each gE€G, we always have lg = g.

If for every x€Q; and g€G, we have xg = gthen
we say that Q operates on G simply.

11. Local Cohomology Groups

For each integer p > O, QP will denote the p-fold
topological product of Q with itself. Throughout this
chapter, we are interested onlyin the case p > O

A local p-map of Q into G 1.s a continuous map
sl{ vP -+ G defined on the subset VP of the space QP for
some neighborhood V of 1 in Q such that d(xy, ... ) Xp )
= O whenever x, = ... %1, Two local p-maps
yfl Vl -+ G and- gf Vg -+ QG of d) into G are said to  be
equivalent. (notatmn, gfl = g‘z) if there is a nelghbor -

hood V of 1 contained in the interseétion V)NV, such
that
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’dl(_xl’ oo ,Xp) = ;dz(xl, .o ,xp)
whenever x; isin V for alli =1,..,,p. The totality
of local p-maps of Q into G are thus divigied into dis-
joint equivalence classes, called the local p-cochains
of Q over G. We shall denote by CE(Q, G) the set of
all local p-cochains of Q over G. The local p-cochain
tha t contains the local p-map ¢ will be denoted by [4]
and g will be called a representative of [¢].

Let cy and c) be any twolocalp-chains 6f Q
over QG. Choose two local p-maps g‘l‘:Vp - G and
#,: VB -G such that ¢y = Ml] and c, = [yfz] Choose
aneighborhood Uof O in G such that gy + g; is defined
whenever g) and g, are in U. Choose a neighborhood
V of 1 in Q such that VP g {u)Ng1(U). Define a

P 1 2
local p-map ¢g: V© - G by taking

(11.1) Bxys... ,xp)zpll(xl, .o ,xp) +y52(xl, .o ,xp)

whenever x; €V for alli=1,...,p. Itis easily veri-
fied that the local p-cochain [#] does not depend on the
choice of the representatives 551 and 4. for Cy and Cpe
Hence we may define an addition in CEZ(Q, G) by means
of c; + ¢, =[#]. In this way, it is easy to see that
CE(Q, G) becomes an abelian group.

For each p> O, we are going to definea co-
boundary operator

5 CE(QSG) > CEH(Q,G)
as follows. LetcE&CP(Q.G). Choose a local p-map

#: VP =G such that c =%¢{] Let U, be a neighborhood

of O in G such that
' p+l

Z:I (“l)igi
1=0

is defined whenever giEU0 for eachi=0,1,...,p+l.
Choose a neighborhood V, of 1 in Q and a neighbor-
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hood of U] of O in G such that xg€U, whenever x € LA
anl’ g€U). Choose a neighborhood Vj of 1 in Q such
that ViCV, and VP g 1(U;). Let V, be a neighbor -
hood 1 in Q such that xy€V) for all x€EV, and' y € Ve
Define a local (p+l) -map g VE"H ~ G by thé formula

(11.2) g/(xl,..,.,xp_,_l):xlyf(ng...,xp+l)
+ .Z (‘”1)1¢(X1;a.u3XiXi+l,oocgxp+1)
=0

+ (D g, x)

for each point (x3,..., xp+l) of VIZ)+1 . It can be easily
verified that the local (p+1) -cochain [¢/] depends only
on the given local p-cochain c. Hence we may define
the coboundary of c by setfing Sc = [W] It can be
verified directly that the operation © is ahomoma-
phism and 868=0.

As in 81, one can define for each p > O sub-
groups ZII)J(Q_, G) and BE(Q, G) of ._C%(Q, G), namely the

group of local p-cocycles and that of local P -CO-
boundaries. Here one has to put BIlJ(Q, G) = 0. The
p-dimensional local cohomology; group HE(Q: G)of Q
over G is defined to be the quotient group

(11.3)  HP(Q,G) = zP(Q,G)/BE (Q, G).

12. A Natural Homomorphism

In the present section, we shall assume that Q
and G satisfy the assumptions of the firstchapter and
hence they also satisfy the assumptions of this chapter
which are obviously weaker. Therefore, for each in-
teger p > O, both of the groups HE,;(Q, G) and HE(Qp G)
are defined. We are going to establish a natural homo-
morphism

A: HR(Q,G) -~ HP(Q,G),
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for p > 2,7 0orp =1 and Q operates on G simply.

