FABER SERIES AND THE LAURENT DECOMPOSITION

H. Tietz

1. INTRODUCTION

This paper deals with the problem of transfer described by J. L. Ullman [5]. Roughly speaking, we should like to have a method for deciding what statements about a Faber series

$$(1) \qquad \qquad \sum_{n=0}^{\infty} a_n F_n(z)$$

are equivalent to analogous statements about the associated power series

(2)
$$\sum_{n=0}^{\infty} a_n z^n$$

with the same coefficients.

Ullman partially solved the problem by means of a lemma concerning the rationality of functions: if one of the series (1) and (2) represents a rational function, then the same is true of the other. The lemma leads to an immediate proof, for example, of Iliev's analogue [2] of Szëgo's theorem on power series whose coefficients assume only a finite number of different values.

We shall establish a result (Theorem 2) which is at the same time more elementary and more general than Ullman's lemma. It asserts that if f(z) denotes the mapping function, normalized at $z=\infty$, which is associated with the analytic curve C giving rise to the Faber sequence $\{F_n(z)\}$, then the difference between the series (1) and the series

(3)
$$\sum_{0}^{\infty} a_{n}[f(z)]^{n}$$

can be continued so as to be holomorphic everywhere on C and outside of C. The proof of this theorem is based on a very simple tool, the *Laurent decomposition*. This device (developed by the author in connection with the extension of the Faber theory to Riemann surfaces; see [3], [4]) is described in Section 2. In Section 3, we give a brief development of the Faber theory, and we prove our fundamental result. The final section is devoted to applications of the theorem.

176 H. TIETZ

2. THE LAURENT DECOMPOSITION

2.1. Let C be a rectifiable Jordan curve in the z-plane, with the interior I(C) and the exterior A(C). With every (single-valued) function ϕ holomorphic on C we associate the two functions

(4)
$$L\phi(z) = \frac{1}{2\pi i} \int_C \phi(\zeta) \frac{d\zeta}{\zeta - z} \quad \text{for } z \in I(C),$$

(5)
$$L *\phi(z) = \frac{-1}{2\pi i} \int_{C} \phi(\zeta) \frac{d\zeta}{\zeta - z} \quad \text{for } z \in A(C).$$

Since the path of integration may be moved slightly, in the neighborhood of the curve C, we see that $L\phi$ is holomorphic in $I(C) \cup C$, and that $L^*\phi$ is holomorphic in $A(C) \cup C$, with $L^*\phi(\infty) = 0$. Therefore $L\phi$ and $L^*\phi$ are holomorphic on C, and

$$\phi = \mathbf{L}\phi + \mathbf{L}^*\phi$$

- on C. In the special case where C is a circle, this relation reduces to the well-known Laurent decomposition of a function which is holomorphic in an annulus containing C. We therefore call L and L* the operators of the Laurent decomposition with respect to C.
- 2.2. From (4) it follows immediately that the operator L is linear and continuous; that is,

(7)
$$L(a\phi + b\psi) = aL\phi + bL\psi.$$

and $\phi_n \xrightarrow{u} \phi$ implies $L\phi_n \xrightarrow{u} L\phi$, where the symbol $\xrightarrow{u} \to$ denotes uniform convergence on every compact subset of E. In particular, if $\phi = F$ is holomorphic in $I(C) \cup C$, then LF = F, and therefore

$$\phi_{\mathbf{n}} \xrightarrow{\mathbf{u}} \mathbf{F}$$

implies immediately

(9)
$$L\phi_n \frac{u}{I(C)} + F.$$

3. FABER THEORY

3.1. Henceforth, we assume that the curve C is analytic. Let t = f(z) be a conformal mapping of A(C) onto the exterior of the circle K: $\{|t| = k\}$, with $f(\infty) = \infty$. Clearly, f is holomorphic and schlicht also on C.

