
Michigan Math. J. 49 (2001)

Universal Complexes and the
Generic Structure of Free Resolutions

Alexandre B. Tchernev

Introduction

An important aspect of modern commutative algebra is the study of the structure
of finite free resolutions. The first significant result in this direction goes back to
Hilbert [22]; in its most general form, due to Burch [11], it describes the struc-
ture of free resolutions of length 2 whose component in degree 0 is a free module
of rank 1. This theorem was generalized by Buchsbaum and Eisenbud [10], who
obtained structure theorems for arbitrary finite free resolutions. The question of
whether these are the “best possible” structure theorems was one of the topics of
Hochster’s influential CBMS lectures [23]. Hochster’s approach to this problem
is to describe a generic resolution of a given type from which all other resolutions
of the same type are obtained by base change.

To be specific, letR be a commutative algebra over a (fixed) base ringk, and
let

F = 0−→ Rbn X(n)−−→ Rbn−1 −→ · · · −→ Rb1
X(1)−−→ Rb0 −→ 0 (†)

be a complex, whereX(k) = (x(k)ij ) 6= 0 is the matrix of thekth differential in the
standard bases ofRbk andRbk−1, k = 1, . . . , n. Hochster calls the pair(R,F) a
universal pairif F is acyclic and if, for each commutativek-algebraS and each
free resolution

G = 0−→ S bn
Z(n)−−→ S bn−1 −→ · · · −→ S b1

Z(1)−−→ S b0 −→ 0, (‡)

there exists a uniquek-algebra homomorphismu : R → S such thatu(x(k)ij ) =
z(k)ij ; thusG = F⊗R S. When it exists, a universal pair(R,F) is determined up to
isomorphism by the sequence of itsBetti numbersb = (b0, . . . , bn);we callR the
universal ring of typeb overk, andF theuniversal resolution of typeb overk.

A main step in Hochster’s program is to establish the values ofb0, . . . , bn for
which a universal pair exists. Hochster [23] (whenk is either the ring of inte-
gersZ, or a field) and later Bruns [5] (in general) show that, whenn ≤ 2, a
necessary and sufficient condition for existence is that the “expected ranks”rk =∑n

s=k(−1)s−kbs satisfyr0 ≥ 0 andrk ≥ 1 for 1≤ k ≤ n. Whenn ≥ 3, Bruns
[5] shows that universal pairs do not exist, regardless of the choice of the numbers
b0, . . . , bn.
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These results raise the question of investigating the properties of the universal
pair (R,F) for n ≤ 2. Whenn = 1 it is easy to see that the universal ringR is a
polynomial ringk[X(1)] overk whose variables are the entries of ak ×m matrix
of indeterminatesX(1) and that the universal resolutionF is given by

F = 0−→ Rm X(1)−−→ Rk −→ 0.

If n = 2 and the universal resolution has the form

F = 0−→ Rm−1 X(2)−−→ Rm X(1)−−→ R −→ 0,

then the Hilbert–Burch theorem shows that the universal ringR is a polynomial
ring overk whose variables are the entries ofX(2) and an additional variablev.

Whenn = 2 andb0 ≥ 2, the situation is more complicated. SinceF is acyclic,
a factorization theorem of Buchsbaum and Eisenbud [10] implies thatR contains(
b0
r1

)
special elements calledBuchsbaum–Eisenbud multipliers,one multiplier for

eachr1-element subset of{1, . . . , b0}. Whenk is eitherZ or a field, results of
Hochster [23] and Huneke [27] show thatR is a normal domain generated over
k by the entries of the matricesX(1), X(2) and by the multipliers; under the same
assumptions onk, Bruns [4] proves thatR is factorial.

An important application of these results was discovered by Heitmann [21], who
used them to construct a counterexample to the rigidity conjecture.

More is known on the structure ofR whenk is a field of characteristic 0: the
theorems of Huneke and Bruns just cited, together with an unpublished result of
Hochster, yield thatR is Gorenstein; Pragacz and Weyman [35] determine the re-
lations ofR and show that it has rational singularities.

Whenk is arbitrary, Pragacz and Weyman [35] construct a candidate forR and
propose a Hodge algebra structure on it. However, in Example 9.1 we show that
this Hodge algebra structure is not well-defined. Further examples in Section 9
suggest that the theory of Hodge algebras in its present form is not appropriate for
the study of universal rings.

We prove that the candidate of Pragacz and Weyman is indeed a universal ring,
thus obtaining an explicit description of the universal pairs. Using this and the
theory of Gröbner bases, we generalize (with new proofs) to arbitrary base rings
all those results about universal pairs mentioned in the previous paragraphs, and
we perform a detailed investigation of the arithmetic properties and the singulari-
ties of the universal ring.

We summarize our results in the following theorem.

Main Theorem. Letk be a commutative ring, letb = (b0, b1, b2) be a sequence
of positive integers such thatr0 = b0− b1+ b2 ≥ 0 andr1= b1− b2 ≥ 1, and let

F = 0−→ Rb2
X(2)−−→ Rb1

X(1)−−→ Rb0 −→ 0

be the universal resolution of typeb overk.
(i) The universal ringR is a finitely presentedk-algebra with generators and

relations described in(2.3). It is a free module overk, with a free basis de-
scribed in(5.8).
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(ii) The ringR has a gradingR =⊕j≥0Rj withR0 = k such that the entries
of X(1) andX(2) are homogeneous of degree1+ b2 andr1, respectively.

(iii) The ringR is reduced if and only ifk is reduced.
(iv) The ringR is a domain if and only ifk is a domain.
(v) The ringR is a Krull domain if and only ifk is a Krull domain. Whenk is

a Krull domain, there is an isomorphism of divisor class groupsCl(R) ∼=
Cl(k).

(vi) The ringR is factorial if and only ifk is factorial.
(vii) The ringR is Cohen–Macaulay if and only ifk is Cohen–Macaulay.

(viii) The ringR is Gorenstein if and only ifk is Gorenstein.
(ix) The ringR is regular if and only ifk is regular andr1= 1.
(x) If k is a perfect field of positive characteristic thenR is F-regular.

(xi) If k is a field of characteristic0 thenR has rational singularities.

Universal rings have a particularly nice structure whenr1 = 1, that is, when the
universal resolution has the form

F = 0−→ Rm−1 X(2)−−→ Rm X(1)−−→ Rk −→ 0.

In this case the defining equations show thatR is a polynomial ring overk with
the entries ofX(2) and the Buchsbaum–Eisenbud multipliers as variables. When
k = 1, this is precisely the Hilbert–Burch theorem.

Another immediate application of the presentation of the universal rings is to a
situation “dual” to the Hilbert–Burch theorem—that is, when the universal reso-
lution F has the form

F = 0−→ R
X(2)−−→ Rm X(1)−−→ Rm−1−→ 0.

