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Universal Complexes and the
Generic Structure of Free Resolutions

ALEXANDRE B. TCHERNEV

Introduction

An important aspect of modern commutative algebra is the study of the structure
of finite free resolutions. The first significant result in this direction goes back to
Hilbert [22]; in its most general form, due to Burch [11], it describes the struc-
ture of free resolutions of length 2 whose component in degree 0 is a free module
of rank 1. This theorem was generalized by Buchsbaum and Eisenbud [10], who
obtained structure theorems for arbitrary finite free resolutions. The question of
whether these are the “best possible” structure theorems was one of the topics of
Hochster’s influential CBMS lectures [23]. Hochster’s approach to this problem
is to describe a generic resolution of a given type from which all other resolutions
of the same type are obtained by base change.

To be specific, leR be a commutative algebra over a (fixed) base kngnd

let
x

F=0— R» 25 Rt 5 ... 5 g1 X2, R0, M

be a complex, wher& ® = (xl.(}‘)) # 0 is the matrix of theth differential in the
standard bases @&’ andR**-1, k = 1, ..., n. Hochster calls the paifR, F) a

universal pairif F is acyclic and if, for each commutatidealgebraS and each
free resolution

G=0— st 22 gt .y gt 22 g0 g )
there exists a unique-algebra homomorphism: R — S such that(x) =
z(k) thusG = F ®x S. When it exists, a universal pair, F) is determlned upto
|somorph|sm by the sequence of@stti number® = (bo, ..., b,); we callR the
universal ring of typ& overk, andF theuniversal resolution of typk overk.

A main step in Hochster’s program is to establish the valudgof. ., b, for
which a universal pair exists. Hochster [23] (wheris either the ring of inte-
gersZ, or a field) and later Bruns [5] (in general) show that, wherc 2, a
necessary and sufficient condition for existence is that the “expected ranks”
Z;‘:k(—l)“"bs satisfyro > 0 andr, > 1for1l < k < n. Whenn > 3, Bruns
[5] shows that universal pairs do not exist, regardless of the choice of the numbers
bo, ..., by.
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66 ALEXANDRE B. TCHERNEV

These results raise the question of investigating the properties of the universal
pair (R, F) forn < 2. Whenn = 11itis easy to see that the universal riRgs a
polynomial ringk[X ©] overk whose variables are the entries df & m matrix
of indeterminatest @ and that the universal resolutiénis given by

. mx(l) &
F=0— R" —> R" — 0.

If n = 2 and the universal resolution has the form
m—1 x@ m x®
F=0—R — R™" ~— R — 0,
then the Hilbert—Burch theorem shows that the universal Rrig a polynomial
ring overk whose variables are the entries)f and an additional variable

Whenn = 2 andbg > 2, the situation is more complicated. Sin€és acyclic,

a factorization theorem of Buchsbaum and Eisenbud [10] impliesRitaintains
('jf) special elements calld8uchsbaum-Eisenbud multiplieme multiplier for
eachri-element subset ofl, ..., bg}. Whenk is eitherZ or a field, results of
Hochster [23] and Huneke [27] show th&tis a normal domain generated over
k by the entries of the matrices™, X @ and by the multipliers; under the same
assumptions ok, Bruns [4] proves thar is factorial.

Animportant application of these results was discovered by Heitmann [21], who
used them to construct a counterexample to the rigidity conjecture.

More is known on the structure & whenk is a field of characteristic 0: the
theorems of Huneke and Bruns just cited, together with an unpublished result of
Hochster, yield thaR is Gorenstein; Pragacz and Weyman [35] determine the re-
lations of R and show that it has rational singularities.

Whenk is arbitrary, Pragacz and Weyman [35] construct a candidat® #ord
propose a Hodge algebra structure on it. However, in Example 9.1 we show that
this Hodge algebra structure is not well-defined. Further examples in Section 9
suggest that the theory of Hodge algebras in its present form is not appropriate for
the study of universal rings.

We prove that the candidate of Pragacz and Weyman is indeed a universal ring,
thus obtaining an explicit description of the universal pairs. Using this and the
theory of Grébner bases, we generalize (with new proofs) to arbitrary base rings
all those results about universal pairs mentioned in the previous paragraphs, and
we perform a detailed investigation of the arithmetic properties and the singulari-
ties of the universal ring.

We summarize our results in the following theorem.

MAIN THEOREM. Letk be a commutative ring, lét= (bq, b1, b,) be a sequence
of positive integers such thag = bg — b1+ b, > 0andry; = by — b, > 1, and let

xX@ x@®
F=0— RP2 2, g1 2, Rbo 0

be the universal resolution of typeoverk.

(i) The universal ringR is a finitely presented-algebra with generators and
relations described irf2.3). It is a free module ovek, with a free basis de-
scribed in(5.8).
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(if) TheringR has a gradingR = 69/'20 R; with Rg = k such that the entries

of X® and X@ are homogeneous of degrée- b, andry, respectively.
(iii) TheringR is reduced if and only ik is reduced.

(iv) TheringR is a domain if and only ifk is a domain.

(v) TheringR is a Krull domain if and only ifk is a Krull domain. Wherk is
a Krull domain, there is an isomorphism of divisor class gro@er) =
Cl(k).

(vi) TheringR is factorial if and only ifk is factorial.

(vii) TheringR is Cohen—Macaulay if and only it is Cohen—Macaulay.
(viii) TheringR is Gorenstein if and only ik is Gorenstein.

(ix) TheringR is regular if and only ifk is regular andr; = 1.

(x) If kis a perfect field of positive characteristic th&nis F-regular.

(xi) If kis afield of characteristi© thenR has rational singularities.

Universal rings have a particularly nice structure when= 1, that is, when the
universal resolution has the form

F=0— rm 1 X%, gm X% Rk 0,
In this case the defining equations show tRas a polynomial ring ovek with
the entries ofX @ and the Buchsbaum-Eisenbud multipliers as variables. When
k =1, this is precisely the Hilbert—Burch theorem.
Another immediate application of the presentation of the universal rings is to a
situation “dual” to the Hilbert-Burch theorem—that is, when the universal reso-
lution F has the form

F=0— R X, gm X2, gm-1_,

The ideal of relations for is then precisely the generic Herzog ideal of grade
(as defined in [1]), which parametrizes the gradésorenstein ideals two links
away from a complete intersection. In this case Kustin and Miller [30] resolve
the universal ring and describe a DG-algebra structure on its minimal resolution,
and Avramov, Kustin, and Miller [1] prove that all finit®-modules have rational
Poincaré series whénis a field. It is an interesting open problem whether these
properties extend to all universal rings over fields.

Following the approach of Bruns [4], we consider a more general problem and
study a wider class of universal objects. For a comfleas in (1), we say that
(R, F) is a kuniversal pairif the complex is acyclic in depth 1 (i.eF, is acyclic
for eachp € SpeqR) with depthR, < 1) and if, for each commutativie-algebra
S and each acyclic in depth-1 complex (1), there exists a urligakyebra map
u: R — SsuchthaG = F ®¢ S. Itis shown in [5] that a 1-universal pair exists
ifand only ifro > O andr; > 1for1<i < n (with no restrictions om this time).

Whenn < 2, the notions of universal pair and 1-universal pair coincide. Thusthe
various assertions of the Main Theorem are special cases of Remark 2.4 and Theo-
rems 2.5-2.9, which give a detailed description of the 1-universal pairs. These the-
orems generalize results of Bruns [4] and of Pragacz and Weyman [35] to arbitrary
base rings. In particular, we show that the factorization theorem of Buchsbaum
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and Eisenbud [10, Thm. 3.1] in the version of Eagon and Northcott [16, Thm. 3]
determines completely the generic structure of finite free complexes acyclic in
depth 1 and hence is—in a precise sense—the best possible structure theorem for
such complexes.

1. Buchsbaum-Eisenbud Multipliers

Throughout this paper, rings are commutative with unit, and modules are unitary.

We write A = {a; < --- < a,} to express in compact form thdtis the set
of integers{ay, ..., a,} arranged in increasing order. When the séts- {a; <

- <a,}andC = {c1 < --- < ¢} are disjoint, we writey4 ¢ for the sign of the
permutation that arranges the elements of the sequence., a,, c1, ..., ¢;) in
increasing order. For a subsétC {1, ..., b} we denote byA| the cardinality of
A and byA (or A~) the complement oft in {1, ..., b}.

IfA={a < - <aJandD = {d; < --- < d,} are sets of positive inte-
gers and ifX is a matrix over a ring, then we writed| D)y or (A|da, ..., d,)x
or {ay,...,a,|ds, ..., d,)x for the minor of X on rowsas, ..., a, and columns
dy,....d,.

We recall the notion of thgradeof an ideall in aringR. If I is a proper ideal
then set g¢ I = sup{k | I contains ank-regular sequence of length; else set
grr I = co. The grade of is defined as

gradel = lim grg[x,,... . x,] IR[ X1, ..., X,],
§—>00

whereR[X;, ..., X,] is the polynomial ring oveRr in the indeterminateXs, ...,
X,. We refer to [33, Chaps. 5-6] for the properties of this notion of grade (de-
noted there by Gr{I/} and calledrue gradeor polynomial gradg WhenR has a
unigue maximal ideah we set depttR = gradem.

We say that a complex of freR-modulesF is acyclic in depthL if F, is acyclic
for eachp € SpecR) with depthR, < 1.