Now let F be a function which is holomorphic in $I(C) \cup C$; then the mapping f carries F into a function G which is holomorphic on K and which has a Laurent expansion

$$G(t) = \sum_{-\infty}^{\infty} a_n t^n$$

on K. Interpreting this series in terms of values z on C and in the neighborhood of C, we deduce that

(10)
$$F(z) = \sum_{-\infty}^{\infty} a_n[f(z)]^n$$

on C; we shall call (10) a Laurent series. By (7), (8) and (9), it follows from (10) that

(11)
$$F(z) = \sum_{n=0}^{\infty} a_n L[f(z)]^n \quad (z \in I(C)).$$

3.2. By (6), the relation $f^n = Lf^n + L^*f^n$ holds throughout the neighborhood of C. Now the functions f^n and L^*f^n are defined throughout A(C); therefore the function Lf^n , which is holomorphic in I(C), can be continued into the entire plane, and

$$Lfn = fn - L*fn$$

throughout A(C). The second term on the right is holomorphic in A(C) and vanishes at $z = \infty$. Since the function f^n also vanishes at $z = \infty$, when n < 0, it follows that

(12)
$$Lf^{n} \equiv 0 (n < 0).$$

On the other hand, for $n \geq 0$ the function f^n is holomorphic in A(C) except for a pole of multiplicity n at $z = \infty$. It follows that Lf^n is a polynomial of degree n; this polynomial is called the *Faber polynomial* F_n (relative to the curve C):

(13)
$$Lf^{n} \equiv F_{n} \quad (n \geq 0).$$

Returning to the function F discussed in Section 3.1, we note that because the curve C is analytic, the hypothesis that F is holomorphic on C can be dropped: if F is holomorphic in I(C), we can replace the curve C by a curve C' which lies in I(C) and which is sufficiently near to C so that f is also holomorphic throughout $A(C') \cup C'$. Nothing is changed, then, when we refer the operators L and L* to the curve C' instead of to C. From (11), (12) and (13) we now obtain the following classical result:

THEOREM 1. If the function F is holomorphic in I(C), it can be represented by a Laurent expansion $F = \sum_{-\infty}^{\infty} a_n f^n$ near C and by a Faber expansion $F = \sum_{0}^{\infty} a_n F_n$ in I(C).

3.3. If a series (1) converges uniformly in each compact subset of I(C), we call it a *Faber series*. Let F denote the holomorphic function to which such a series converges. If we replace each of the functions F_n by its Laurent series in f and note that this "series" consists of precisely two terms, we obtain the relation

$$F = \sum_{n=0}^{\infty} b_n f^n,$$

178 H, TIETZ

where $b_n = a_n$ for $n \ge 0$. Since the Laurent coefficients are uniquely determined by F, the Faber series of the function is also uniquely determined. And since the function $\Sigma_{-\infty}^{-1}b_nf^n$ is holomorphic in $A(C)\cup C$ and vanishes at $z=\infty$, we have established the following conclusion.

THEOREM 2. Let Σ_0^{∞} $a_n F_n$ be a Faber series, let F(z) denote its sum in I(C), and let $g(z) = \Sigma_0^{\infty} a_n f^n$. Then the function F(z) - g(z) can be continued analytically throughout $A(C) \cup C$; it is represented there by the series $\Sigma_0^{\infty} a_n (F_n - f^n)$; and it vanishes at $z = \infty$.

COROLLARY. Let Σ $a_n F_n$ be a Faber series, and let R_1 and R_2 denote the Riemann surfaces on which the two functions $\Sigma_0^\infty a_n F_n$ and $\Sigma_0^\infty a_n f^n$ are holomorphic. Then the portions of R_1 and R_2 which lie above the set $A(C) \cup C$ are identical.

In particular, Ullman's lemma becomes immediate if we interpret the "power series" $\sum_{n=0}^{\infty} a_n f^n$ as the series $\sum_{n=0}^{\infty} a_n t^n$.