The ideal of relations forR is then precisely the generic Herzog ideal of gradem

(as defined in [1]), which parametrizes the grade-m Gorenstein ideals two links
away from a complete intersection. In this case Kustin and Miller [30] resolve
the universal ring and describe a DG-algebra structure on its minimal resolution,
and Avramov, Kustin, and Miller [1] prove that all finiteR-modules have rational
Poincaré series whenk is a field. It is an interesting open problem whether these
properties extend to all universal rings over fields.

Following the approach of Bruns [4], we consider a more general problem and
study a wider class of universal objects. For a complexF as in (†), we say that
(R,F) is a 1-universal pairif the complexF is acyclic in depth 1 (i.e.,Fp is acyclic
for eachp ∈ Spec(R) with depthRp ≤ 1) and if, for each commutativek-algebra
S and each acyclic in depth-1 complex (‡), there exists a uniquek-algebra map
u : R → S such thatG = F⊗R S. It is shown in [5] that a 1-universal pair exists
if and only if r0 ≥ 0 andri ≥ 1 for 1≤ i ≤ n (with no restrictions onn this time).

Whenn ≤ 2, the notions of universal pair and1-universal pair coincide. Thus the
various assertions of the Main Theorem are special cases of Remark 2.4 and Theo-
rems 2.5–2.9, which give a detailed description of the 1-universal pairs. These the-
orems generalize results of Bruns [4] and of Pragacz and Weyman [35] to arbitrary
base rings. In particular, we show that the factorization theorem of Buchsbaum
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and Eisenbud [10, Thm. 3.1] in the version of Eagon and Northcott [16, Thm. 3]
determines completely the generic structure of finite free complexes acyclic in
depth 1 and hence is—in a precise sense—the best possible structure theorem for
such complexes.

1. Buchsbaum–Eisenbud Multipliers

Throughout this paper, rings are commutative with unit, and modules are unitary.
We writeA = {a1 < · · · < ar} to express in compact form thatA is the set

of integers{a1, . . . , ar} arranged in increasing order. When the setsA = {a1 <

· · · < ar} andC = {c1 < · · · < ct } are disjoint, we write5A,C for the sign of the
permutation that arranges the elements of the sequence(a1, . . . , ar , c1, . . . , ct ) in
increasing order. For a subsetA ⊆ {1, . . . , b} we denote by|A| the cardinality of
A and byĀ (orA−) the complement ofA in {1, . . . , b}.

If A = {a1 < · · · < ar} andD = {d1 < · · · < dr} are sets of positive inte-
gers and ifX is a matrix over a ring, then we write〈A|D〉X or 〈A|d1, . . . , dr〉X
or 〈a1, . . . , ar |d1, . . . , dr〉X for the minor ofX on rowsa1, . . . , ar and columns
d1, . . . , dr .

We recall the notion of thegradeof an idealI in a ringR. If I is a proper ideal
then set grR I = sup{k | I contains anR-regular sequence of lengthk}; else set
grR I = ∞. The grade ofI is defined as

gradeI = lim
s→∞grR [X1,...,Xs ] IR [X1, . . . , Xs ],

whereR [X1, . . . , Xs ] is the polynomial ring overR in the indeterminatesX1, . . . ,

Xs. We refer to [33, Chaps. 5–6] for the properties of this notion of grade (de-
noted there by GrR{I } and calledtrue gradeor polynomial grade). WhenR has a
unique maximal idealm we set depthR = gradem.

We say that a complex of freeR-modulesF is acyclic in depth1 if Fp is acyclic
for eachp∈Spec(R) with depthRp ≤ 1.

For the rest of this section,

F = 0−→ Rbn X(n)−−→ Rbn−1 −→ · · · −→ Rb1
X(1)−−→ Rb0 −→ 0

is a complex that is acyclic in depth 1. Theexpected ranksfor the sequenceb =
(b0, . . . , bn) are the integers

ri =
{ ∑n

s=i (−1)s−ibs if 0 ≤ i ≤ n,
0 if i = n+1.

Note thatri ≥ 0 for i = 0, . . . , n owing to the acyclicity condition onF.
We quote the factorization theorem of Buchsbaum and Eisenbud [10] in the ver-

sion of Eagon and Northcott [16, Thm. 3]. To simplify notation, we write〈A|E〉k
for the corresponding minor of the matrixX(k).

(1.1) Theorem [10; 16]. For every1≤ k ≤ n and everyrk-element subsetA ⊆
{1, . . . , bk−1} there exists a uniquely determined element〈A〉k ∈ R such that the
expressions(where〈∅〉n+1 = 1)
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〈A|E〉k −5Ē,E〈A〉k〈Ē〉k+1 (1.2)

are equal to0 in R for anyE ⊆ {1, . . . , bk} with |E| = rk.
The elements〈A〉k from (1.1) arecalledBuchsbaum–Eisenbud multipliersfor the
complexF. We derive some further relations in the ringR that involve these multi-
pliers. In somewhat different notation, these formulas appear in [35, Lemma 1.2].

(1.3) Proposition. The expressions(where each sum is over0)
|0|=q∑

C∩A⊂0⊂C\D
5A,C\0 5C\0,0 50,D〈A ∪ (C \ 0)〉k〈0 ∪D〉k (1.4)

|0|=q∑
C∩A⊂0⊂C\E

5A,C\0 5C\0,0 50,E〈A ∪ (C \ 0)〉k〈0 ∪ E | F 〉k (1.5)

|0|=t∑
0⊆{1,...,bk}\(3∪H∪K)

5H,0 50,K〈G | H ∪ 0〉k〈0 ∪K〉k+1 (1.6)

are equal to0 in the ringR for 1 ≤ k ≤ n, anyA,C,D,E,G ⊆ {1, . . . , bk−1},
and anyF,H,K,3 ⊆ {1, . . . , bk} such that

|A| = rk − p, |F | = s ≤ rk, |G| = m ≤ rk,
|D| = rk − q, |E| = s − q, |H | = m− t,
|C| = p + q ≥ rk + 1, |K| = rk+1− t, |3| < t ≤ min(m, rk+1).

(1.7) Remark. Since rn+1 = 0, there are no expressions of the form (1.6)
with k = n.
LetNi ⊆ Rbi−1 be the image ofX(i) for 1≤ i ≤ n, and writeT for the total ring
of fractions ofR.

(1.8) Lemma. Assume that, fori = 1, . . . , n, the idealIri(X
(i)) contains anR-

regular element.
For each1 ≤ i ≤ n, theT -moduleNi ⊗R T is free of rankri and has a free

T -basis such that, for eachA ⊆ {1, . . . , bi−1} with |A| = ri, the Buchsbaum–
Eisenbud multiplier〈A〉i ∈ R is precisely the maximal minor〈A|1, . . . , ri〉M(i) of
thebi−1× ri matrixM(i) of the homomorphismNi ⊗R T −→ Rbi−1 ⊗R T .
Proof. SinceIri(X

(i))T = T for i = 1, . . . , n, the complexF⊗R T is split acyclic
and henceNi ⊗R T is free of rankri .