For the rest of this section,

n 1
F=0— g X ghi s . L gt X pio g
is a complex that is acyclic in depth 1. Thepected rankfor the sequencé =
(bo, ..., b,) are the integers

Y (=D if 0 <i <n,
"o if i=n+1
Note that; > 0fori =0, ..., n owing to the acyclicity condition oFf.
We quote the factorization theorem of Buchsbaum and Eisenbud [10] in the ver-

sion of Eagon and Northcott [16, Thm. 3]. To simplify notation, we W(HA¢E ),
for the corresponding minor of the matrk® .

(1.1) THeoreM [10; 16]. For everyl < k < n and every-element subset C
{1, ..., by_1} there exists a uniquely determined elemésf, € R such that the
expressiongwhere(a),.1 =1
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(AlE)N — Vi p(AN(E)ir1 1.2)
are equal ta0in R foranyE C {1, ..., b} with |E| = ry.

The elementgA); from (1.1) arecalledBuchsbaum—Eisenbud multiplieiar the
complext. We derive some further relations in the riRghat involve these multi-
pliers. In somewhat different notation, these formulas appear in [35, Lemma 1.2].

(1.3) ProposiTION. The expressiongvhere each sum is ovér)

IUl=q
Z Va,c\r Vevr,r Vr,p{A U (C\ T))(I" U D)y (1.4)
CNACTCC\D
IFl=q
Z Va,e\r Vor,r Vre{AU(C\ D) (U E | Fi (1.5)
CNACTCC\E
IT|=t
> Vi.r Vr.k (G | HUDR(T U K )i (1.6)

PS{l,..., b \(AUHUK)

are equal to intheringR for1 < k <n,anyA,C,D,E,G C {1,..., b;_1},
and anyF, H, K, A C {1, ..., b;} such that

|Al =r¢ — p, |Fl=s=<r, |Gl=m=n,
|D|:rk_qv |E|:5_Qa |H|:m_t7
ICl=p+q=>rn+1 |K|l=ra—t, [Al <t =<min(m,rgg).

(1.7) REMARK. Sincer,.; = 0, there are no expressions of the form (1.6)
with k = n.

Let N; € R’ -1 be the image ok ® for 1 < i < n, and writeT for the total ring
of fractions ofR.

(1.8) Lemma. Assume that, foi = 1, ..., n, the ideal/,,(X¥) contains ank-
regular element.

For eachl < i < n, the T-moduleN; ®z T is free of rankr; and has a free
T-basis such that, for each C {1, ..., b,_1} with |A| = r;, the Buchsbaum—
Eisenbud multiplieA); € R is precisely the maximal mingrA |1, ..., r;)y @ Of
theb;_1 x r; matrix M @ of the homomorphisit¥; @ T — R ®x T.

Proof. Sincel,,(X)T = T fori =1, ..., n, the complexr ®x T is split acyclic
and henceV; ®z T is free of rankr;.

BecauseR® C T andthe expressions (1.2) determine completely the Buchsbaum—
Eisenbud multipliers, after tensoring withwe may assume tha = T, thatN;
is a freeR-module of rank;, and thaf is split acyclic. Under these assumptions,
the lemma is an immediate consequence of the proof of [6, Thm. (3.2)]. O

Proof of Proposition 1.31t is immediate from [16, Thm. 2] that gradg(X ) >
1fori =1,...,n. Thus, by adjoining a variable t8, we may assume that the
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ideal ,,(X ) contains ank-regular element for each4 i < n. Let M® (i =
1, ..., n) be the matrices from Lemma 1.8 whose minors equal the Buchsbaum-—
Eisenbud multipliers. Note that the relations (1.4) are simply the Pllcker relations
on the maximal minors off ©; see [8, (4.4)].

LetY® be theb;_1 x (b; +r;) matrix overT whose firsb; columns are the col-
umns ofX @ and whose las} columns are the columns 8f ¥, Since ImM® =
Im X @ the rank ofy @ is r;; thus, the relations (1.5) are among the Pliicker rela-
tions fory ®.

Finally, for each 1< i < n — 1 we haveX ® M @+D = 0; hence [15, Cor. 1.2]
yields the relations (1.6). O

2. Universal Complexes

For the rest of this papeb,= (bo, ..., b,) is a sequence of positive integers such
that the expected ranks satisfy

Xn:( Dip == [0 TI=0
- STIHE11 if1<i<n

(2.1) DeriNiTION. Letk be aring, letR be ak-algebra, and Ieff be a complex
of free R-modules as in (1) of the Introduction.

The pair(R, F) is called tuniversal(of typeb overk) if F is acyclic in depth 1
and if, for eachk-algebraS and each acyclic in depth-1 complex (1), there exists
a uniquek-algebra homomorphism: R — S such that(X®) = Zz® fori =
1 ...,n.

If (R, F) is 1-universal of typ& overk, thenR is theuniversal ring of typeb
overk andF is theuniversal complex of typleoverk.

(2.2) REMARKS. (@) It is proved in [5] that a 1-universal paiR, F) of type b
overk exists. Clearly it is determined up to a unique isomorphisnh.by

(b) It is immediate from the acyclicity criterion of Peskine and Szpiro [34] in
the version of Northcott [33, Chap. 5, Thm. 21] that, for< 2, the notion of
1-universal pair coincides with Hochster’s notion of universal pair recalled in the
Introduction.

Fork=1,...,n,letxX® = (xl.(jk)) be ab,_1 x b, matrix of indeterminates and let
My ={{A | AC{L....bi_1}, |Al =ri)

be a set of indeterminates. Consider the polynomial ffg @, ..., X,
My, ..., M,] whose variables are the entries Bf' and the elements af/,,

1<k <n.Let
n—1

J = Z Il(X(k)X(k+l)),
k=1
let J” be the ideal generated by all expressions from (1.2), (1.4), (1.5), and (1.6),
and set
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Ri() =k[XD, ..., X" My, ..., M,]/Jx(b), where Jy(b) =J'+J". (2.3)

By abuse of notation we write”), X ¥, (A),, andM, also for the images of these
objects inRy(b), and we refer taV, as thekth set of multipliersof Ry (b).

(2.4) REMarks. (a) By expanding axv, + 1) x (r + 1) minor of X© along a
column, it is easy to see that the minor reduces to 0 modulo the relations (1.2) and
(1.5). Thus there are inclusiods 1(X®) C Ju(b) fork=1,....,n — 1

(b) Define a grading on the ririg{ X, ..., X™ M,, ..., M,] by

141 if k=1
deg(x,-(}“)) - [ neitren i 2<k<n-1
a1 if k=n;
no k=1
deg(Ak) = { rr if 2 <k <n.

Note that the idealy (b) is homogeneous in this grading, thus makRgb) a
positively gradedk-algebra.

Let Fi(b) be the complex

0— Ry’ X% Ru(B)ot — - — Ry(b)" X Ry(B)? — O,

The following theorems are the main results of this paper.
(2.5) THEOREM. The pair(Ry(b), Fx (b)) is 1-universal of type overk.

(2.6) THEOREM. (i) The ring Ry (b) is reduced(respectively, a domajrif and
only if k is reduced(respectively, a doma)n

(if) The ring Rk (b) is a Krull domain if and only ifk is a Krull domain. Ifk
is a Krull domain then there is an isomorphism of divisor class graddlg&) =
Cl(Rk (D).

(iii) The ringR () is factorial if and only ifk is factorial.

(2.7) THEOREM. The homomorphisth — Ry (b) is faithfully flat with Goren-
stein fibers. In particular R (b) is Cohen—Macaulayresp., Gorenstehif and
only if k is Cohen—Macaulayresp., Gorensten

(2.8) THEOREM. The ringR(b) is regular if and only ifk is regular andr; =1
foreachl<i<n-1

(2.9) THEOREM. Letk be a perfect field. Ifchark = p > 0, then Ry (b) is
F-regular; if chark = 0, thenRy(b) has rational singularities.

REMARKS. (a) In view of Remarks 2.2(b) and 2.4(b), the Main Theorem is an
immediate corollary of (2.5)—(2.9) and (5.8).

(b) Whenk is a field of characteristic 0, Theorems 2.5 and 2.9 are due to Pragacz
and Weyman [35]. Inthe general case they incorrectly proposed (see Example 9.1)
a Hodge algebra structure on the riRg(b).
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In this and the next two sections we present, modulo Lemmas 3.2 and 3.3, the
proofs of Theorems 2.5, 2.6, and 2.8. The proofs of Theorems 2.7 and 2.9 are
given in Section 8.

The proofs of (2.5) and (2.6) use induction @ = ) _"_, ;. The following
lemma provides the basis for these inductive arguments and is also an essential
ingredient in the proof of Theorem 2.8.

(2.10) Lemma. If r;, = 1 for eachl < i < n — 1, then there is g-algebra
isomorphism
k[X™, My, ..., M,_1] = Ri(b)

induced by the canonical projectid X, ..., X" M, ..., M,] — Ry(b).

Proof. Fori = 2,4,5,6 we set); = ) ’_, J;;, whereJ;; C k[X®, ..., xm™,

My, ..., M,] is the ideal generated by all expressions fr@dm) with k = j; thus
Ju) =T + T2+ Ja+ Js+ Js.

