FABER SERIES AND THE LAURENT DECOMPOSITION
H. Tietz

1. INTRODUCTION

This paper deals with the problem of transfer described by J. L. Ullman [5].
Roughly speaking, we should like to have a method for deciding what statements about
a Faber series

-]

(1) > a,F (z)
0

are equivalent to analogous statements about the associated power series
o0

(2) 2 a,zt
0

with the same coefficients.

Ullman partially solved the problem by means of a lemma concerning the ration-
ality of functions: if one of the series (1) and (2) represents a rational function, then
the same is true of the other. The lemma leads to an immediate proof, for example,
of Iliev’s analogue [ 2] of Szégo’s theorem on power series whose coefficients assume
only a finite number of different values.

We shall establish a result (Theorem 2) which is at the same time more elemen-
tary and more general than Ullman’s lemma. It asserts that if f(z) denotes the map-
ping function, normalized at z = «, which is associated with the analytic curve C
giving rise to the Faber sequence {F;(z)}, then the difference between the series (1)
and the series

(3) z ay[f(2)]"
0

can be continued so as to be holomorphic everywhere on C and outside of C. The
proof of this theorem is based on a very simple tool, the Laurent decomposition.
This device (developed by the author in connection with the extension of the Faber
theory to Riemann surfaces; see [3], [4]) is described in Section 2. In Section 3, we
give a brief development of the Faber theory, and we prove our fundamental result.
The final section is devoted to applications of the theorem.
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2. THE LAURENT DECOMPOSITION
2.1. Let C be a rectifiable Jordan curve in the z-plane, with the interior I(C)

and the exterior A(C). With every (single-valued) function ¢ holomorphic on C we
associate the two functions

4) Lo(z) = —él—m J;;P(C)% for z € I(C),
(5) L*p(z) = 5'371—1 J ¢(C)—Cd_iz for z € A(C).
C

Since the path of integration may be moved slightly, in the neighborhood of the curve
C, we see that L¢ is holomorphic in I(C) U C, and that L*¢$ is holomorphic in
A(C) U C, with L*)(w) = 0. Therefore L¢ and L*p are holomorphic on C, and

(6) ¢ = Lo+ L*p

on C. In the special case where C is a circle, this relation reduces to the well-
known Laurent decomposition of a function which is holomorphic in an annulus con-
taining C. We therefore call L. and L* the operators of the Laurent decomposition
with respect to C.

2.2. From (4) it follows immediately that the operator L is linear and continuous;
that is,

(7 L(a¢ + by) = aL¢ + bLy,

u . : u u .
and ¢n-—C—>¢ implies qunI(_CT) L¢, where the symbol > denotes uniform con-

vergence on every compact subset of E. In particular, if ¢ = F is holomorphic in
I(C) U C, then LF = F, and therefore

(8) bn> F

implies immediately

9) Lén 07> F -

3. FABER THEORY

3.1. Henceforth, we assume that the curve C is analytic. Let t = f(z) be a con-
formal mapping of A(C) onto the exterior of the circle K: {|t| = k}, with f(w) = oo,
Clearly, f is holomorphic and schlicht also on C.

Now let F be a function which is holomorphic in I(C) U C; then the mapping f
carries F into a function G which is holomorphic on K and which has a Laurent
expansion
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o0
Gty = T a,t”
-00

on K. Interpreting this series in terms of values z on C and in the neighborhood of
C, we deduce that

[=e]

(10) Fz) = 3 agiz)]"

- 00

on C; we shall call (10) a Laurent series. By (7), (8) and (9), it follows from (10)
that

(11) F(z) = 3 a,L[f@@)]" (ze€IC).

3.2. By (6), the relation f? = Lfn + L*f™ holds throughout the neighborhood of C.
Now the functions f? and L*fn are defined throughout A(C); therefore the function
Lf™, which is holomorphic in I(C), can be continued into the entire plane, and

Lfn = fn - L*n

throughout A(C). The second term on the right is holomorphic in A(C) and vanishes
at z = . Since the function f® also vanishes at z = o, when n < 0, it follows that

(12) LEf"=0 (<0).

On the other hand, for n> 0 the function f® is holomorphic in A(C) except for a pole

of multiplicity n at z = . It follows that Lf™ is a polynomial of degree n; this poly-
nomial is called the Faber polynomial F,, (relative to the curve C):

(13) Lf" = F (n>0).