BecauseR ⊆ T and the expressions (1.2) determine completely the Buchsbaum–
Eisenbud multipliers, after tensoring withT we may assume thatR = T, thatNi
is a freeR-module of rankri, and thatF is split acyclic. Under these assumptions,
the lemma is an immediate consequence of the proof of [6, Thm. (3.2)].

Proof of Proposition 1.3.It is immediate from [16, Thm. 2] that gradeIri(X
(i)) ≥

1 for i = 1, . . . , n. Thus, by adjoining a variable toR, we may assume that the
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idealIri(X
(i)) contains anR-regular element for each 1≤ i ≤ n. LetM(i) (i =

1, . . . , n) be the matrices from Lemma 1.8 whose minors equal the Buchsbaum–
Eisenbud multipliers. Note that the relations (1.4) are simply the Plücker relations
on the maximal minors ofM(k); see [8, (4.4)].

LetY (i) be thebi−1× (bi+ ri)matrix overT whose firstbi columns are the col-
umns ofX(i) and whose lastri columns are the columns ofM(i). Since ImM(i) =
ImX(i), the rank ofY (i) is ri; thus, the relations (1.5) are among the Plücker rela-
tions forY (i).

Finally, for each 1≤ i ≤ n − 1 we haveX(i)M(i+1) = 0; hence [15, Cor. 1.2]
yields the relations (1.6).

2. Universal Complexes

For the rest of this paper,b = (b0, . . . , bn) is a sequence of positive integers such
that the expected ranks satisfy

n∑
s=i
(−1)s−ibs = ri ≥

{
0 if i = 0,

1 if 1≤ i ≤ n.
(2.1) Definition. Let k be a ring, letR be ak-algebra, and letF be a complex
of freeR-modules as in (†) of the Introduction.

The pair(R,F) is called 1-universal(of typeb overk) if F is acyclic in depth 1
and if, for eachk-algebraS and each acyclic in depth-1 complex (‡), there exists
a uniquek-algebra homomorphismu : R → S such thatu(X(i)) = Z(i) for i =
1, . . . , n.

If (R,F) is 1-universal of typeb overk, thenR is theuniversal ring of typeb
overk andF is theuniversal complex of typeb overk.

(2.2) Remarks. (a) It is proved in [5] that a 1-universal pair(R,F) of type b
overk exists. Clearly it is determined up to a unique isomorphism byb.

(b) It is immediate from the acyclicity criterion of Peskine and Szpiro [34] in
the version of Northcott [33, Chap. 5, Thm. 21] that, forn ≤ 2, the notion of
1-universal pair coincides with Hochster’s notion of universal pair recalled in the
Introduction.

Fork = 1, . . . , n, letX(k) = (x(k)ij ) be abk−1× bk matrix of indeterminates and let

Mk = {〈A〉k | A ⊂ {1, . . . , bk−1}, |A| = rk}
be a set of indeterminates. Consider the polynomial ringk[X(1), . . . , X(n),

M1, . . . ,Mn] whose variables are the entries ofX(k) and the elements ofMk,

1≤ k ≤ n. Let

J ′ =
n−1∑
k=1

I1(X
(k)X(k+1)),

let J ′′ be the ideal generated by all expressions from (1.2), (1.4), (1.5), and (1.6),
and set
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Rk(b) = k[X(1), . . . , X(n),M1, . . . ,Mn]/Jk(b), where Jk(b) = J ′+J ′′. (2.3)

By abuse of notation we writex(k)ij , X
(k), 〈A〉k, andMk also for the images of these

objects inRk(b), and we refer toMk as thekth set of multipliersof Rk(b).

(2.4) Remarks. (a) By expanding an(rk + 1)× (rk + 1) minor ofX(k) along a
column, it is easy to see that the minor reduces to 0 modulo the relations (1.2) and
(1.5). Thus there are inclusionsIrk+1(X

(k)) ⊂ Jk(b) for k = 1, . . . , n−1.
(b) Define a grading on the ringk[X(1), . . . , X(n),M1, . . . ,Mn] by

deg(x(k)ij ) =


1+ r2 if k = 1,

rk−1+ rk+1 if 2 ≤ k ≤ n−1,

rn−1 if k = n;
deg(〈A〉k) =

{
r1 if k = 1,

rk−1rk if 2 ≤ k ≤ n.
Note that the idealJk(b) is homogeneous in this grading, thus makingRk(b) a
positively gradedk-algebra.

Let Fk(b) be the complex

0−→ Rk(b)
bn X(n)−−→ Rk(b)

bn−1 −→ · · · −→ Rk(b)
b1

X(1)−−→ Rk(b)
b0 −→ 0.

The following theorems are the main results of this paper.

(2.5) Theorem. The pair(Rk(b),Fk(b)) is 1-universal of typeb overk.

(2.6) Theorem. (i) The ringRk(b) is reduced(respectively, a domain) if and
only if k is reduced(respectively, a domain).

(ii) The ringRk(b) is a Krull domain if and only ifk is a Krull domain. If k
is a Krull domain then there is an isomorphism of divisor class groupsCl(k) ∼=
Cl(Rk(b)).

(iii) The ringRk(b) is factorial if and only ifk is factorial.

(2.7) Theorem. The homomorphismk −→ Rk(b) is faithfully flat with Goren-
stein fibers. In particular,Rk(b) is Cohen–Macaulay(resp., Gorenstein) if and
only if k is Cohen–Macaulay(resp., Gorenstein).

(2.8) Theorem. The ringRk(b) is regular if and only ifk is regular andri = 1
for each1≤ i ≤ n− 1.

(2.9) Theorem. Let k be a perfect field. Ifchark = p > 0, thenRk(b) is
F-regular; if chark = 0, thenRk(b) has rational singularities.

Remarks. (a) In view of Remarks 2.2(b) and 2.4(b), the Main Theorem is an
immediate corollary of (2.5)–(2.9) and (5.8).

(b) Whenk is a field of characteristic 0, Theorems 2.5 and 2.9 are due to Pragacz
and Weyman [35]. In the general case they incorrectly proposed (see Example 9.1)
a Hodge algebra structure on the ringRk(b).
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In this and the next two sections we present, modulo Lemmas 3.2 and 3.3, the
proofs of Theorems 2.5, 2.6, and 2.8. The proofs of Theorems 2.7 and 2.9 are
given in Section 8.

The proofs of (2.5) and (2.6) use induction on|b| = ∑n
s=1 rs . The following

lemma provides the basis for these inductive arguments and is also an essential
ingredient in the proof of Theorem 2.8.

(2.10) Lemma. If ri = 1 for each1 ≤ i ≤ n − 1, then there is ak-algebra
isomorphism

k[X(n),M1, . . . ,Mn−1] ∼= Rk(b)
induced by the canonical projectionk[X(1), . . . , X(n),M1, . . . ,Mn] −→ Rk(b).