Note that/s, = 0 by (1.7). Since; = 1fori =1, ...,n — 1, itis straightforward
to verify that

Jsj =0 for j=1...,n—1
Jej € J2 for j=1,...,n—-1
Jsj S Ja+Jaj for j=1....,n-1
L(XDxU+Dy c g, for j=1,. -2

Note also that, moduld,, the entries ofx "~VX ™ (resp., the expressions from
(1.4) and (1.5) withk = ) are multiples of Pliicker relations on the minorsxgf’
and hence equal 0. Therefosg(b) = J,, and the conclusion of the lemma is
immediate. O

Proof of Theorem 2.8If k is regular and; = 1for each 1< i < n — 1, then
Ry (b) is regular by (2.10).

Conversely, assume thA&f, (b) is regular. Therk is regular by Lemma 3.2 and
we need only show that = 1 for each 1< i < n — 1 Thus we may also assume
(after a suitable localization) thitis a field.

Let m (resp.,91) be the maximal ideal oR (resp., ofQ = k[X@D, ..., xX™,
My, ..., M,]) generated by the entries &f® and the elements aif;, k =
1,...,n. Since the ringR,, = Qg /Jk(b)s is regular and local, each mini-
mal generator off, (b)oy is part of a regular system of parametersby;.

Leti be aninteger such thatdi < n — 1andr; > 2. Set

w= (.. rriga+L . b — (L. il )i

and note thatv € Ji (b)9y andw € Dﬁfm Assume thaty € M Jy (b)9n and letlt C
Mon be the ideal generated by the set

{x“)|]7él orp>ri+1,0rqg <rigfUMiU---UM,.
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It is immediate that, in the regular ring = Qqy/M, the idealJi (b)on + MN/N

is generated by & w = w + 91. On the other hand, fdt = Mgy /N we have

w € Mw and thusy = 0. Hence the assumptian € M Jy (b)oy leads to a contra-
diction and saw is a minimal generator afy (b)oy, Which is not part of a regular
system of parameters f@yy. This, however, contradicts the conclusion of the
previous paragraph. We therefore have- 1 for each 1< i < n —1, which com-
pletes the proof of Theorem 2.8. O

3. Proof of Theorem 2.5

(3.1) Lemma. Ifr; =1foreachl <i < n—1, thenthe complek(b) is acyclic
in depthl.

Proof. Let R = Ry (b) andF = Fy(b). Forj = 1,...,n, setl; = I, (X'"). By
(2.10) we haveR = k[X™, My, ..., M,_4]. If n = 1 then this implies thaf is
acyclic and we are done. Hence we assune 2 and takep € SpecR) with
depthR, < 1.

We have (see e.g. [8, Thm. (2.5)]) graje= 2. Since|M,| > 1and|M;| > 2
for2 <i < n —1, we also obtain grad&;R > 1 and gradé/;R > 2 for each
2<i<n-1Thusl,R, = R, and[;R, = (M;;1R,)(M;R,) = R,, for each
2 < j <n—1 Since gradé,R, > 1, the desired acyclicity oF, is immediate
(e.g., by the acyclicity criterion of [9] in the form of [16, Thm. 2]). O

The following lemma is a direct consequence of a result of Pragacz and Weyman
[35, Thm. 1.3] (recalled here as Theorem 5.8).

(3.2) LEeMmMa. The homomorphisikh — Ry (b) is faithfully flat.

The proof of the next lemma is given in Section 5.

(3.3) LEmma. The element = x,” , is regular in Ry ().
If i isaninteger suchthat < i <n—1landr; > 2, thenthe element= x;” ,

is also regular and(x, y) is a regular sequence iRy (b).
Letl<i < n be aninteger such that eithe=n > 2 orr; > 2. Set
b — (bo,....,by_2,b,_1—1 if i=nandr,=1
(boy ..., bi_2,b;_1—1Lb; — 1, b;yq,...,b,) oOtherwise

K = k[ X, - oy Xorps Xorsgo ooos Xpap—al[ X2

bl 1bj

E=0— Rk/(b) Rk/(b)—>0

where the nonzero components of the compiteare in (homological) degreés
andi — 1. We writeY® = (y) for the matrix of thekth differential of Fy (b")
and usé to denote multipliers oRy/ (b").
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(3.4) Lemma. Forz =x,’ , thereexists &-algebraisomorphism: Ry (b). —
Ry (b") such that

— i IS Xpygyy i k=i+1lands =b;y,
X, if k=i andr=b;,
Xp, oyt if k=iands =b;_q,
vl =1 o, Koo if k=i, s b1, andz # by,
. o YA Xy i k=i—1landr = by,
yb otherwise;
(A if k>i+1,
~ Y et T, (ANBY U j)y if k=i+1andb; €4,
o = | Wi if k=i+landb; ¢A,
Xpy_ (AN bi_1)! if k=iandb;_1€A,
D jea Vav, i Xjp (AN J)] if k=iandb; 1¢ A,
(D71 (A), otherwise

This isomorphisngp induces an isomorphisi®, (b), = Fy/(b") @ E of complexes
overRy (b').

Through long and tedious computations one can verify (3.4) using only the pre-
sentation (2.3); it is much more convenient to work out the proofs of (3.4) and
(2.5) in parallel.

Proof of Theorem 2.5 ang Lemma 3Mote that ifS is ak-algebra and if a com-
(n) (€Y}
plex0— st 2 ... 27, gho _ 0is acyclicin depth 1, then fro.1), (13),

and the presentation (2.3) & = Ry (b) it is clear that there exists a uniqite
algebra homomorphism: R — S such that(X/)) = Z) foreach 1< j < n.
Thus, to prove (2.5) we need to show tRat F (b) is acyclic in depth 1.

We argue by induction ofb| = }"|_, r, that Lemma 3.4 holds and thétis
acyclic in depth 1. Ifb| = 1 thenn = 1, hence (3.4) holds for trivial reasons and
F is acyclic in depth 1 by (3.1); so assume tldt> 2.

Letl<i <nandzbeasin(3.4). Sef = Ry (b') and note thaF, (b’) ® E
has the form

(n) (i+2)
0—> P AN Sbit 5y gz X
y(i+1)) (y(i) 0 )
i—1)
Sbi+1 0 Sbi 0 Xb\—lbi Shi—l (y(l ) 0)
) y(i-2 ) y®
ghi-z =5 ghi-a 5 ... 5 g — 5 gho Q.

Let{e;; | 1< j <b;}and{e;_1; | 1 < j < b;_1} be the standard bases®f and

. zm AN
Shi-1 respectively. LeG =0 — S Z— ... Z— §b — 0 be the complex
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obtained fromFy (b') @ E after choosing fois” and $”- the new basefe; |
1<j<b;} and{e;_lj | 1< j < b;_41}, where

Xbi_4j H .
{ Cij = X, o Cib; ifl<j<b; —1,

/ j—
e =

ein, if j=bi;
€i—1;j if 1§j§b,‘,1—1,
I
eé. . =
-1 bio-1 o
B ei_1p_1+ ﬁ ot X aei—ik 0 j=bia

ThereforeG = Fi/(b') @ E and hence is acyclic in depth 1 by the induction hy-
pothesis. Thus there exists a unidu@lgebra homomorphism: R — S such
thatu(X)) = Z) for each 1< j < n. In particular,u(z) = X,,_,», and hence
u extendstoamap: R, — S.

A standard calculation shows that satisfies the desired formulas. To see
that ¢ is an isomorphism, consider theirjectivek-mapv: k'[Y®, ..., Y™,
Mj,...,M,] — R. (wheren'is the length ob’) given by

v(X) = 27,
@) (i)
@) Fsbi¥biiy .
iy = § = k=
x® if k#i;
(AN if k> i,
v((A)) = { Abini if k=i,

z

(=Dri-1(A), if k <.
Sincev((A|E)ya) = (1/2)(AUb;_1|E Ub;)xw andv((A|E)yw) = (A|E)yw for
k # i, itis straightforward to verify that factors throughS to produce a map
¥ § — R,.Aneasy calculation shows that ¢ = ids. Thusy is also injective,
hence an isomorphism, ardis its inverse. Therefore is an isomorphism and
clearly induces the isomorphism of comple¥es= G = Fy/(b’) @ E. It follows
that Lemma 3.4 holds fa.

To complete the proofs of (2.5) and (3.4) it remains to show that the complex
F is acyclic in depth 1. When; = 1 for each 1< j < n — 1 this follows from
(3.1). Assume that; > 2 for some 1< j < n —1, and takep € SpecR) such that
depthr, <1

By (3.3) the elements = x,ﬁfilbn andy = ng;l,)lb, form aregular sequence Ry
thus at least one of them, callit is not inp. Since Lemma (3.4) holds fér, we
obtain the isomorphism of complex€s = (F,)pr, = Fi (b)ppr,) ® Eppry),
and the desired acyclicity df, is immediate from our induction hypothesis[J

4. Proof of Theorem 2.6

Proof of Theorem 2.6(i)As in our proof of (2.5), we seR = Ry (b).
By Lemma 3.2, the mak — R is faithfully flat and hence injective. Thus, if
R is reduced (resp., a domain) thieris reduced (resp., a domain).
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Assume next thdk is reduced (resp., a domain). We show by inductionign
that R is reduced (resp., a domain). Whign = 1, or more generally when =
1, the assertion is obvious from (2.10). Assume fldat> 2 and thats > 2.

By Lemma 3.3, the element= x (”) b is regularinR; henceR C R,. Lemma
3.4vyieldsR, = Ry/(b’), which is reduced (resp., a domain) by the induction hy-
pothesis. Therefor® is reduced (resp., a domain), which completes the proof of
Theorem 2.6(i). O

(4.1) Lemma. If kis a domain, therr,” , is a prime element oRy.(b).