4. FABER SERIES

4.1. It follows from the proof of Theorem 2 that a Faber series Σ_0^∞ $a_n F_n$ and its associated power series Σ_0^∞ $a_n f^n$ have a common "ring" of convergence in I(C). Since the operator L*, like L, is linear and continuous, it follows that in A(C) \cup C the partial sums $s_n^* = \Sigma_0^n a_k L^* f^k$ converge uniformly to a holomorphic function. By (6) and (13), the corresponding partial sums

$$\sigma_n = \sum_{k=0}^{n} a_k F_k$$
 and $S_n = \sum_{k=0}^{n} a_k f^k$

satisfy the condition $\sigma_n = s_n - s_n^*$, on $A(C) \cup C$, and it follows that if one of two sequences $\{\sigma_{n_i}\}$ and $\{s_{n_i}\}$ converges (uniformly) on some subset of $A(C) \cup C$, then the other does likewise, and the difference of the two limits can be extended so that it is holomorphic in $A(C) \cup C$. We summarize:

THEOREM 3. The series $\Sigma a_n F_n$ and $\Sigma a_n f^n$ have the same sets of convergence and of uniform convergence, in $A(C) \cup C$. The same applies to sets of overconvergence, natural boundaries, and sets of continuity at the boundary.

More can be said; but it is obviously not feasible to compile a catalogue of theorems on Taylor series which can be restated in terms of Faber series.

4.2. Finally, we deduce a result of P. Heuser [1], by the method of the Laurent decomposition. Let C_i (i=1,2) be an analytic simple closed curve in the z_i -plane, and let the functions $t=f_i(z_i)$ map the domains $A(C_i)$ conformally onto the exterior of the same circle K in the t-plane. Let $F_n^{(i)}(z_i)$ and L_i denote the corresponding Faber polynomials and Laurent operators. We wish to find a relation between functions

$$F^{(1)}(z_1) = \sum_{n=0}^{\infty} a_n F_n^{(1)}(z_1)$$
 and $F^{(2)}(z_2) = \sum_{n=0}^{\infty} a_n F_n^{(2)}(z_2)$

with the same set of Faber coefficients.

Let

$$F^{(1)}(z_1) = \sum_{-\infty}^{\infty} a_n [f_1(z_1)]^n$$

be the Laurent expansion of $F^{(1)}(z_1)$ near C_1 . Since the relation $t = f_1(z_1) = f_2(z_2)$ defines a holomorphic mapping $z_1 = \gamma(z_2)$ of $A(C_2) \cup C_2$ onto $A(C_1) \cup C_1$, the relation

$$F^{(1)}(\gamma(z_2)) = \sum_{n=0}^{\infty} a_n [f_2(z_2)]^n$$

holds near C2. On the other hand,

$$L_2\left(\sum_{-\infty}^{\infty} a_n[f_2(z_2)]^n\right) = \sum_{n=0}^{\infty} a_n F_n^{(2)}(z_2) = F^{(2)}(z_2).$$

From this follows Heuser's result:

$$F^{(2)}(z_2) = L_2 \left(F^{(1)}[\gamma(z_2)] \right) = \frac{1}{2\pi i} \int_{C_2} F^{(1)}[\gamma(\zeta)] \frac{d\zeta}{\zeta - z_2} \qquad (z_2 \in I(C_2)).$$

REFERENCES

- 1. P. Heuser, Ueber eine Transformation der Faberschen Polynomreihen, Math. Z. 38 (1934), 777-782.
- 2. L. Iliev, Series of Faber polynomials whose coefficients assume a finite number of values, Doklady Akad. Nauk SSSR (N.S.) 90 (1953), 499-502.
- 3. H. Tietz, Laurent-Trennung und zweifach unendliche Faber Systeme, Math. Ann. 129 (1955), 431-450.
- 4. ——, Faber-Theorie auf nicht-kompakten Riemannschen Flächen, Math. Ann. 132 (1957), 412-429.
- 5. J. L. Ullman, On Faber series. 1. A problem of transfer, Michigan Math. J. 2 (1953-1954), 109-114.

University of Münster, Westphalia, Germany