Proof. For i = 2,4,5,6 we setJi = ∑n
j=1Jij, whereJij ⊂ k[X(1), . . . , X(n),

M1, . . . ,Mn] is the ideal generated by all expressions from(1.i) with k = j ; thus

Jk(b) = J ′ + J2 + J4 + J5+ J6.

Note thatJ6n = 0 by (1.7). Sinceri = 1 for i = 1, . . . , n−1, it is straightforward
to verify that

J4j = 0 for j = 1, . . . , n−1,

J6j ⊆ J2 for j = 1, . . . , n−1,

J5j ⊆ J2 + J4j for j = 1, . . . , n−1,

I1(X
(j)X(j+1)) ⊆ J2 for j = 1, . . . , n− 2.

Note also that, moduloJ2, the entries ofX(n−1)X(n) (resp., the expressions from
(1.4) and (1.5) withk = n) are multiples of Plücker relations on the minors ofX(n)

and hence equal 0. ThereforeJk(b) = J2, and the conclusion of the lemma is
immediate.

Proof of Theorem 2.8.If k is regular andri = 1 for each 1≤ i ≤ n − 1, then
Rk(b) is regular by (2.10).

Conversely, assume thatRk(b) is regular. Thenk is regular by Lemma 3.2 and
we need only show thatri = 1 for each 1≤ i ≤ n−1. Thus we may also assume
(after a suitable localization) thatk is a field.

Let m (resp.,M) be the maximal ideal ofR (resp., ofQ = k[X(1), . . . , X(n),

M1, . . . ,Mn]) generated by the entries ofX(k) and the elements ofMk, k =
1, . . . , n. Since the ringRm

∼= QM/Jk(b)M is regular and local, each mini-
mal generator ofJk(b)M is part of a regular system of parameters forQM.

Let i be an integer such that 1≤ i ≤ n−1 andri ≥ 2. Set

w = 〈1, . . . , ri |ri+1+1, . . . , bi〉i − 〈1, . . . , ri〉i〈1, . . . , ri+1〉i+1

and note thatw ∈ Jk(b)M andw ∈M2
M. Assume thatw ∈MJk(b)M and letN ⊂

MM be the ideal generated by the set

{x(j)pq | j 6= i, or p ≥ ri +1, or q ≤ ri+1} ∪M1 ∪ · · · ∪Mn.
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It is immediate that, in the regular rinḡQ = QM/N, the idealJk(b)M +N/N

is generated by 06= w̄ = w +N. On the other hand, for̄M =MM/N we have
w̄ ∈ M̄w̄ and thusw̄ = 0. Hence the assumptionw ∈MJk(b)M leads to a contra-
diction and sow is a minimal generator ofJk(b)M, which is not part of a regular
system of parameters forQM. This, however, contradicts the conclusion of the
previous paragraph. We therefore haveri = 1 for each 1≤ i ≤ n−1,which com-
pletes the proof of Theorem 2.8.

3. Proof of Theorem 2.5

(3.1) Lemma. If ri = 1 for each1≤ i ≤ n−1, then the complexFk(b) is acyclic
in depth1.

Proof. Let R = Rk(b) andF = Fk(b). For j = 1, . . . , n, setIj = Irj (X(j)). By
(2.10) we haveR ∼= k[X(n),M1, . . . ,Mn−1]. If n = 1 then this implies thatF is
acyclic and we are done. Hence we assumen ≥ 2 and takep ∈ Spec(R) with
depthRp ≤ 1.

We have (see e.g. [8, Thm. (2.5)]) gradeIn = 2. Since|M1| ≥ 1 and|Mi | ≥ 2
for 2 ≤ i ≤ n − 1, we also obtain gradeM1R ≥ 1 and gradeMiR ≥ 2 for each
2 ≤ i ≤ n − 1. ThusInRp = Rp andIjRp = (Mj+1Rp)(MjRp) = Rp for each
2 ≤ j ≤ n − 1. Since gradeI1Rp ≥ 1, the desired acyclicity ofFp is immediate
(e.g., by the acyclicity criterion of [9] in the form of [16, Thm. 2]).

The following lemma is a direct consequence of a result of Pragacz and Weyman
[35, Thm. 1.3] (recalled here as Theorem 5.8).

(3.2) Lemma. The homomorphismk −→ Rk(b) is faithfully flat.

The proof of the next lemma is given in Section 5.

(3.3) Lemma. The elementx = x(n)bn−1bn
is regular inRk(b).

If i is an integer such that1≤ i ≤ n−1andri ≥ 2, then the elementy = x(i)bi−1bi

is also regular and(x, y) is a regular sequence inRk(b).

Let 1≤ i ≤ n be an integer such that eitheri = n ≥ 2 or ri ≥ 2. Set

b ′ =
{
(b0, . . . , bn−2, bn−1−1) if i = n andrn = 1,

(b0, . . . , bi−2, bi−1−1, bi −1, bi+1, . . . , bn) otherwise;
k′ = k[X1bi , . . . , Xbi−1bi , Xbi−11, . . . , Xbi−1bi−1][X

−1
bi−1bi

];

E = 0−→ Rk′(b
′)

Xbi−1bi−−−−→ Rk′(b
′) −→ 0,

where the nonzero components of the complexE are in (homological) degreesi
andi − 1. We writeY (k) = (y(k)st ) for the matrix of thekth differential ofFk′(b ′)
and use′ to denote multipliers ofRk′(b ′).
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(3.4) Lemma. For z = x(i)bi−1bi
there exists ak-algebra isomorphismϕ : Rk(b)z−→

Rk′(b ′) such that

ϕ(x
(k)
st ) =



− 1
Xbi−1bi

∑bi−1
j=1 Xbi−1j y

(i+1)
jt if k = i + 1 and s = bi−1,

Xsbi if k = i and t = bi,
Xbi−1t if k = i and s = bi−1,

y
(i)
st + XsbiXbi−1t

Xbi−1bi
if k = i, s 6= bi−1, and t 6= bi,

− 1
Xbi−1bi

∑bi−1−1
j=1 Xjbi y

(i−1)
sj if k = i − 1 and t = bi−1,

y
(k)
st otherwise;

ϕ(〈A〉k) =



〈A〉′k if k > i + 1,

−∑j /∈A
Xbi−1j

Xbi−1bi
5A\bi,j 〈(A \ bi) ∪ j〉′i+1 if k = i + 1 and bi ∈A ,

〈A〉′i+1 if k = i + 1 and bi /∈A ,

Xbi−1bi〈A \ bi−1〉′i if k = i and bi−1∈A,∑
j∈A5A\j,jXjbi〈A \ j〉′i if k = i and bi−1 /∈A,

(−1)ri−1〈A〉′k otherwise.