Proof. We proceed by induction ofd|. When|b| = 1, or more generally when
r; = 1foreachl<i < n—1, the claimis obvious from (2.10). Assume that >
2andthat; > 2forsomel<i <n—1

Itfollows thatn > 2 and, by (3.3), the elements= x{” , andy = x{ , form
a regular sequence iR = Ry (b); in particular,R/xR C (R/xR), = R,/xR,.
Thus it suffices to show thatis a prime element oR,. Wheni < n —1, Lemma
3.4 yields an isomorphisg: R, = Ry (b") with ¢(x) = y,S”fil,,” and we are done
by the induction hypothesis.

Wheni = n —1, Lemma 3.4 yields an isomorphism R, = Ry (b) such that

bp—1—1

o(x) = Z Xby 2jYjp-

th 2bp—1

Sincek’ is a domain, our induction hypothesis yields that y(”) 1, 5@
prime element of the domain (by the already proven part (i) of this theorem)
R’ = Ry/(b’). By (2.3), thek’-algebra homomorphisma: k'[Y®, ..., Y™,
M, ...,M]] — k' given by
1 ifi=1andj =b, andk = n,
e(yi) =
v 0 otherwise
and
(AY) 1 if b,=21andA = {1} andk = n,
~ | 0 otherwise
factors throughR’, so it follows thatp(x) ¢ zR’ (asbh,_1 > 3, we haves(z) =
0 while e(p(x)) = — (X, 5.1/ Xb,_b,.1) # 0). Hencep(x) andz form anR’-
regular sequence, and it suffices to show Rglp(x) R is a domain. By using
(3.4) again we obtai®R, = Ry (b"), whereb” = (b")" and

K" =K [Yi,, s Yo, o116, Yo, m11 ooy Yo, g1l Yy g

¢(x) is mapped under this isomorphism to

bp—1-1

”
w= X § Xb2j¥jb ek’
by—2bn-1
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ThusR./@(x)R, = Ry(b"), wherek = k"/wk” = k"/X;, , 5, ,—1k” is a do-
main. ThereforeR/¢(x)R. is a domain by the already proven part (i) of (2.6).
This completes the proof of the lemma. O

Proof of Theorems 2.6(ii) and 2.6(iii\Ve note that (ii) implies (iii) and proceed
with the proof of (ii). AssumeR = Ry (b) is a Krull domain. By (3.2)R is faith-
fully flat overk and hencék is a Krull domain by a standard argument.

Assume next thdlt is a Krull domain, and let = x,ffilhn. To prove thatR is a
Krull domain we proceed by induction gh|. When|b| = 1, or more generally
whenr; = 1foreach 1< i < n —1, the assertion is obvious from (2.10). Assume
that|p| > 2 and that; > 2forsomel<i <n—1

Thenn > 2 and the ringR, is a Krull domain by (3.4) and the induction hy-
pothesis. Note that, by (4.1), the idgél= xR is prime; setP = {p € SpecRr) |
htp = 1 andx ¢ p}. We have thaiR, is a DVR for eaclp € P and thatk, =
MNpep Rp- Sincer, is also a DVR, to show thak is a Krull domain it suffices
to prove the equalitk = R,y N R,. The inclusionR € R, N R, is obvious, so
we pick an element € R, N R,. Thusu = v/x* = w/r with somev, w,r € R
such that, r ¢ xR. But thenwx® = rv ¢ xR, hences = 0 and therefore € R.
This completes the proof th& is a Krull domain if and only itk is.

To deal with the divisor class groups we use basic facts from [20].

Again, we argue by induction of#|. When|b| = 1, or more generally when
r; = 1foreach 1< i < n—1 the assertion follows from Gauss’ lemma in view of
(2.10). Assume thgb| > 2 and that; > 2 forsome 1< i < n — 1; thusn > 2.
Since by (4.1) the idealR is prime, Nagata’s theorem gives the firstisomorphism
of

CI(R) = CI(R,) = CI(Rp (b")) = CI(k') = Cl(k);

the second isomorphism follows from (3.4), the third is our induction hypothesis,
and the last isomorphism comes from the definitiorkbby Gauss’ lemma and
Nagata’s theorem.

The proof of Theorem 2.6 is now complete. O

5. Standard Monomials and Monomial Order

The goals of this section are first to describe a set of “standard monomials” that
yield a free basis oR (b) as a module ovek and then to associate with it a cer-
tain monomial order. This will allow us, by using the theory of Grobner bases, to
reduce the study of the singularities of the riRg(b) to the study of the combi-
natorial structure of a certain simplicial complex.

Young Tableaux

We recall some notions from the theory of Young tableaux.

A shapds a sequence of positive integers= (A4, ..., Ax). Itis represented by
a sequence of left-justified rows of boxes in the plane, wheis the number of
boxes in theth row of the shape. For example, we have
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|

(3,221 = and (2,32 =

The shape given by the empty sequence is cétleil.

A shape is calledstandardif it is trivial or if A1 > A, > .- > A,. Thus, the
first of the shapes just displayed is standard, and the second is not.

A tableauof shape\ is a sequencé = (Ly, ..., L), whereL; = {lp < --- <
I} C Nfori =1, ..., k. Atableau is represented by placihgin the jth box
of theith row of &, so that the entries in each row are strictly increasing from left
to right. The unique tableau of trivial shape is calledttingal tableauand is de-
noted asz.

A Young tableadus a tableau of standard shape such shat ¢ implies/;; <
I;; for each 1< j < A,. Thus, the entries in each column of a Young tableau are
nondecreasing from top to bottom. For exampl&jf= {1, 3 4}, L, = {2, 3},
L] ={2,4}, andL’ = {5}, thenL’ = (L’, L) andL” = (L7, L%) are the Young
tableaux

1/3]4] 2]4]
L = and L' = .
2[3 5]
Note that the trivial tableau is a Young tableau.
Given tableaux.’ = (L}, ..., L},) andL” = (L{, ..., L},), we write L, for
the tableauL’, ..., L), L7, ..., L],); it is obtained by placind.” on top ofL".

For example, ifL’ andL” are the tableaux from the previous display, tk{énis
the tableau

w

4]

’U‘II\)NI—\
N

Itis clear that there are equalitigs = ¢ = L.

A multitableauis a sequence of tableagk,,, | --- | L,,), where the tableau
L,, is of shapeu; fori = 0, ..., n; it is standardif L, is a Young tableau for
each0<i <n.

Orders
We consider a linear order on the set of finite subsefts given by
{ar<-<af <{ea<-- <e}
<:>{s<t0|’ ‘ » (5.1)
s =t anda; > ¢; for j =min{i | a; # e;}.

It induces a linear order on the sets of indeterminafggsee Section 2) fot =
1 ...,n.
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Letd’, b”, r be positive integers, and set
V', b, r)={(A,E) |AC{L....b'}, EC{1...,b"}, 1< |A| = |E| <r}.

Fork=1...,n,letV, ={{A|E) | (A, E) € V(bi_1, by, 1)} be a set of indeter-
minates. We define for x k£ < n a linear order orV;, by

A< Dor

<meqmmk¢j{A=DaME<F

(5.2)
Let V(b) be the disjoint unio’Vy L MU --- LUV, UM,. Let Qx(b) =k[v | ve
V(b)] be the polynomial ring ovek on the set of variable¥ (b); it is graded by
assigning degree 1 to each variable. FinallyN&t?) be the set of all monomials

in the variabled/(b). We will use the canonical identification

NV® = N1 x NM1 x ... x N x N¥»,

We extend the linear orders éi andM; to monomial orders oY andNM:
by using reverse lexicographic ordering; $&€& Sec. 15.2] for the terminology.
Thus, ifvy < --- < v andu; < --- < u, are variables fron¥; (or from M;), then

V1...V0p < Up... Uy

k <tor (5.3)
= _ .
k=1t andv,, <u, form =min{j | v; # u;}.
We define a monomial order a§¥® by taking the lexicographic product of
the monomial orders oN"%, N™1 ... N" andN:; namely, forw’ = uj... u},
andw” = uf ... uy, (Whereu,, ;,uj € N" andu),, u}, € NM) we set

w <w’” < u, <u, form=min{i |u; #u}. (5.4)
Finally, we also introduce a partial order on the set of finite subsetstnf
{ar< - <as)<{er<---<e¢} & s<t and aq; >¢ fori=1...,s.
The sets\M, inherit this order, and we define a partial order on the Betsy

(A|[E)t = (D|F)y <= A<D and E=<F. (5.5)

Standard Monomials

To specify the set of standard monomials, which is a subsat’6?, we follow
Pragacz and Weyman [35, Sec. 1] (whée#éE ), and(A); are denoted byE, A);
and [A], respectively).

We associate with each monomiak NV® a multitableaul (w) as follows.

Letw = u1z1... unz, (Whereu; e NV andz; e NM for1 < i < n). For each
l<i <nwewriteu; = u;1... u;5, (r€SP.2; = zi1... 2ir;) SO thatu;; = (A E;j);
anduj > -+ > uyy, (resp.z;; = (Cij); andzy > --- > z;,). Foreachl<i <n,
set:
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A= (A, ..., Aiy);
Ci=(Cia, ..., Cy);
%] if i=nandE,; ={1....b,}for j=1...,s,,
Ei=1 ((Ens)"..cs (Enp)”) ifi=nandp, =min{j [{L...,b,} # Ej}.
((Eis)™ .. (ED7) if i #n;

note that the sequence of component& pis obtained by taking imeverseorder
the sequence of the complements of the ggtsFinally, set

El Enfl En
Lw)=| ¢ .
Aq

Cy C,
Az A,

(5.6) DErFINITION. A monomialw € NV® s calledstandardif L(w) is a stan-

dard multitableau and if the elementsWf®(b) = {(A|E}; |1 <k <n, |A| =

|E| = r} do not dividew.