With this purpose, let us first prove the follow-
ing

Lemma 12. 1. Everv element 0L of HE(Q, G),
p > O, can be represented by a non-homogeneous p -
cochain f: QP -~ G such that St € CP"H(Q G) and

f(kl,ooo,xp?=0whenx1— . —-xpzl.

"Proof., QL is represented by a cochain f' € cp
(Q,G) with  8f' inCp""l(Q? G). Callf'(l,...,1)=gEG.

First let us assume that p is odd. Then we have
p+l o
5(1,...01) = )" (-1)g = g.
i=o
Since Of' € Cn (Q G), this implies that g = o. Hence
we may take f=1, Next assume p to be even. De-
fine an h € CP~ 1(Q, G) by taking <

h(XlDooos)L‘pml):gg (Xl,eag,ngl)erala

Take f =1' - Sh, Then f represents X and satisfies
the requirements. Q.E.D.

Let Gl be any element of HP(Q G), p> 0. Ac-
cording to Lemma 12.1, OL «canbe represented by an
fECGP(Q, G) such that & fis in CB*1(Q, G) and £(1,...,1) =
O. The condition f£(1,..., 1) O assures that f
is a local p-map of Q into G. Hence { represents a
local p-cochain [f]€CP (Q,G). The condition Sfe’ép +1
(Q,G) implies that 8[f] = O. Therefore, [f] is a
local p-cocycle of Q over G and represents an ele-
ment @éHi(Q, G).

Lemma 12.2. Ifp>2, orp= 1 and Q operates
simply on G, then the element @EH (Q, G) depends
only on OLEHP(Q,G) and the correspondence 0 B =
A(Q) defines a homomorphism of HP(Q, G) into uP (Q.gG)
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Proof. Let f'€ CP(Q, G) be another representa-
tive of (¢ such that 8f'€Cp+1(Q G) and f'(1,...,1) =
O. Ifp=1and Q operates simply on G, then B1(Q, G)
= 0. Hencef' -f SCI(Q G). This implies [f'] = [£]
and hence the element depends only on CC. Now
assume p > 2. Then ﬁlere exist EECP- 1(Q9 G) and

7] GCP(Q,G) such that

t-f= 68 +7) .

This equality implies that 85 l,...,1) = O. By
the method used in the proof of Le'mma 12.1, we may
choose E so that §(1,...,1) =O. Hence both 5 and

are local maps. GCP(Q G) implies [}]=0.
Therefore [f'] - [f] = 5[E]. ThlS proves that the 'ele-
ment @ depends only on Cl. It is obvious from the
definition of Bthat A is a homomorphism of HP (Q, G)
into HY (Q,G). Q.E.D. B

Q is said to have the local extensmnprOperty
with respect to G provided that, for each integer
p > O, every local p-map gf VP -+ G of Q into G 1is
equivalent to a local p-map ;zf :QP —+ G defined through»-—
out QP

Let us denote by R the real line and by Ithe
closed unit interval in R. A space U is said to be
solid if U is homeomorphic with the product space
PQ/_EAUC(. where each factor space Uy is either R
or I. There is no restriction on the index set A; it
might be non-countable. |

Lemma 12.3, If Q is locallycompactand G has
a solid neighborhood U of O, then Q has the local ex-
tension property with respect to G.

'Proof. Let g: VP -G be any local p-mapof Q
into G. Choose a neighborhood Vo C V of 1in Q such
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that ¢(VE) CU. Since Q is locally compact, there is
an openneighborhood V| of 1 in Q such that its closure
W; = Cl V] is compact and contained in V,. Choose
a closed neighborhood W5 of 1 in Q contained in Vi
Let ¢ = wo. D=wP \ VP

Then C and D are disjoint closed sets of W}fo Detfine
a continuous map g': CUD — U by taking §' = 4 on C
and ¢'=0 on D. As acompactHausdorff space, WTIJ is
normal. Itfollows from Tietze's extension theorem,
[14, p. 28], g' has a continuous extension 56"' wP-U.
;5 can be extended throughout QP by taking gf O on
QP \ W? The contlnulty of * over Qp follows from
the fact that (D) = O. Since ¢* = 4 on W , ¢and
g* are equivalent. Q.E.D.