This isomorphismϕ induces an isomorphismFk(b)z ∼= Fk′(b ′)⊕ E of complexes
overRk′(b ′).

Through long and tedious computations one can verify (3.4) using only the pre-
sentation (2.3); it is much more convenient to work out the proofs of (3.4) and
(2.5) in parallel.

Proof of Theorem 2.5 and Lemma 3.4.Note that ifS is ak-algebra and if a com-

plex 0−→ S bn
Z(n)−−→ · · · Z(1)−−→ S b0 −→ 0 is acyclic in depth 1, then from(1.1), (1.3),

and the presentation (2.3) ofR = Rk(b) it is clear that there exists a uniquek-
algebra homomorphismu : R→ S such thatu(X(j)) = Z(j) for each 1≤ j ≤ n.
Thus, to prove (2.5) we need to show thatF = Fk(b) is acyclic in depth 1.

We argue by induction on|b| = ∑n
s=1 rs that Lemma 3.4 holds and thatF is

acyclic in depth 1. If|b| = 1 thenn = 1, hence (3.4) holds for trivial reasons and
F is acyclic in depth 1 by (3.1); so assume that|b| ≥ 2.

Let 1≤ i ≤ n andz be as in (3.4). SetS = Rk′(b ′) and note thatFk′(b ′)⊕ E
has the form

0−→ S bn
Y (n)−−→ S bn−1 −→ · · · −→ S bi+2

Y (i+2)−−−→

S bi+1

(
Y (i+1)

0

)
−−−−−→ S bi

(
Y (i) 0

0 Xbi−1bi

)
−−−−−−−−→ S bi−1

(Y (i−1) 0)−−−−−→

S bi−2
Y (i−2)−−−→ S bi−3 −→ · · · −→ S b1

Y (1)−−→ S b0 −→ 0.

Let {eij | 1≤ j ≤ bi} and{ei−1j | 1≤ j ≤ bi−1} be the standard bases ofS bi and

S bi−1, respectively. LetG = 0−→ S bn
Z(n)−−→ · · · Z(1)−−→ S b0 −→ 0 be the complex
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obtained fromFk′(b ′) ⊕ E after choosing forS bi andS bi−1 the new bases{e ′ij |
1≤ j ≤ bi} and{e ′i−1j | 1≤ j ≤ bi−1}, where

e ′ij =
{
eij − Xbi−1j

Xbi−1bi
eibi if 1 ≤ j ≤ bi −1,

eibi if j = bi;

e ′i−1,j =
{
ei−1,j if 1 ≤ j ≤ bi−1−1,

ei−1,bi−1 + 1
Xbi−1bi

∑bi−1−1
k=1 Xkbi−1ei−1,k if j = bi−1.

ThereforeG ∼= Fk′(b ′) ⊕ E and hence is acyclic in depth 1 by the induction hy-
pothesis. Thus there exists a uniquek-algebra homomorphismu : R → S such
thatu(X(j)) = Z(j) for each 1≤ j ≤ n. In particular,u(z) = Xbi−1bi and hence
u extends to a mapϕ : Rz → S.

A standard calculation shows thatϕ satisfies the desired formulas. To see
that ϕ is an isomorphism, consider thesurjectivek-map ν : k′[Y (1), . . . , Y (n′ ),
M ′1, . . . ,M ′n′ ] → Rz (wheren′ is the length ofb ′) given by

ν(Xst ) = x(i)st ,

ν(y
(k)
st ) =

 x
(i)
st −

x
(i)

sbi
x
(i)

bi−1t

z
if k = i,

x
(k)
st if k 6= i;

ν(〈A〉′k) =


〈A〉k if k > i,

〈A∪ bi−1〉i
z

if k = i,
(−1)ri−1〈A〉k if k < i.

Sinceν(〈A|E〉Y (i) ) = (1/z)〈A∪ bi−1|E ∪ bi〉X(i) andν(〈A|E〉Y (k) ) = 〈A|E〉X(k) for
k 6= i, it is straightforward to verify thatν factors throughS to produce a map
ψ : S → Rz. An easy calculation shows thatϕ Bψ = idS. Thusψ is also injective,
hence an isomorphism, andϕ is its inverse. Thereforeϕ is an isomorphism and
clearly induces the isomorphism of complexesFz ∼= G ∼= Fk′(b ′)⊕ E. It follows
that Lemma 3.4 holds forb.

To complete the proofs of (2.5) and (3.4) it remains to show that the complex
F is acyclic in depth 1. Whenrj = 1 for each 1≤ j ≤ n − 1 this follows from
(3.1). Assume thatrj ≥ 2 for some 1≤ j ≤ n−1, and takep∈Spec(R) such that
depthRp ≤ 1.

By (3.3) the elementsx = x(n)bn−1bn
andy = x(j)bj−1bj

form a regular sequence inR;
thus at least one of them, call itz, is not inp. Since Lemma (3.4) holds forb, we
obtain the isomorphism of complexesFp = (Fz)pRz ∼= Fk′(b ′)ϕ(pRz) ⊕ Eϕ(pRz),

and the desired acyclicity ofFp is immediate from our induction hypothesis.

4. Proof of Theorem 2.6

Proof of Theorem 2.6(i).As in our proof of (2.5), we setR = Rk(b).
By Lemma 3.2, the mapk −→ R is faithfully flat and hence injective. Thus, if

R is reduced (resp., a domain) thenk is reduced (resp., a domain).
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Assume next thatk is reduced (resp., a domain). We show by induction on|b|
thatR is reduced (resp., a domain). When|b| = 1, or more generally whenn =
1, the assertion is obvious from (2.10). Assume that|b| ≥ 2 and thatn ≥ 2.

By Lemma 3.3, the elementx = x(n)bn−1bn
is regular inR; henceR ⊆ Rx. Lemma

3.4 yieldsRx ∼= Rk′(b ′), which is reduced (resp., a domain) by the induction hy-
pothesis. ThereforeR is reduced (resp., a domain), which completes the proof of
Theorem 2.6(i).

(4.1) Lemma. If k is a domain, thenx(n)bn−1bn
is a prime element ofRk(b).

Proof. We proceed by induction on|b|. When|b| = 1, or more generally when
ri = 1 for each 1≤ i ≤ n−1, the claim is obvious from (2.10). Assume that|b| ≥
2 and thatri ≥ 2 for some 1≤ i ≤ n−1.

It follows thatn ≥ 2 and, by (3.3), the elementsx = x(n)bn−1bn
andy = x(i)bi−1bi

form
a regular sequence inR = Rk(b); in particular,R/xR ⊂ (R/xR)y = Ry/xRy.
Thus it suffices to show thatx is a prime element ofRy. Wheni < n−1, Lemma
3.4 yields an isomorphismϕ : Ry ∼= Rk′(b ′) with ϕ(x) = y(n)bn−1bn

and we are done
by the induction hypothesis.