ExaMPLE. Letn =2 and leth = (bg, b1, bo) = (3, 4, 2); thusry =r, = 2. For

w = (1, 3|1, 2)1(2|3)1(2|1)2(1, 4) e NV®,
we have

2] 4]

4
1

1[3]
2

L(w) =

NFR,WF

This is not a standard multitableau, ®as not a standard monomial.
For the monomials

w’ = (23)1(1, 3)1(3|D2(L, 3)2(L 4)2

and
w” = (2I3)1(1, 3)1(1, 4|1, 2)2(3]2)2(L, 3)2,
we have
1[2]4]
s RN EIRRFIE
L(w') = L") = 7] 1ta ,
3

which is a standard multitableau. However, wherneais indeed a standard mono-
mial, w” is divisible by(1, 4|1, 2), € V™®(b) and hence is not standard.

(5.7) DeriNiTION.  Define a homomorphism éfalgebras
m: Qk(b) - Rk(b)

by mapping the indeterminate |C); € V(b) to the minor(A|C); of X® and by
sending the indeterminat®); € V(b) to the multiplier(D); € Ry (b).
Itis clear thatr is surjective, and we writé, (b) for the kernel ofr.
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We need the following important result of Pragacz and Weyman [35, Thm. 1.3].

(5.8) THEOREM [35]. The surjectiont: Qk(b) — Ry(b) maps the set of stan-
dard monomials bijectively to a free basis®f(b) as ak-module.

ReMark. The original proof of (5.8) uses methods from group representation
theory. Not being aware of this result, we produced in [37] a proof based on a
different use of representation theory combined with Grébner bases techniques.
Theorem 6.1 is one of the main ingredients in that alternative proof.

We now give the proof of (3.3), thus completing the proofs of (2.5), (2.6), and (2.8).

Proof of Lemma 3.3If r, = 1then setu’ = (b,_1), € Ok(b); else setu’ =
(bp_1lbn)n € Ok(b). Also setu” = (b;_1]b;); € Qk(b). It is immediate from the
definition that a monomiatl € NV® is standard if and only ifiu’ is standard, if
and only ifuu” is standard. Thus (5.8) implies thatu’) = x andz (u”) = y are
regular inR, and thatr maps the set of standard monomials divisible:bbijec-
tively to a free basis of R as ak-module. The regularity of the sequenaeg y) is
now clear. O

6. The Initial Ideal of I (b)

Let Z(b) be the set of nhonstandard monomials. It follows easily from the defini-
tions that= (b) is a monomial ideal ilNV® .

The next theorem, which is the main result of this section, is a key tool in our
study of the singularities aRy(b).

(6.1) TaeorREM. Whenk is a field, 2 (b) is the initial ideal ofI (b) with respect
to the monomial orde(5.4).

The proof of Theorem 6.1 requires preparation.

Grassmannians

Letr < b be positive integers, and I&}, (b, r) be the polynomial ring ovek on

the variables = {(E) | E C {1, ..., b}, |E| = r}, graded by assigning degree 1
to each variable. The s@f inherits both the partial and linear orders on the sub-
setsof{1, ..., b}; asin (5.3), we extend the linear order &nto a monomial order
onNM py using reverse lexicographic ordering.

Let (M) < N™ be the monomial ideal generated by the products of pairs of
noncomparable (in the partial order) elementdbhfand letG, (M) be the set of
Plucker relations (see [8, (4.4)])

ITI=¢
> Vaar verr vrop(AU(C\ D) U D),
CNACTCC\D
whereA,C,D C {1,...,b}with|A|=r — p,|D|=r —qg,and|C|=p+q >
r+1
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(6.2) LEmma. For each minimal generatar of X (M) there exists a monic ele-
mentf € G (M) such thaty = in(f).

Proof. In view of the monomial order oN¥, the lemma is a direct corollary of
[8, Lemma (4.5)]. O

(6.3) REMARK. LetIy (b, r) be the ideal generated @ (b, r) by the sej (M),
letY = (Y;;) be ab x r matrix of indeterminates, |&[Y ] be the polynomial ring
overk whose variables are the entriestofaind writeGy (b, ) C k[Y]for the sub-
ring generated ovét by ther x r minors ofY. Itis well known (cf. [8, (4.7)]) that
the mapQx (b, r) — Gi(b, r) given by(E) — (E|L, ..., r)y induces an isomor-
phism Qi (b, r)/Ix (b, r) = Gy(b, r). This makesG (b, r) into a graded ordinal
Hodgek-algebra oveKM, <) governed by (M); see [8, (4.6)]. (Note that the
partial order orM is thereverseof the order originally considered in [14, Sec. 11].)
In particular, the selN™ \ X (M) is mapped bijectively to a free basisGf. (b, r)

as ak-module.

Determinantal Rings

Let b’, b”, andr be integers such that £ r < m, wherem = min(’, b").

Let Qx(b’, b”, r) be the polynomial ring ovek on the variabled/ = {(A|E) |

(A, E) e V(@' b", r)}, graded by assigning degree 1 to each variable. Th¥ set

is linearly and partially ordered as in (5.2) and (5.5), respectively. As in (5.3), we
extend the linear order oW to a monomial order oY by using reverse lexico-
graphic ordering.

Let (V) be the monomial ideal generated by the products of pairs of noncom-
parable (in the partial order) elementsiofThe elements dV" \ (V) are called
¥ (V)-standard monomials.

Let X = (X;;) be ab’ x b” matrix of indeterminates, and writd X] for the
polynomial ring ovetk with variables the entries of. Let I,,1(X) be the ideal
generated by thé + 1) x (r +21) minors of X, and writel (b’, b”, r) for the ker-
nel of the surjectiorQy (b’, b”, r) — k[X]/I,+2(X) given by(A|E) — (A|E)x.

It is well known (see e.qg. [8, proof of (4.11)]) that thX V )-standard monomials
are mapped bijectively to a frdebasis forQy(b’, b”, r)/Ix(b', b",r). FOru €

2 (V), let
st(u) = Zruww

be the unique expression efmod I (b’, b”, r) as a linear combination ovér
of X (V)-standard monomials.

Let =M®(V) be the monomial ideal generated B |E) | r = |A| = |E|}.
SetD, (V) = {u — st(u) | u ¢ T"*(V) is a minimal generator oE (V)}.

Let D?Y(V) be the set of Pllicker relations

IT'l=q

Z Va,c\r Vor,r Vr,p{AU(C\T) | EXT’'UD | F);
CNACTCC\D
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hereA,C,D C {1,...,b'}andE, F C {1,...,b"}, with |E| =r, |F| =s < r,
|Al=r —p,|D|=s—q,and|C| = p+q >r+1 Let D (V) be the set of
Plicker relations

IT=¢

Z VE,c\r Voyr,r Vr,r{lA | EU(C\D)ND | T U F);

CNECICC\F
hereA,D C {1,...,b'}andC,E,F C{1,...,b"},with|A|=r, |D| =5 <,
|[El=r—p,|F|l=s—qg,and|C|=p+qg>r+1
Finally, setDy (V) = D, (V) UD"(V) U DL(V).

REMaRrk. Unlike the ringsG (b, r), the ringsk[X]1/1,+1(X) arenot Hodge alge-
bras overV, <), which complicates the proof of the following lemma.

(6.4) Lemma. There is an inclusioDy (V) c I (b’, b”, r). Furthermore, for
each minimal generatoz of X(V), there is a monic element € Dy (V) with

u = in(f).

Proof. Since moduld,1(X) the rank of the matriX is at mostr, the inclusion
Dy (V) C Ix(b', b", r) follows by a standard argument.

If the minimal generatou is divisible by som&A|E) with |[A| = |E| = r, then
one shows as in (6.2) that= in(f) for somef € D°¥(V) U DE‘QO'(V). Thus,
for the rest of the argument we assumé X ™#(V); note that the proof of the
lemma will be complete once we show that in(u — st(u)).

We need to prove that,, # 0 impliesu > w. Letm = min(’,b").
Since the expression af mod I (b’, b”, r) is obtained from the expression of
u mod I (b’, b”, m) by removing all terms involving monomials divisible by a

variable (A|E) with |A] = |E| > r, we assume for the rest of the proof that
r=m.
Let P be theb” x b” matrix overk,
00 01
00 10
P=1: : N F
01 ... 0O
10 ... 00

with ones on the indicated diagonal and zeros elsewhere, afid4e(Y;;) be a
(b'+b") x b” matrix of indeterminates. Specializingto the(b’+5b") x b” ma-
trix (%) (thisisX ontop of P), we define amaj[Y] — k[X]. Composing with
the inclusionGyx (b’ + b”, b") — Kk[Y], we obtain a homomorphism

@: Gp(b'+b",b") — Kk[X].