Lemma 12.4. If Q has the local extension pro-
perty with respect to G, then the homomorphismA in
Lemmma 12.2 is an isomorphism onto. A

Proof. Let (3 be an arbitraryelementof HII)J
(Q,G). Since Q has the local extension property with
respect to G, ﬁ can be represented by a local P - map
#:QP =G with 8[@] = O. Hence we have ;zfecP (Q,G)
and O¢ ECP+1(Q, G). @ represents an element O of

g(Q G) avd clearly A(Q) = @ This proves that
A is onto.

Let X be an arbitrary element of Hp(Q, G) with

A 00 = O. _Choose a representative f €CP(Q, G) of &
with Of ECP“H(QQ G) and £(1,...,1) =0. A(Q) = O
implies that [f] EBp (Q,G). If p =1, then [f] = O. It
follows that f€Cp Q,G) and hence = O. Assume
that p 2 2. Then there is a local (p-1)-map gof Qin-~
to G such that [f] =0[4]. Since Q has the local ex-
tension property with respect to G, we may assume
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that 4 is defined through QP-1. Hence §CP"1(Q,G) .
[f] = §[F] implies that f - 3¢ &CP(Q,G). This proves
that ©¢ = Q. Hence A is an 1somorphlsm and the
proof is complete.

The following theorems are now obvious.

Theorem 12. 5, If Qhas the-local extengion
property with respect to G, then the reduced coho-
mology group HE(Q,G) is a local property of Q and G
when p 2 2 or When p =1 and Q operates simply on G.

Theorem 12.6. The Cech- cohomology groups
HP(Q G), p> O, of a compact connected. group QWlth
coefficients in a finite dimensional vector group G are
local properties of Q, that is, they are determined by
any neighborhood U of 1 in Q as a local group.

Theorem 12. 7. IfQ is a local grouplocallyiso-
morphic with a compact connected semi- simple group
and Gis anabelian log:élLie groupon -which Q operates ,
then Hi(Q;G) =0= ﬁi(Ql, G). 1f Q operates simply on
G, _then we also have Hy, (Q,G) = O,

13. Crossed Local Homomorphisms

Let Q and G be assumed as at the beginning of
the chapter. To descrlbe algebraically the first local

cohomology group HL(Q, G) of Q over G, it leads to
the continuous crossed local homomorphisms.

A continuous map g: V —+ G defined ona neighbor-
hood V of 1 in Q is called a continuous crossed local
homomorphism of Q into G if there ex1sts a neighbor -
hood V5 of 1 in Q such that

(13.1) - Blx1%p) = B(x)) + x8(x,
has meaning and is true for all x;EV, and x,EV,. Put
x1=1 = x5 in (13, 1), then we get d(l = 0. Hence ¢
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also a local l-map of Q into G. (13.1) implies .that
the local 1-cochain [#] is a local cocycle. Converse-
ly, if g: V=G is a local 1-map of Q into G such that
[#] is a local l-cocycle, then S) [#]= O implies that
(13.1) holds for some V.

, Two continuous crossed local homomorphisms
of Q into G will be call equivalent if they are equi-
valent as local l-maps. It is clear that the equiva-
lence classes of the continuous crossed local homo -
morphisms are identical with the local 1 -cocycles
21(Q,G). Since B1(Q,G) = O by definition, we obtain
tie following assertion. |

(13.2) The first local cohomology group

H! (Q,G)is the group of equivalent classes of the con-
timious crossed local homomorphisms of Q into G,

If Qoperates simply on G, then a crossed local
homomorphism reduces to a local homomorphism .
Hence we have the following assertion, which is a
consequence of (12.7)

(13.3) Every
4 of acompactconnected semi-simple group Q into an
abelian Lie group G is locally trivial, thatis, there is
a neighborhood W of 1 in Q such that § (W) = O.

14, Local Group Extensions.

For simplicity, a neighborhood of 'the neutral
elementof alocal group will be called a neutral neigh-
hood. ‘

An open continuous local homomorphism of a
local group X onto a local group Y is a continuous
Map g:U-Y defined on a neutral neighborhood U of X
into Y such that there exists a neutral neighborhood
U,C U of X satisfying the condition that

continuous_local homomorphism
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A(x1xp) = Blx))B(x2)

for all xj; and x in U, and the image g(W) of every
open neutral neighborhood W C U, of X is an open
r.eutral neighborhood of Y. ¢ is called an open con-
tinuous local isomorphism of Xonto Y if Ug can be so
chosen that ¢ | U, is one-to-one.