Wheni = n−1, Lemma 3.4 yields an isomorphismϕ : Ry ∼= Rk′(b ′) such that

ϕ(x) = − 1

Xbn−2bn−1

bn−1−1∑
j=1

Xbn−2j y
(n)
jbn
.

Sincek′ is a domain, our induction hypothesis yields thatz = y(n)bn−1−1,bn is a
prime element of the domain (by the already proven part (i) of this theorem)
R ′ = Rk′(b ′). By (2.3), thek′-algebra homomorphismε : k′[Y (1), . . . , Y (n),
M ′1, . . . ,M ′n] → k′ given by

ε(y
(k)
ij ) =

{
1 if i = 1 andj = bn andk = n,
0 otherwise

and

ε(〈A〉′k) =
{

1 if bn = 1 andA = {1} andk = n,
0 otherwise

factors throughR ′, so it follows thatϕ(x) /∈ zR ′ (asbn−1 ≥ 3, we haveε(z) =
0 while ε(ϕ(x)) = −(Xbn−2,1/Xbn−2bn−1) 6= 0). Henceϕ(x) andz form anR ′-
regular sequence, and it suffices to show thatR ′z/ϕ(x)R ′z is a domain. By using
(3.4) again we obtainR ′z ∼= Rk′′(b ′′), whereb ′′ = (b ′)′ and

k′′ = k′[Y1bn , . . . , Ybn−1−1,bn , Ybn−1−1,1, . . . , Ybn−1−1,bn−1][Y
−1
bn−1−1,bn ];

ϕ(x) is mapped under this isomorphism to

w = − 1

Xbn−2bn−1

bn−1−1∑
j=1

Xbn−2jYjbn ∈ k′′.
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ThusR ′z/ϕ(x)R ′z ∼= Rk̄(b
′′), wherek̄ = k′′/wk′′ ∼= k′′/Xbn−2,bn−1−1k′′ is a do-

main. Therefore,R ′z/ϕ(x)R ′z is a domain by the already proven part (i) of (2.6).
This completes the proof of the lemma.

Proof of Theorems 2.6(ii) and 2.6(iii).We note that (ii) implies (iii) and proceed
with the proof of (ii). AssumeR = Rk(b) is a Krull domain. By (3.2),R is faith-
fully flat overk and hencek is a Krull domain by a standard argument.

Assume next thatk is a Krull domain, and letx = x(n)bn−1bn
. To prove thatR is a

Krull domain we proceed by induction on|b|. When|b| = 1, or more generally
whenri = 1 for each 1≤ i ≤ n−1, the assertion is obvious from (2.10). Assume
that|b| ≥ 2 and thatri ≥ 2 for some 1≤ i ≤ n−1.

Thenn ≥ 2 and the ringRx is a Krull domain by (3.4) and the induction hy-
pothesis. Note that, by (4.1), the idealp′ = xR is prime; setP = {p ∈ Spec(R) |
htp = 1 andx /∈ p}. We have thatRp is a DVR for eachp ∈ P and thatRx =⋂

p∈P Rp. SinceRp′ is also a DVR, to show thatR is a Krull domain it suffices
to prove the equalityR = Rp′ ∩ Rx. The inclusionR ⊆ Rp′ ∩ Rx is obvious, so
we pick an elementu ∈ Rp′ ∩ Rx. Thusu = v/x s = w/r with somev,w, r ∈ R
such thatv, r /∈ xR. But thenwx s = rv /∈ xR, hences = 0 and thereforeu ∈R.
This completes the proof thatR is a Krull domain if and only ifk is.

To deal with the divisor class groups we use basic facts from [20].
Again, we argue by induction on|b|. When|b| = 1, or more generally when

ri = 1 for each 1≤ i ≤ n−1, the assertion follows from Gauss’ lemma in view of
(2.10). Assume that|b| ≥ 2 and thatri ≥ 2 for some 1≤ i ≤ n− 1; thusn ≥ 2.
Since by (4.1) the idealxR is prime, Nagata’s theorem gives the first isomorphism
of

Cl(R) ∼= Cl(Rx) ∼= Cl(Rk′(b
′)) ∼= Cl(k′) ∼= Cl(k);

the second isomorphism follows from (3.4), the third is our induction hypothesis,
and the last isomorphism comes from the definition ofk′ by Gauss’ lemma and
Nagata’s theorem.

The proof of Theorem 2.6 is now complete.

5. Standard Monomials and Monomial Order

The goals of this section are first to describe a set of “standard monomials” that
yield a free basis ofRk(b) as a module overk and then to associate with it a cer-
tain monomial order. This will allow us, by using the theory of Gröbner bases, to
reduce the study of the singularities of the ringRk(b) to the study of the combi-
natorial structure of a certain simplicial complex.

Young Tableaux

We recall some notions from the theory of Young tableaux.
A shapeis a sequence of positive integersλ = (λ1, . . . , λk). It is represented by

a sequence of left-justified rows of boxes in the plane, whereλi is the number of
boxes in theith row of the shape. For example, we have
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(3,2,2,1) = and (2,3,2) = .

The shape given by the empty sequence is calledtrivial.
A shapeλ is calledstandardif it is trivial or if λ1 ≥ λ2 ≥ · · · ≥ λk. Thus, the

first of the shapes just displayed is standard, and the second is not.
A tableauof shapeλ is a sequenceL = (L1, . . . , Lk), whereLi = {li1 < · · · <

liλi } ⊂ N for i = 1, . . . , k. A tableau is represented by placinglij in thej th box
of theith row ofλ, so that the entries in each row are strictly increasing from left
to right. The unique tableau of trivial shape is called thetrivial tableauand is de-
noted as∅.

A Young tableauis a tableau of standard shape such thats < t implies lsj ≤
ltj for each 1≤ j ≤ λt . Thus, the entries in each column of a Young tableau are
nondecreasing from top to bottom. For example ifL′1 = {1,3,4}, L′2 = {2,3},
L′′1 = {2,4}, andL′′2 = {5}, thenL′ = (L′1, L′2) andL′′ = (L′′1, L′′2) are theYoung
tableaux

L′ = 1 3 4
2 3

and L′′ = 2 4
5

.

Note that the trivial tableau is a Young tableau.
Given tableauxL′ = (L′1, . . . , L′k ′) andL′′ = (L′′1, . . . , L′′k ′′), we write L′

L′′ for
the tableau(L′1, . . . , L′k ′ , L

′′
1, . . . , L

′′
k ′′); it is obtained by placingL′ on top ofL′′.

For example, ifL′ andL′′ are the tableaux from the previous display, thenL′
L′′ is

the tableau

1 3 4
2 3
2 4
5

.

It is clear that there are equalitiesL∅ = ∅
L = L.

A multitableauis a sequence of tableaux(Lµ0 | · · · | Lµn), where the tableau
Lµi is of shapeµi for i = 0, . . . , n; it is standardif Lµi is a Young tableau for
each 0≤ i ≤ n.