On the level of generatorg, is described as follows. Fot = {a; < --- <
apr} C{L,....,0'+ D"}, letAN{b' +1,...,b' +b"} = {as.1, ..., ap} and set
U={b"+b"—ap +1,....,b'+b" —as1+1} C{L,...,b"}. Theng is given
by

(AL ....b") H{(_l)hu(b”_m it A={b'+1....0'+b"},
by

(DY V2gy g(DIE) if A#{B +1....b' +b"},
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whereD = A\{b'+1,...,b'+b"}andE = {1, ..., b"}\ U. By substituting (in
the formula just displayedW) for (A[1, ..., b")y and by deletingX, we lift ¢ to
amapy: Q'+ b",b") — Qx’,b", m).

As in [13, Lemma 2.2], one checks thatinduces an isomorphism of the par-
tially ordered set3/ \ {(b'+1, ..., "+ b")} andV. Furthermore, it is immediate
from the definition ofp that there exists a unique € N such that degi) =
dequ) = 2 andy (1) = tu.

Let st(@) = ) rizw be the unique (see Remark 6.3) expressiofi nfodulo
Ixn(b’+b", b") as a-linear combination ok (M )-standard monomials, and note
that for eachv we havep(w) = +w with w ¢ X (V). Applying ¢ to it — st(ir) we
seethati — Y trizw € Ix(b’, b”, m), hence stu) = > trizw.

Pick w with rz; # 0. Note that de@i) = degw) (since I (b’ + b",b")
is homogeneous), and I€f;) be the smallest variable dividing. If A; =
{b’+1,...,b'+b"}, then degw) < degw) = deqir) = dequ) and hence: >
w. Thus we may assume for the rest of the proof thatt (b’ +1,...,b" + b"}.

Then the image ofA;) underg is of the form=+(D,|E;), and (Dq| E7) is the
smallest variable dividingy. Let (A) be any variable dividing. As remarked
in (6.3), the ringGk (b’ + b", b") is an ordinal Hodge algebra @M, <), hence
(A1) < (As). Thus the image ofA,) under¢ has the form+(D;|E,), and
(D1|E1) < (D3|E>). Therefore(D,|E;) is smaller than any variable dividing
and since de@v) < degu) we obtainu > w. O

Proof of Theorem 6.1

Fort = 2, 4,5, 6, write F, for the set of all elements i@ () of the form (1r).
Let 71 denote the set of elements@h, (b) of the form

IT|=¢

> Vh,r Vrk{G | HUT)(T UK | Fly
rc{,...,bi \(AUHUK)

fork=1,...,n—1andforallsubsets C {1,...,b,_1}, H, K, A C{1,..., b},
andF C {1,...,byy} suchthalG| =m < r, |Hl =m —t, |F| =5 < riy,
|K|=s —t,and|A| <t < min(s, m).

SetF; = |J;_, Dk(Vi) and note that—by [15, Cor. 1.2], Remark 2.4(a), and
(6.4)—there is an inclusion

6
F=|JF cLb).
i=1

Since by (5.8) the standard monomials are linearly independent mogd#in
to complete the proof of (6.1) it suffices to show that, for each minimal generator
u of X(b), there exists a monic elemefitfrom F with u = in(f).

Becausex (b) is generated by the elementsiof®(b) (see Definition 5.6) and
by the nonstandard products of pairs of variables, the minimal generatbi@ pf
are contained in the union of the sets
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¢
I
3
=z
N
=
3

Y6 = {(G|H)i-1(K)x |
Thus, the possible cases foare as follows: (1) € Xo; (2)u € Z3; Qu € Xy;
(4) u € Xs; (5) u € Xg; and (G)M € X1.
In case ()u = (A|E), with |A| = |E| = r; for some 1< k < n, and itis
immediate from (5.4) that = in(f), wheref € F5 is the monic polynomial
{u—(A),, if k=n,

U—vVeplAw(Eyr fl<k<n-1

In case (2)u € X(V;) for somek, and we are done by (6.4). In case (8)¢
3 (My) for somek, and we are done by (6.2).
In case (4)u = (A')(E'|F); for some 1< k < n, where

A=faa<--<ay}, E'=la<---<e}, F={fi<---<fi}
satisfya, > e, forsome 1< ¢ < s anda; < e¢; forl <i < g —1 Using (1.5)
with

A={ay,...,a4-1), C={ey...,e40aq4,....,a,}, E={egq1, ..., e}
yieldsu = in(f), wheref € F5 is the monic polynomial

IT'=q

f= Z Va,c\r Vavr,r Vre(AU(C\ D)W (T UE | Fi;
CNACTCC\E

hence we are done in this case.
In case (5) we have = (G|H'); (K’ )41 for some 1< k < n — 1, with

G={g1<-<gm H={hi<-- <hy}, K={ka<- - <ky,}

such thati, > k, for some 1< p < ryy1andh; < k; forl <i < p —1 (where
H = {h1 < - < hp_n)). The inequalitiesr, 1 < k,_1 < k, < h, imply k, =
h, for some 1< g < m. Set

H={hy,....hy, 1}, H'={hy,....h.}, K'={ki,....k}.
ClearlyH'N H = @ andH" U H = {1, ..., k,}, hence

K”ﬂ ﬁ — K//\(K”ﬂ H//).
Set
K=K \(K'NH"), H=H\(K"NnH"), A=H\(K"NnH).
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We have(K"NH")N(HUKUA) =@ and|K"NH"|=|K"|— |K'NH| =
p—I|H|+|Al = |A| +1 Since{l,....k,} C (KUAUH)U(K"NH"),
the setK” N H” contains the smallest elements ofK U A U H, wheret =
|[K” N H”|. Thus (1.6) withG, K, H, A yieldsu = in(f), where f € Fg is the
monic polynomial

IT|=t

f= > Vi,r Vrk(G | HUT)(T UKy
rcid..., i \(AUHUK)

hence we are done in case (5), too.
Finally, in case (6) we have = (G|H');(K'|F)ys1forsome 1< k <n —1,
with
G={g1<-<gn) H/:{hl<"'<hm}v

K'={ki< - <k). F={fi< <f)

such thatr, > k, for some 1< p < s andh; < k; for1 < i < p —1 (where
H ={hy < - < hy,_n)}). Definek, H, andA as in case (5) and note that the
argument given there yields= in(f), where f € F; is the monic polynomial

IT|=t

f= > Vi,r Vr k(G | HUDY(T UK | Fliga.
rc{l...,bi \(AUHUK)

The proof of Theorem 6.1 is now complete. O

7. Combinatorial Structure

The goal of this section is to prove the combinatorial results needed to study the
singularities ofRy (b). For this purpose we consider the simplicial compietd)

that hasV (b) as vertex set, wherg C V(b) is a face ofA(b) if and only if the
monomialwr = [[,.r v is standard. Our aim is to show thatd) has a good
combinatorial structure in the following sense (cf. [7, p. 211]).

(7.1) DeriNITION. A simplicial complexA of dimensiord is constructibleif:

(@) Aisasimplex; or
(b) there exist proped-dimensional constructible subcomplexaég A, C A
such thatA; N Az is constructible of dimensiosh — 1 andA; U A, = A.

(7.2) REMarks. (@) An easy induction on the number of facets shows that; if
andA, are constructible, then they are pure and their jojr A, is constructible.

(b) If (P, <) is a bounded poset that is a distributive lattice, then the associated
simplicial complex of chains i is shellable [3] and hence constructible.

To show thatA(b) is constructible, it is more convenient to state and prove the
result for a whole class of subcomplexes/ab).
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Let V] = {(A|D)1€ V1 | r1 — 1> |A|}, setP(b) = M, U V], and extend the
partial orders orV] andM; to a partial order orP(b) by setting

(AID)1 < (C); <= A<C.
ForA c {1,..., bo} with |A| = ry, define

Py(b) ={ve P() | v < (Ah};

Ax(b) ={F € Ab) | F N P(b) C Pa(b)}.

REMARK. Itis easy to see from the definitions that the assignniert L(wpr)

is one-to-one and identifies the simplicial completh) with a certain set of stan-
dard multitableaux. This alternative descriptionzfb) is useful in visualizing
the objects we will consider. Thus a faégeof A(b), with associated standard

multitableau
El Enfl En

Lwp)=| C1|Ca2|---| C4 , ()
Al A2 An

is a face of the simplicial complex 4(b) precisely when the multitableau

A Ey E, 1| E,

Cl Cz . Cn

A1l A, A,
is also standard (it is obtained fro@) by placing on top of”; the tableau whose
only row containgA| = r; boxes and whose entries are the element$)of

(7.3) THEOREM. For eachA, the simplicial complex\ ,(b) is constructible. In
particular, the complexA(b) = Ay, ,1(b) is constructible.

.....

The proof of this theorem requires some preparation.
Let S be the set ofr; — 1)-element subsets ¢4, ..., b;}. FOrE € S set

Py e(b) = M1U {(C|D)1€ P4(b) | D < E}.

Clearly P4 g(b) C P4(b), and itis easy to check that both posets are bounded and
are distributive lattices. In particular, the corresponding simplicial complexes of
chainsA ;. (b) and A (b) are constructible by Remark 7.2(b).