A local group extension of the local group G by
the local group Q is a triple (E, d,8) where E is a
local (mulitplicative) group, 4 is an open continuous
local homomorphism of E onto Q, and 6 is an open
continuous local isomorphism of G onto the kernel of

4.

Alocal cross-section of alocal group extension
(£,84,0) of G by Q is a continuous map u: V — E de-
fined on a neutral neighborhood V of Q into E such
that gu(x) = x for each x EV. A 'local group extensica
(E, ¢, 08) is said to be fibered[1]ifit has alocal cross-
section; it is said to be inessential [2.] if it has alocal
cross-section u which is a local homomorphism of ()
into E, [18, p.85].

Let (E,d,6) be a fiberedlocal group extension
of G by Q. Choose a local cross-s&ction u: V—E of
"(E,d,0), Take a neutral neighborhood VoCVof Qand
aneutral Wy of G such that both 6(xg) and u(x)6(g)u{x)"1
are defined whenever x € Vg and g & W,. (E. ¢.0) is
said to be corresponding to the given way in which {3
operates on G if Vo and W, can be s0 chosen thatl

(14.1) u(x)0(g)u(x)"! = e(xg)

for all x EV, and gEW. In particular, if Q operates
simply on G, then 0(Wg) is contained in the center of
E and (E, 4, 0) is called a central exiensionof Gby Q.

Here the center C of a local group E is definedby the
condition that x € E is in C if and only if there is a
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neutral neighborhood U of E such that xy = yx for all
yEU,

Let us consider the set of all local group ex-
tensions of G by Q corresponding to the given way in
which Q operates on G. Any two of such extensions
(E1,9,0;) and (E,,8,,6,) are said to be equivalent
if there exists an open continuous local isomorphism
J:E|~Ej such that there are a neutral neighborhood
U of E] and a neutral neighborhood W of G satisfying
the condition that '

Te1(g) = 6,(g), B, T(y) = g;(y)
for ally € U and ge W, Ifup: V;»E is any local
cross-section of (Elggfl, 61); then the continuous map
uz: Vo = E defined by taking up(x) = Quj(x) for all
x €V, = uj {u) C .V, is clearly a local cross-section
of (E,, 8,,05).

Let (E,d,8) be a given fibered local group ex-
tension of G by Q corresponding to the given way in
which Q operates on G. Choose a local cross-section
w V~—~Eof (E,;4,6). Take a sufficiently small neu-
tral neighborhood V,C V of Q and define a continuous
2-map f: Vg -+ G by taking

(14. 2) f(x1,xp) = Gwl[u(xl)u(xz)u(xlxz)“l]

for each x; €V, and x, € V,. Following the proce-
dures of §5, one can show that the local 2-cochain [f]
is a local 2-cocycle of Q over G which represents an
element X of H]Z;J(Q, G) independent of the choice of the
local cross-sectionu.X is called the element  deter-
mined by (E,4,€). Equivalent extensions determine
the same element. On the other hand, given a lecal
2-map f: V% > G of Q into G such that 8[£J =0, we
can construct a fibered extension (Ejg, ;sz, Sf) as in B5
which determines the element of Hf (Q,G) represent-
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ed by [f]. Finally, if f is the local 2-map defined by
(14.2), then (E,4,8) is equivalent with - (E¢, #4,6¢).
Hence we have the following assertion.

(14.3) The second lacal cohomdlogy . group
Hi(Q,G) is isomorphic with the group. of the equiva-
lence classes of the fibered local group extensions of
G by Q corresponding to the given way in which Q
operates on G. In particular, the zero element . of
HZ2(Q,G) corresponds to the class fgf inessential ex-
tensions of G by Q. ' ' | “

With reference to Theorem 12.7, (14.3) gives
immediately the following theorem, '

Theorem 14.4 If Q is a local group , locally
isomorphic with a compact .connected semi-simple
group and G is an abelian local Lie group, then every
fibered local group extensionof G by Q is inessential.

Let us assume in the remainder of this section
that Q and G are (global) groups as in the first chap-
ter, then every topological group extension of G by Q
which has a local cross-section is, by definition, al-
so a fibered local group extension of G by Q. It is
natural to raise the question whether or not every
equivalence class of the fibered local group extensjons
of G by Q can be obtained in this way. This question
is answered negatively by the example which follows.

