AMBIGUOUS POINTS OF A FUNCTION HARMONIC INSIDE A SPHERE

F. Bagemihl

Let x, y, z denote the Cartesian coordinates of a point in three-dimensional Euclidean space, and set

$$S = \{(x, y, z): x^2 + y^2 + z^2 < 1\}, \quad T = \{(x, y, z): x^2 + y^2 + z^2 = 1\}.$$

THEOREM. There exists a harmonic function h(P) ($P \in S$) such that, for every $Q \in T$ and every real number r, including the values $+\infty$ and $-\infty$, there is a Jordan arc J_r^Q lying wholly in S except for its end point Q, with the property that

$$\lim_{P \to Q, P \in J_r^Q} h(P) = r.$$

Proof. Piranian has shown [2, Remark 2] that there exists a continuous function f(P) $(P \in S)$ such that the assertion we have made concerning the boundary behavior of h(P) holds for f(P); he has constructed a tree G in S such that, for every $Q \in T$ and every $Q \in T$ and

Let

$$0 < \mathbf{r}_0 < \mathbf{r}_1 < \dots < \mathbf{r}_n < \dots < 1, \quad \lim_{n \to \infty} \mathbf{r}_n = 1,$$

$$S_n = \{(x, y, z) \colon x^2 + y^2 + z^2 < \mathbf{r}_n^2\}, \quad T_n = \{(x, y, z) \colon x^2 + y^2 + z^2 = \mathbf{r}_n^2\} \quad (n = 0, 1, 2, \dots),$$

$$K_n = (S_n \cup T_n \cup G) \cap (S_{n+1} \cup T_{n+1}) \quad (n = 0, 1, 2, \dots).$$

For every nonnegative integer n, K_n is a compact set with the property that any continuous function on K_n that is harmonic at every interior point of K_n can be uniformly approximated on K_n as closely as desired by a harmonic polynomial (see [1]; I am indebted to Professor J. L. Walsh for this reference).

We define, by induction on n, a harmonic polynomial $h_n(P)$, as follows. Let

$$g_0(P) = 0$$
 $(P \in S_0 \cup T_0),$
 $g_0(P) = f(P)$ $(P \in G \cap T_1),$

and let $g_0(P)$ be linear on each segment of G which extends from T_0 to T_1 . Then $g_0(P)$ is continuous on K_0 and harmonic at every interior point of K_0 , and hence there exists a harmonic polynomial $h_0(P)$ for which

$$|h_0(P) - g_0(P)| < 1$$
 $(P \in K_0)$.

Suppose that n>0, and that we have defined the harmonic polynomial $h_{n-1}(P)$. Let

Received March 22, 1957.

$$g_n(P) = h_{n-1}(P)$$
 $(P \in S_n \cup T_n)$,

$$g_n(P) = f(P)$$
 $(P \in G \cap T_{n+1}),$

and let $g_n(P)$ be linear on each segment of G which extends from T_n to T_{n+1} . Then $g_n(P)$ is continuous on K_n and harmonic at every interior point of K_n , and hence there exists a harmonic polynomial $h_n(P)$ for which

$$|h_n(P) - g_n(P)| < 2^{-n}$$
 $(P \in K_n)$.

This completes the induction.

If j > k > n > 1, then

$$\left|h_{j}(P) - h_{k}(P)\right| < \sum_{m=k+1}^{\infty} 2^{-m} \quad (P \in S_{n} \cup T_{n}),$$

so that the sequence $\{h_n(P)\}$ converges uniformly on every compact subset of S to a harmonic function h(P) $(P\in S).$

If $P \in G \cap (S_{n+1} - S_n)$, where n > 1, then

$$\big|\,h(P)$$
 - $f(P)\,\big|<\sum\limits_{m=n-1}^{\infty}2^{-m}$.

Consequently,

$$\lim_{P\to T, P\in G} [h(P) - f(P)] = 0,$$

and the proof of our theorem is complete.

REFERENCES

- 1. J. Deny, Sur l'approximation des fonctions harmoniques, Bull. Soc. Math. France 73 (1945), 71-73.
- 2. G. Piranian, Ambiguous points of a function continuous inside a sphere, Michigan Math. J. 4 (1957), 151-152.

University of Notre Dame