Orders

We consider a linear order on the set of finite subsets ofN given by

{a1 < · · · < as} < {e1 < · · · < et }
⇐⇒

{
s < t or

s = t andaj > ej for j = min{i | ai 6= ei}. (5.1)

It induces a linear order on the sets of indeterminatesMk (see Section 2) fork =
1, . . . , n.
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Let b ′, b ′′, r be positive integers, and set

V(b ′, b ′′, r) = {(A,E) | A ⊆ {1, . . . , b ′ }, E ⊆ {1, . . . , b ′′ }, 1≤ |A| = |E| ≤ r}.
Fork = 1, . . . , n, letVk = {〈A|E〉k | (A,E)∈V(bk−1, bk, rk)} be a set of indeter-
minates. We define for 1≤ k ≤ n a linear order onVk by

〈A|E〉k < 〈D|F 〉k ⇐⇒
{
A < D or

A = D andE < F.
(5.2)

LetV(b) be the disjoint unionV1tM1t · · · tVn tMn. LetQk(b) = k[v | v ∈
V(b)] be the polynomial ring overk on the set of variablesV(b); it is graded by
assigning degree 1 to each variable. Finally, letNV(b) be the set of all monomials
in the variablesV(b). We will use the canonical identification

NV(b) = NV1 × NM1 × · · · × NVn × NMn.

We extend the linear orders onVi andMi to monomial orders onNVi andNMi

by using reverse lexicographic ordering; see[17, Sec. 15.2] for the terminology.
Thus, ifv1 ≤ · · · ≤ vk andu1 ≤ · · · ≤ ut are variables fromVi (or fromMi), then

v1 . . . vk < u1 . . . ut

⇐⇒
{
k < t or

k = t andvm < um for m = min{j | vj 6= uj }. (5.3)

We define a monomial order onNV(b) by taking the lexicographic product of
the monomial orders onNV1,NM1, . . . ,NVn, andNMn; namely, forw ′ = u′1 . . . u′2n
andw ′′ = u′′1 . . . u′′2n (whereu′2i−1, u

′′
2i−1∈NVi andu′2i , u

′′
2i ∈NMi ) we set

w ′ < w ′′ ⇐⇒ u′m < u′′m for m = min{i | u′i 6= u′′i }. (5.4)

Finally, we also introduce a partial order on the set of finite subsets ofN by

{a1 < · · · < as} ≺ {e1 < · · · < et } ⇐⇒ s ≤ t and ai ≥ ei for i = 1, . . . , s.

The setsMk inherit this order, and we define a partial order on the setsVk by

〈A|E〉k � 〈D|F 〉k ⇐⇒ A � D and E � F. (5.5)

Standard Monomials

To specify the set of standard monomials, which is a subset ofNV(b), we follow
Pragacz and Weyman [35, Sec. 1] (where〈A|E〉k and〈A〉k are denoted by(E,A)k
and [A] k, respectively).

We associate with each monomialw ∈NV(b) a multitableauL(w) as follows.
Letw = u1z1 . . . unzn (whereui ∈ NVi andzi ∈ NMi for 1≤ i ≤ n). For each

1≤ i ≤ nwe writeui = ui1 . . . uisi (resp.,zi = zi1 . . . ziti ) so thatuij = 〈Aij |Eij〉i
andui1 ≥ · · · ≥ uisi (resp.,zij = 〈Cij〉i andzi1 ≥ · · · ≥ ziti ). For each 1≤ i ≤ n,
set:
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Ai = (Ai1, . . . , Aisi );
Ci = (Ci1, . . . , Citi );

Ei =


∅ if i = n andEnj = {1, . . . , bn} for j = 1, . . . , sn,(
(Ensn)

−, . . . , (Enpn)−
)

if i = n andpn = min{j | {1, . . . , bn} 6= Enj },(
(Eisi )

−, . . . , (Ei1)−
)

if i 6= n;
note that the sequence of components ofEi is obtained by taking inreverseorder
the sequence of the complements of the setsEij . Finally, set

L(w) =
C1

A1

∣∣∣∣∣∣
E1

C2

A2

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣
En−1

Cn

An

∣∣∣∣∣∣
En
.

(5.6) Definition. A monomialw ∈ NV(b) is calledstandardif L(w) is a stan-
dard multitableau and if the elements ofV max(b) = {〈A|E〉k | 1≤ k ≤ n, |A| =
|E| = rk} do not dividew.

Example. Letn = 2 and letb = (b0, b1, b2) = (3,4,2); thusr1= r2 = 2. For

w = 〈1,3|1,2〉1〈2|3〉1〈2|1〉2〈1,4〉2 ∈NV(b),
we have

L(w) =

 1 3
2

∣∣∣∣∣∣∣∣
1 2 4
3 4
1 4
2

∣∣∣∣∣∣∣∣ 2

.
This is not a standard multitableau, sow is not a standard monomial.

For the monomials

w ′ = 〈2|3〉1〈1,3〉1〈3|1〉2〈1,3〉2〈1,4〉2
and

w ′′ = 〈2|3〉1〈1,3〉1〈1,4|1,2〉2〈3|2〉2〈1,3〉2,
we have

L(w ′) = L(w ′′) =

 1 3
2

∣∣∣∣∣∣∣∣
1 2 4
1 3
1 4
3

∣∣∣∣∣∣∣∣ 2

,
which is a standard multitableau. However, whereasw ′ is indeed a standard mono-
mial,w ′′ is divisible by〈1,4|1,2〉2 ∈V max(b) and hence is not standard.

(5.7) Definition. Define a homomorphism ofk-algebras

π : Qk(b)→ Rk(b)

by mapping the indeterminate〈A|C〉k ∈V(b) to the minor〈A|C〉k of X(k) and by
sending the indeterminate〈D〉k ∈V(b) to the multiplier〈D〉k ∈Rk(b).

It is clear thatπ is surjective, and we writeIk(b) for the kernel ofπ.
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We need the following important result of Pragacz and Weyman [35, Thm. 1.3].

(5.8) Theorem [35]. The surjectionπ : Qk(b)→ Rk(b) maps the set of stan-
dard monomials bijectively to a free basis ofRk(b) as ak-module.

Remark. The original proof of (5.8) uses methods from group representation
theory. Not being aware of this result, we produced in [37] a proof based on a
different use of representation theory combined with Gröbner bases techniques.
Theorem 6.1 is one of the main ingredients in that alternative proof.

We now give the proof of (3.3), thus completing the proofs of (2.5), (2.6), and (2.8).