Take Q to be the 2-dimensional toroidal group
and G the group of real numbers mod 1. Let Q oper-
ate simply on G. It follows from (12.2) and (9. 2)
that Hi(Q, G) is isomorphic with the additive group of
real numbers. Hence, by (14.3), there are essential
central local group extensions of G by Q. ©On  the
other hand, by a proposition of Calabi and Ehresmann
[1], every topological group extension of G by Q is
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trivial and hence it gives always an inessential local
g roup extension of G by Q. '

15, Compact Groups with Lie Centers

LetE be acompact connected group and assume
that the center C of E is a Lie group. Denote by G

the connected component of C which contains the neu-

tral element. "Then G is clearly a finite dimensional
toroidal grqup.

Since every compact connected solvable group
is abelian [12, p.517] and every compact abelian nor-
mal subgroup of a connected group is contained in the
center [12, p.515], G is the radical of E, thatis, the

uniquely determined maximal closed connected solv-
able normal subgroup of E, [12, p.553]. It follows
easily that the quotient group Q = E/G is a compact
connected semi-simple group. Let @g: E>Q be the
natural projection of E onto Q and 6: G — G the identity
isomorphism. Then (E,d,6) form a local group ex-
tension of G by Q. According to a theorem of Gleason
[8, p.39], since G is a compact Lie group, (E, g, 6)
has a local cross-section. Hence (E,d,0) is afibered
local group extension of G by Q. By Theorem 14,4,
(E,d,0) is inessential, that is, there is a local cross-
section u: V—~E of (E, d,6) which is a continuous local
homomorphism of Q into E. Since gu(x) = x for every
x &V, uis actually an open continuous local isomor-
phism of Q onto a locally closed local subgroup S =
u(V)C E. Since G is contained in the center of E, it
is not difficult to see that S is a normallocal subgroup
of E [18, p.84] and that the local group E decomposes
into direct product of the normal local subgroups G
and S, [18, p.85]. Hence we obtain the following
theorem.
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Thearem 15.1. If the connected component G
of the center of a compact connected group E which
contains the neutral element is a Lie group, then E
is locally isomorphic with the direct product G X Q
of G and the semi-simple quotient group Q = E/G

In case E. is a compact connected Lie group,
Theorem 15.1 reduces to the classical theorem [3,
p.42] of locally decomposing a compact connected
Lie groupinto itabelian part and a semi-simple part.
This classical decomposition theorem 1is used only
once in the above, namely, 'in the proof of Lemma
10.1 which is trivial if Q is a Lie group. Hence our
argument reveals the factthatthis classical decomposi-
tion is essentially only a consequence of the fact that
the second Bettinumber of a compact connected semi-
simple Lie group vanishes.

If, in addition to the hypotheses of Theorem
15.1, we assume that the quotient group Q is simply
connected and locally connected, then by means of the
arguments used in the prood of (5.5) we can prove that
there is a cross-section u™: Q -~ G of the (global) ex-
tension (E, d) which is a homomorphism of Q into E.
Call S = u*(Q), then SAQ. Since G is containedin the
center of E, it is easy to see that E decomposes into
direct product of the normal subgroups G and S. Hence
we have the following

Theorem 15.2. Under the hypothesis of Theorem
15.1, if the quotient group Q = E/Gis simply connect-

ed and locally connected, then E is isomorphic w1th
the direct product G X Q of G and Q.

16. Extensions with a non-Abelian Kernel

Analogous to a work of Eilenberg and MacLane
[7], one can formulate a theory of topological group
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extensions andlocal group extensions of a non-abelian
kernel with appropriate modifications and elabora-
tions to meet with the topology of the groups aad the
fact that the groups are defined locally. However we
shall only indicate partially a particular case of the
local group extensions in such a way that we are just
"able to state the assertion (16.1) which is essential
in the proofs of the theorems to follow.

Let K be alocal group with an abelian local sub-
group G as center and let Q be a local group which
. operates simply on G. A local group extension of K
by Q is a triple (E, #,6) where E is a local group, ¢ is
an open continuous local homomorphism of E onto Q,
and @ is anopen continuous localisomorphism of K on-
to the kernel of §. Local cross-sections of .(E, g, €)
are defined as in 814 and, similarly, one can define
the fibered and the inessential extensions of K by Q.