Returning to the function F discussed in Section 3.1, we note that because the
curve C is analytic, the hypothesis that F is holomorphic on C can be dropped: if
F is holomorphic in I(C), we can replace the curve C by a curve C' which lies in
I(C) and which is sufficiently near to C so that f is also holomorphic throughout
A(C') U C'. Nothing is changed, then, when we refer the operators L and L* to the
curve C' instead of to C. From (11), (12) and (13) we now obtain the following classi-
cal result:

THEOREM 1. If the function F is holomorphic in I(C),it can be represented by
a Lauvent expansion F =% % a " near C and by a Faber expansion F =xPa F,
in I(C). .

3.3. If a series (1) converges uniformly in each compact subset of I(C), we call
it a Faber series. Let F denote the holomorphic function to which such a series con-
verges. If we replace each of the functions F, by its Laurent series in f and note
that this “series” consists of precisely two terms, we obtain the relation

o0
F= 2 b,f?,

- 00
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where b, = a,, for n> 0. Since the Laurent coefficients are uniquely determined by
F, the Faber series of the function is also uniquely determined. And since the func-
tion Z-4 b,f? is holomorphic in A(C) U C and vanishes at z = », we have established
the following conclusion.

THEOREM 2. Let ZF a,F, be a Faber series, let F(z) denote its sum in 1(C),
and let g(z) = =3 anf™. Then the function F(z) - g(z) can be continued analytically
throughout A(C) U C; it is vepresented theve by the sevies Zgy an(Fn - ™); and it
vanishes at z = «,

COROLLARY. Let Za,F, be a Faber sevies, and let R, and R, denote the
Riemann surfaces on which the two functions = a,F, and =3 anf™ ave holomorphic.
Then the portions of R, and R, which lie above the set A(C) U C ave identical.

In particular, Ullman’s lemma becomes immediate if we interpret the “power
series” g’ a,f" as the series g a,t™

4. FABER SERIES

4.1. It follows from the proof of Theorem 2 that a Faber series 23 a,F, and its
associated power series 23 a, f® have a common “ring” of convergence in I(C).
Since the operator L*, like L, is linear and continuous, it follows that in A(C) U C
the partial sums sX = 2} akL*fk converge uniformly to a holomorphic function. By
(6) and (13), the corresponding partial sums

n n
o, = > a,F, and s = X akfk
0 [}

n

satisfy the condition o, = s, - s¥%, on A(C) U C, and it follows that if one of two se-
quences {on;} and {sn;} converges (uniformly) on some subset of A(C) U C, then
the other does likewise, and the difference of the two limits can be extended so that
it is holomorphic in A(C) U C. We summarize:

THEOREM 3. The servies Za,Fyn and T anf™ have the same sets of convergence
and of uniform convevgence, in A(C) U C. The same applies to sets of overconverg-
ence, natuval boundavies, and sets of continuity at the boundary.

More can be said; but it is obviously not feasible to compile a catalogue of theo-
rems on Taylor series which can be restated in terms of Faber series.

4.2. Finally, we deduce a result of P. Heuser [1}, by the method of the Laurent
decomposition. Let C; (i=1, 2) be an analytic simple closed curve in the z;-plane,
and let the functions t = f;(z;) map the domains A(C;) conformally onto the exterior
of the same circle K in the t-plane. Let Fﬂ}) (z;) and Lj denote the corresponding
Faber polynomials and Laurent operators. We wish to find a relation between func-
tions

F@)(zl) = E anF{.})(zl) and F(Z)(zz) = 2, aanf)(zz)
V] ]

with the same set of Faber coefficients.
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Let
F(l)(zl) = X an[fl(z1)]n

be the Laurent expansion of F(2) (z,) near C,. Since the relation t = £,(z,) = f,(z,)
defines a holomorphic mapping z, = v(z,) of A(C,) U C, onto A(C,) U C,, the rela-
tion

FO(z)) = X a,ff,(z)]"

holds near C,. On the other hand,

% 0,7 = 70 .

Y]

Lz( g an[fz(zz)]n)

From this follows Heuser’s result:

FO@) = L, (FOb@)]) = ¢ fc FOly @l g5 (@ 1),
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