Remark. A face of AQ(b) (resp., AP (b)) is a subsetF of P(b) (resp.,
P4 (b)) such that every two elements 6fare comparable in the partial order.
It follows easily thatF is also a face of\(b); therefore AV (b) and A(Al}E (b) are

simplicial subcomplexes ak(b). Thus a faceF of A(b) is a face ong)(b) pre-
cisely when the standard multitableau associated Wittas the form
E1
C1 || (%)
Ay
(i.e., when the tableauy;, C;, E; are trivial for 2< i < n) and the multitableau
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A | Ep
Cy |- |@ (x%)
Aq
is also standard. Similarly& is a face ofAf}E(b) precisely when its standard
multitableau has the forkx*) and the multitableau

A El
C1 E gD
Az
is also standard (it is obtained frofm=x) by placing underneath’; the tableau

whose only row containg:| = r» + 1 boxes and whose entries are the elements
of E).

We say thatt € S coversD e Sif D 2 EandD < D' 2 E impliesD = D’.

(7.4) LemmA. If E covers the set&y, ..., E;, then the simplicial complex
k

Uals®
i=1
is constructible.

Proof. We proceed by induction oh. The casé = 1 s just the statement that

AP (b) is constructible. Assume that> 2 and that the assertion is true for

k — 1 sets. The simplicial complexég’ ] 1A(1) (b) andAD,. (b) are then con-

structible by induction. It thus sufflces to show that they have the same dimen-

siond and that their intersection is constructible of dimensior 1. We have

(Ui aPp ®) na®p 0) = Ui lA‘ADEA(b) whereE; is covered by both

E; andE,. In particular, the intersection is constructible by the induction hypoth-

esis. Furthermore, i’ is covered byD, then it is immediate from the definitions

that a maximal simplex oNl)D,(b) can be completed to a maximal simplex of
<1)D(b) by adjoining a smgle vertex (of the fortd@| D), for a suitableC). Since

the complexele)E (b) andAD, (b) are pure by Remark 7.2(a), the assertion

about the dimensions follows |mmediately and completes the proof of the lemma.

O

LetE ={e1<---<ey 1) C{L....b1}, letE ={e3 < --- < &, < &,,41) be

its complement, and sdt = {e1, ..., e,,}. Recall thatS is linearly ordered, and

denote byE, the smallest element &f strictly greater thark.

(7.5) Lemma. If E covers a seD such thatD # E andD = (D)™, thenE =
(E,).

Proof. SinceE isacoverD = {ey,...,e;+1, ..., ¢e,—1} forsomel<i <ri—1L
hences;+1 = ¢, forsomel< k < ro+1 ThereforeD = {éy, ..., & —1, cevy €rptd)
and, asD # E, wemusthave k k < r,. SinceD = (D,)~, we obtain(D,)~ =
{er, ...,ex —1,..., €, &,11+ 1} and henceD < D.. ThereforeD, coversD,
and sinceD, # E we musthaveD, = {ey,...,e; +1,...,¢; =1, ..., e,_1} fOr
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somei < j <ri—1 ButthenE, ={ey,....e; — 1 ..., e, 1} and(E;)” =
(€1, ..., &,y 2rp11 + 1}, Which yieldSE = (E,)™. O

(7.6) REmMaRK. If D = E, thenD andE coincide except possibly at their great-
est element. If in additio® < D’ < E, then necessarilyp = D' = E.

Proof of Theorem 7.3We argue by induction on. If n = 1, then A,(b) =
Ag)(b) and hence is constructible. Assume- 2 and that the assertion holds for
n—1 Leth = (bo, ..., b,_1), whereb; = b;,1fori =0, ..., n — 1 We consider
V(b) as a subset of (b) via the identificationV(b) = Vo L Mo Ll -+ - UV, LU M,,.
ThusA(b) becomes a simplicial subcomplex &afb).

REMARK. A faceF of A(b) is a face ofA(b) precisely when its multitableau has

the form
E2 Enfl En

%) C2 C3 cee Cn ’
Ay | Az A,
whereA,, C1, andEj aretrivial. IfE C {1, ..., b1} with |E| = rp, thenF € A(b)

is a face ofAz(b) precisely when its multitableau is as just displayed, and the

multitableau
E E2 En—l En

DICr|C3|---| C,
As| A3 A,
is also standard.

If rp =1, thenAx(d) = AD (D) * A(b) and hence is constructible by Remark
7.2(a) and by the induction hypothesis. Thus we may also assume thé.
ForE c{l ...,b1}with |[E| =r1—1, set

App(b) = {F e Aab) | FN Pb) C Pyrp(b) and F N P(b) C Pz(b)).

ReEMARK. A face F of A(b) with associated standard multitable@) is a face
of A, g(b) precisely when the multitableau

Ey
A|E |E; E,_1|E,
Ci|C2|Cs| | Gy
Ay |Az| Az A,

is also standard; here, on top @f is placed the tableau whose only row has the
elements ofA as entries, an_d betwedny and C, is inserted the tableau whose
only row has the elements @f as entries.

It follows that _
Apg®d) = ADL(B) x Ap(b); (7.7)

hence, by Remark 7.2(a) and by the induction hypothesiss () is constructible.
Furthermore, it is easy to see thafif= {e; < - - < ¢,,_1}andD ={dy < --- <
dy,—1} then
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Aa () N A pBb) = AL (B) x Az (b), (7.8)

whereC’ = {c; < --- < ¢/, _j}isgivenbyc; = maxe;, d;) forl <i <r;—1and
C"={c] <--- < ¢/ _j}isgiven byc/ = min(e;, d;) for1 <i <ry—1 Itfol-
lows from (7.7) and (7.8) that a facet &fy p(b) isin A4 g(b) if and only if D=
E andD < E. Ifthisis the case, then it is clear that we actually have an inclusion
Ay, p(b) C Ay p(b). o

Let M={EeS|E=maX{D eS| D= E}}. ForE € M define

Tae® = |J Aap®.
De M,D<E
The observations from the previous paragraph imply fhista facet ofYy g (b) if
and only if F is a facet ofA 4, p (b) for someD € M with D < E. SinceA,(b) =
Yau....n-1(b), Theorem 7.3 will be proved once we show thatz () is a con-
structible simplicial complex. This we do by induction on the linearly ordered
setM.

Let Eq be the smallest element 8. ThenY, g,(b) = A4 g,(b) and hence is
constructible.

Let E > Eg and assume the claim holds for a}l< E.LetEq, ..., E; beall
the elements of that are covered by and haveE; # E. Becauset € M, it
is immediate from (7.5) and (7.6) that e M fori =1 ..., k. Let D € M with
D < E, and choos&€’ asin (7. 8) thus we have -t C. SlnceEl, ...E;areall
possible covers of, we haveE < E < C’ for somej. Then necessarilg’ <
E; < E, and we obtain from (7.8) that

An ()N AxpB) C APy B) % Ap(B) = Mg p(b) N Ay 1, (B).

Let E_ € M be the elementimmediately precedifigBy Lemma 7.4 and Remark
7.2(a), the compleX = Ty £ (5)N A4 £(b) = (UL AP (B)) % A (b) is con-
structible. LetF be a facet off. SinceY is pure by Remark 7.2(a), dim =
dim F. Furthermore,F is a facet of A, (b) * Aj(b) for some 1< i < k.
Thus F can be completed to a facet an E(b) by adding a single vertex of the
form (C|E);, and F can be completed to a facet afy g, (b) (i.e., to a facet of
Y4 £_(b)) by adding the single verte@)l. Since bothA 4 ¢ (b) and Yy g_(b)
are constructible (and hence pure), we obtain digmg (b)) = dimY, g (b)) =
dimY + 1 ThereforeY, g(b) = Ya g (b) U A4 g(b) is constructible, which
completes the proof of Theorem 7.3. O

8. Singularities

Our goal in this section is to prove Theorems 2.7 and 2.9. As a main step in the
proof of Theorem 2.7, we have the following.

(8.1) Tarorem. If kis a field thenRy (b) is Gorenstein.

Proof. We setR = Ry(b) and inR) = Qx(b)/XZ(b)Qk(b). Since Z(b) is
generated by square-free monomialg,Rn is the Stanley—Reisner ring of the
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simplicial complexA(d). It is known that a constructible simplicial complex is
Cohen—Macaulay (CM for short) over every field (see e.g. the discussion after [7,
Cor. 5.1.14])itherefore, iiR) is a CM ring by (7.3).

By Theorem 6.1 we have a monomial orde®df?) such that (b) = in(1y.(b)).
Thus, by [2] (see alsfi7, Thm. 15.17]) there exist a finitely generatedlgebra
R and a flak-algebra homomorphisix:] — R, together withk[¢]-algebra iso-
morphismsR/tR = in(R) andy : R, = R @ k[z, t71], such that the following
diagram commutes:

k[] — R — R,

| b b

k[{] — R®uk[f] = Rpk[r,¢7Y.

TheringsR, R, andS = R ®; k[z, 1] are homomorphic images of CM rings,
so well-known results (see e.g. [31, Sec. 24]) imply that their non-CM loci are
Zariski-closed. Furthermore, as the extensior- S is faithfully flat with reg-
ular fibers,S is not CM at a primep if and only if R is not CM at the prime
p N R. Thus, if V(J) € SpegR) is the non-CM locus ofR, then V(JS) =
V(J[t,t7Y]) C Specs) is the non-CM locus of.

LetV(Z) C Spe¢R) be the non-CM locus d® , and note thatthe ring /t R =
in(R) is CM. By flatnesst is R-regular and s&® is CM at each prime containing
t. ThereforeV(ZR,) C Spec€R,) is the non-CM locus oR,, and 1= u + vt
for someu € Z andv € R. In particular, for some positive integer we obtain
Y)" = L—y))" =14 vit + -+ + vyt € J[t, 7 with v; € R for j =
1, ...,s. Thus 1le J; henceV(J) = @ and soR is CM. Since by Theorem 2.6
the ringR is factorial, it is Gorenstein by [7, Cor. 3.3.19]. O

The proof of (2.7) is now straightforward.