Let (E,d,8) be a fibered local group extension
of K by Q. Choose a local cross-sectionu: V—-E of
(E,#,8). Take a neutral neighborhood Vo C V of Q
and a neutral neighborhood W, of G  Such  that
651[u(x)9(k)u(x)"’1] is defined whenever x & Vg, and
k EW,. (E,d,8) is called an inner local group exten-
sion of K by Q if we can choose V,and Wy in suchaway
that, for each x EVg, the mapk-+6~"[u(x)6(k)u(x)-1] de-
fines an inner automorphism of the local group K.

'Let us consider the set of all inner local group

extensions of K by Q. One can define an equivalence
relation’ between these extensions as in 814 after re-
placing G by K. The following assertion can be prov-
ed by suitable modifications of the proof of Theorem
11.1 in the work of Eilenberg and MacLane [7].
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(16.1) The equivalence classes of the inner
local group extensions of Kby Q are in a one-one
correspondence with the elements of the second local
cohomology groupH (Q,G). In particular, the zero"

element of HZ2(Q, G) corresponds to the class of 'all
L
in essent1a1 inner extensions of K by Q.

Let E be a compact connected group and K be
a closed normal subgroup of E which is a Lie group
and contains the radical of E, [12, p.553]. Let G
denote the center of K. It follows from a theorem of
Gotb [10, p.428] that the quotlent group Q -*P/K is a
compact connected semi-simple group. Let’ ;ﬁ E-Q
denote the natural projection of E onto Q and 6: K—~K
the identity isomorphism. The (E,d,8) is a local
group extension of K by Q. According toatheorem of
Gleason [8, p.39], (E,4,6) has a local cross- section
u: V->E, For each x€V, the correspondence k-
u(x)ku(x)~! defines a continuous automorphism X(x) of
K onto itself. The correspondence x -~ O{(x) defines a
continuous map (: V- A(K) of V into the topologi -
cal group A(K) of all continuous automorphisms of K,
[12, p.508]; the inner automorphisms of K form a
closed normal subgroup I(K) of A(K). According to
a lemma of Iwasawa [12, p.509], since K is a com-
pact Lie group, I(K) is an open subgroup of A(K).
Since (X(1) € I(K), there is a neutral neighborhoo d
Vo, &V of Q such that (x) is in I(K) for all x EV,.
Hence (E,d,8) is an inner local group extension of K
by Q. Since Q is a compact connected semi- simple
group and G is an abelian Lie group, we have Hi(Q G)
= O according to Theorem 12.7. Then it follows fram
(16.1) that there is only one equivalence class of the
inner local group extensions of K by Q. Hence ,
(E,d4,6) is equivalent with the trivial extension of K
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by Q, namely, the direct product K X Q. We  have
proved the following theorem.

Theorem 16.2. If a closed normal subgroup K
of a compact connected group E is a Lie group and
conlains the radical of E, ‘then E is locally isomorphic

x}v1th the direct product KXQ of K and the semi-simple
quotient group Q = E/K. l

Now let E be any topological group and K be a
normal subgroup of E which is a compact semi-simple
Lie group. Consider the quotientgroup Q = E/K and
the natural projection : E - Q. Let 6: K - K denote
the identity isomorphism. Once again we obtain an
inner local group extension (E, d,6) of K by Q. Since
the center G of K is discrete [18, p.282], we deduce

2 (Q,G) = O by definition. Hence as above, we ob-
tain the following theorem which is essentially a
lemma of Gleason, [9, p.89].

Theorem 16.3. If a compact normal subgroup
K of a topological group E is a semi-simple Lie group,
then E is locally isomorphic with the direct product

K XQ of K and the quotient Q = E/K.

Institute for Advanced Study and University of Michigan
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Footnotes

1) Presented to the American Mathematical Society,
September, 1951.

2) Numbers in square brackets refer to the biblio-
graphy at the end of the paper.

3) The circumflexover x; indicates that x; is omitted,

4) This cohomology group has been studied by A. Heller
in an unpublished work with some other purpose.
Our assertion (5. 3) is also known to him.

5) Our definition of the semi-simplicity of a topologi-
cal group Q c oincides with that of M. Goto [10]
defined for the L-groups but differs with that of
A.M. Gleason [9, p.98]. However, Gleason's
definition differs also with the classicalone for
Lie groups.

[The material contained in this paper was givenin a
series of lectures at the University of Michigan in the
summer of 1951, ]
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