Proof of Theorem 2.7By (5.8), the ringR = R (b) is a free (and hence a faith-
fully flat) k-module, and it remains only to show that the extengor> R has
Gorenstein fibers. This, however, is immediate from (8.1). O

Unless specified otherwise, for the rest of this seckigma field of characteristic
p > 0.

Our goal now is to prove Theorem 2.9, and we start by recalling some notions
from the theory of tight closure created by Hochster and Huneke [24]. For more
details, we refer the reader to the excellent exposition in [28].

Let R be a Noetheriak-algebra, and let = (x1, ..., x,;) be an ideal. Théght
closurel* of I is the ideal consisting of all elements R for which there exists
¢ = c(x) € Rsuch that ¢ |, cyinr P @ndex? € (xf, ..., x{) forallg = p* >
0. The ideall istightly closedif I* = I. The ringR is F-regular if, for eachp €
SpecR), every ideal ofR,, is tightly closed.

The ring R is F-rational if every parameter ideal aR is tightly closed. Here
we call an ideal a “parameter ideal” if it is generated by a sequence of elements
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x1, ..., x, Whose images generate an ideal of heigirt any localizationR,, of R
such that(xy, ..., x,) C p € SpecR).

A local k-algebraR with maximal idealm is called F-injectiveif the natu-
ral actionF: H: (R) — H| (R) of the Frobenius endomorphism &f on the
local cohomology modules is injective for all When R is Cohen—Macaulay,
its F-injectivity is characterized by the property that, for any system of parame-
tersys, ..., yg of R (whered = dim R) and for anya € R, the conditiona” e
(y1, ...y} impliesa € (y1, ..., ya); see [18, Prop. 1.4].

We need the following modification of a criterion of Fedder and Watanabe [19,
Prop. 2.13].

(8.2) LemMma. LetR be alocal Cohen—Macaulay ring, essentially of finite type
over k. If there exists a regular elemente R such thatr, is F-rational and
Gorenstein and such tha/z R is F-injective, therR is F-rational.

Proof. Becauser, is F-rational and Gorenstein, it follows th&t is F-regular
(see e.g. [28, Thm. 1.5]). By [26, Thm. 6.2], there exists a payenf z such
thatz* is a completely stable test elementRflLet I = (z, o, ..., y4) be a sys-
tem of parameters a®. To show thatr is F-rational, it suffices by [19, Prop. 2.2]
to show that/ is tightly closed. Letw € I*. Then forg = p¢ > 0 we have
Zfw e (z4,y3, ..., y]). Sincez?, yi,..., ! is a regular sequence, it follows
thatw? € (z47%, y2, ..., y!). Going moduloz yields w? € (¥3,...,51)R/zR;
hence the F-injectivity oR/zR yieldsw € (¥, ..., y4). Lifting back to R gives
w € (2, y2,...,yq) = 1. ThusI = I'* and soR is F-rational. O

Let R = Ry(b), letm C R be the maximal ideal oR generated by the entries of
X® and the elements ot (k =1, ...,n), and letz = x;" , .

(8.3) LEMMa. TheringR.,/zR ., is F-injective and Cohen—Macaulay.

Proof. SinceR is CM by (2.7) and since is regular by (3.3), the rin®,/zR
is CM.

We proceed with the proof of F-injectivity. i, = 1 then seu = (b,_1), €
Qx(b); else seu = (b,_1|b,), € Ok(b). We haveR/zR = Qy(b)/(u, Ix(b)).
Observe thatt = in(u) does not divide the minimal generators B{b) =
in(I(b)). Therefore, il (b), u) = (X(b), u) and thus

iN(R/zR) = Qx(b)/(Z(b), u)
is a Stanley—Reisner ring. The proof of [12, Cor. 2.2] shows that a Stanley—Reisner
ring is F-injective and thus is (iR /zR). Furthermorey is regular on the CM ring
iN(R) = Qk(b)/ X(b); therefore, iiR/zR) = in(R)/(u) is also CM. It follows
that Ry /z Ry, is F-injective by [12, Thm. 2.1]. O

Proof of Theorem 2.9Letk be a perfect field. Assume first that clae p > 0.
SinceR is Gorenstein, by [28, Thm. 1.5] it suffices to show tlRais F-rational.
We proceed by induction ofb|, as the cas¢b| = 1 is obvious. Note that by
(3.4) we have the isomorphis®, = Ry (b’). SinceRy/ (b’) is a localization of
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a polynomial extension of the positively grade@lgebrary(b"), it is F-rational
by the induction hypothesis and [26, Thm. (4.2)]. The same result shows that the
localization(R.,), is F-rational. BecauseéR.,), is also Gorenstein and the ring
R /7R is F-injective by Lemma 8.3k, is F-rational by Lemma 8.2.
Sincek is perfect by assumption and singeis a positively graded-algebra
with irrelevant maximal ideah by Remark 2.4(b), the desired F-rationality ®f
follows by [25, Thm. 1.4]. This completes the proof of the first part of (2.9).
Assume next that ch&r= 0. SinceRy(b) = Rz (b) ®7 k, it is immediate by
the first part of (2.9) thaR (b) has F-rational type; hence it has rational singular-
ities by [36, Thm. 4.3]. O

9. Examples

Throughout this sectiork is a field.

Let (H, <) be a partially ordered set of indeterminates, andk[éf] be the
polynomial ring ovetk whose variables are the elementghfLet = € N¥ be a
monomial ideal. A monomiat € N is calledstandardwith respect toZ if u ¢
2. Let¢: k[H] — A be a homomorphism df-algebras. In [14] the algebr&
is called aHodge algebra governed By and generated by (H ) if the following
two axioms are satisfied.

Hodge-1.The mapg sends the set of standard monomials (with respe&to
bijectively to a basis oA as a module ovék.

Hodge-2.1f u € ¥ is a generator and if the unique expressionp@f) as a
linear combination of images of distinct standard monomialéguaranteed by
Hodge-1) has the form

¢w) =Y rip(v;) with r; ek \ {0},

1

then for eachx € H that divides: and for eacti there exists a; € H that divides
v; and satisfiey; < x.

(9.1) ExampLE. In[35, p. 6], Pragacz and Weyman describe a structure of Hodge
algebra on the rin@ (b). The following example shows that the partial order they
propose on the indeterminates is not well-defined.

Letn = 2 andb = (bo, b1, b2) = (2,5,3). LetK = {1}, L = {1}, A = {1, 2},
B =1{12}, C = {1}, andD = {2}. Then (in the notation and definitions of [35,
p. 6]) the minord K, L), (A, B),, and(C, D), satisfy

(K,L)1 < (C,D)2, (C,D)2<(A,B)2, and (K, L)1« (A, B)a.
This violates the transitivity axiom.
The structure of the universal rings is closely related to the structure of the coordi-

nate rings of the varieties of complexes okemwhich have been extensively stud-
ied. Kempf [29] determines their main properties in characteristic 0. The papers
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of De Concini and Strickland [15] and of De Concini, Eisenbud, and Procesi [14]
adopt the characteristic-free approach of the theory of Hodge algebras.

In the examples that follow, we demonstrate that the structures proposed in [15]
and [14] do not satisfy the axioms for Hodge algebras. This suggests that the theory
of Hodge algebras is not suitable for the study of the generic structure of com-
plexes of free modules. A characteristic-free proof of the Cohen—Macaulayness of
the varieties of complexes that dasst use the theory of Hodge algebras is given
in [32].

(9.2) ExampLE. The following example shows that the construction of De Con-
cini and Strickland [15] does not satisfy the straightening axiom Hodge-2.

LetX® = (x) andX @ = (x{”) be matrices of indeterminates of sizes 2
and 3x 1, respectively. Lek[X Y, X @] be the polynomial ring ovek with vari-
ables the entries of @ andX @, and setR = k[ X, X@]/1,(X DX @). Thus
(in the terminology of [15])R is the coordinate ring of the variety of complexes
W of k-vector spaces of ranks = 2, ny = 3, andn, = 1.

In R we have the relation{;'x{2 = —x{3'x52 — x{3x'2, which in the notation
of [15] has the form

11231 2l2=011132]2]2—-[111 213 ] 2]>.

According to the definitions of [15, p. 71], the monomial on the left side of the
equality is not standard whereas the two monomials on the right side are standard.
In the partial order imposed in [15, p. 71], the minors|[2], and [3| @], are
not comparable to [1 2, 3];. Furthermore we have [12,3]1 < [1] 1 3]; <
111 2];.

This violates the axiom Hodge-2. The displayed relation also violates the
straightening condition (4) of [15, p. 71].

(9.3) ExampLE. De Concini, Eisenbud, and Procesi propose in [14] a different
Hodge algebra structure on the coordinate ring of the variety of complexes. The fol-
lowing example shows that their standard monomials are not linearly independent.

With R as in the previous example and notation as in [14, Sec. 16], consider the
monomials

Mi=@112%1211,3P2|D?,
M= (113%1211,2%2|D?,
M3=@11)P12(13)P2|D?.

These are standard monomials in the sense of the definitions of [14, pp. 70-71]. A
simple calculation shows that iR one has

My — My+ M3z =0.
This violates the axiom Hodge-1.
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