Proof of Lemma 3.3.If rn = 1 then setu′ = 〈bn−1〉n ∈ Qk(b); else setu′ =
〈bn−1|bn〉n ∈Qk(b). Also setu′′ = 〈bi−1|bi〉i ∈Qk(b). It is immediate from the
definition that a monomialu ∈ NV(b) is standard if and only ifuu′ is standard, if
and only ifuu′′ is standard. Thus (5.8) implies thatπ(u′) = x andπ(u′′) = y are
regular inR, and thatπ maps the set of standard monomials divisible byu′ bijec-
tively to a free basis ofxR as ak-module. The regularity of the sequence(x, y) is
now clear.

6. The Initial Ideal of Ik(b)

Let6(b) be the set of nonstandard monomials. It follows easily from the defini-
tions that6(b) is a monomial ideal inNV(b).

The next theorem, which is the main result of this section, is a key tool in our
study of the singularities ofRk(b).

(6.1) Theorem. Whenk is a field,6(b) is the initial ideal ofIk(b) with respect
to the monomial order(5.4).

The proof of Theorem 6.1 requires preparation.

Grassmannians

Let r ≤ b be positive integers, and letQk(b, r) be the polynomial ring overk on
the variablesM = {〈E〉 | E ⊆ {1, . . . , b}, |E| = r}, graded by assigning degree 1
to each variable. The setM inherits both the partial and linear orders on the sub-
sets of{1, . . . , b}; as in (5.3), we extend the linear order onM to a monomial order
onNM by using reverse lexicographic ordering.

Let6(M) ⊆ NM be the monomial ideal generated by the products of pairs of
noncomparable (in the partial order) elements ofM, and letGk(M) be the set of
Plücker relations (see [8, (4.4)])

|0|=q∑
C∩A⊂0⊂C\D

5A,C\0 5C\0,0 50,D〈A ∪ (C \ 0)〉〈0 ∪D〉,

whereA,C,D ⊆ {1, . . . , b} with |A| = r − p, |D| = r − q, and|C| = p + q ≥
r +1.
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(6.2) Lemma. For each minimal generatoru of 6(M) there exists a monic ele-
mentf ∈ Gk(M) such thatu = in(f ).

Proof. In view of the monomial order onNM, the lemma is a direct corollary of
[8, Lemma (4.5)].

(6.3) Remark. LetIk(b, r) be the ideal generated inQk(b, r) by the setGk(M),
let Y = (Yij ) be ab× r matrix of indeterminates, letk[Y ] be the polynomial ring
overkwhose variables are the entries ofY, and writeGk(b, r) ⊂ k[Y ] for the sub-
ring generated overk by ther× r minors ofY. It is well known (cf. [8, (4.7)]) that
the mapQk(b, r)→ Gk(b, r) given by〈E〉 7→ 〈E|1, . . . , r〉Y induces an isomor-
phismQk(b, r)/Ik(b, r) ∼= Gk(b, r). This makesGk(b, r) into a graded ordinal
Hodgek-algebra over(M,�) governed by6(M); see [8, (4.6)]. (Note that the
partial order onM is thereverseof the order originally considered in [14, Sec. 11].)
In particular, the setNM \6(M) is mapped bijectively to a free basis ofGk(b, r)
as ak-module.

Determinantal Rings

Let b ′, b ′′, and r be integers such that 1≤ r ≤ m, wherem = min(b ′, b ′′).
Let Qk(b ′, b ′′, r) be the polynomial ring overk on the variablesV = {〈A|E〉 |
(A,E) ∈ V(b ′, b ′′, r)}, graded by assigning degree 1 to each variable. The setV

is linearly and partially ordered as in (5.2) and (5.5), respectively. As in (5.3), we
extend the linear order onV to a monomial order onNV by using reverse lexico-
graphic ordering.

Let6(V ) be the monomial ideal generated by the products of pairs of noncom-
parable (in the partial order) elements ofV. The elements ofNV \6(V ) are called
6(V )-standard monomials.

Let X = (Xij ) be ab ′ × b ′′ matrix of indeterminates, and writek[X] for the
polynomial ring overk with variables the entries ofX. Let Ir+1(X) be the ideal
generated by the(r +1)× (r +1)minors ofX, and writeIk(b ′, b ′′, r) for the ker-
nel of the surjectionQk(b ′, b ′′, r)→ k[X]/Ir+1(X) given by〈A|E〉 7→ 〈A|E〉X.
It is well known (see e.g. [8, proof of (4.11)]) that the6(V )-standard monomials
are mapped bijectively to a freek-basis forQk(b ′, b ′′, r)/Ik(b ′, b ′′, r). For u ∈
6(V ), let

st(u) =
∑

ruww

be the unique expression ofu mod Ik(b ′, b ′′, r) as a linear combination overk
of 6(V )-standard monomials.

Let 6max(V ) be the monomial ideal generated by{〈A|E〉 | r = |A| = |E|}.
SetD−k (V ) = {u− st(u) | u /∈6max(V ) is a minimal generator of6(V )}.

LetD row
k (V ) be the set of Plücker relations

|0|=q∑
C∩A⊂0⊂C\D

5A,C\0 5C\0,0 50,D〈A ∪ (C \ 0) | E〉〈0 ∪D | F 〉;
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hereA,C,D ⊆ {1, . . . , b ′ } andE,F ⊆ {1, . . . , b ′′ }, with |E| = r, |F | = s ≤ r,
|A| = r − p, |D| = s − q, and|C| = p + q ≥ r + 1. LetD col

k (V ) be the set of
Plücker relations

|0|=q∑
C∩E⊂0⊂C\F

5E,C\0 5C\0,0 50,F 〈A | E ∪ (C \ 0)〉〈D | 0 ∪ F 〉;

hereA,D ⊆ {1, . . . , b ′ } andC,E, F ⊆ {1, . . . , b ′′ }, with |A| = r, |D| = s ≤ r,
|E| = r − p, |F | = s − q, and|C| = p + q ≥ r +1.

Finally, setDk(V ) = D−k (V ) ∪D row
k (V ) ∪D col

k (V ).

Remark. Unlike the ringsG(b, r), the ringsk[X]/Ir+1(X) arenot Hodge alge-
bras over(V,�), which complicates the proof of the following lemma.

(6.4) Lemma. There is an inclusionDk(V ) ⊂ Ik(b ′, b ′′, r). Furthermore, for
each minimal generatoru of 6(V ), there is a monic elementf ∈ Dk(V ) with
u = in(f ).

Proof. Since moduloIr+1(X) the rank of the matrixX is at mostr, the inclusion
Dk(V ) ⊂ Ik(b ′, b ′′, r) follows by a standard argument.

If the minimal generatoru is divisible by some〈A|E〉 with |A| = |E| = r, then
one shows as in (6.2) thatu = in(f ) for somef ∈ D row

k (V ) ∪ D col
k (V ). Thus,

for the rest of the argument we assumeu /∈ 6max(V ); note that the proof of the
lemma will be complete once we show thatu = in(u− st(u)).

We need to prove thatruw 6= 0 implies u > w. Let m = min(b ′, b ′′).
Since the expression ofu mod Ik(b ′, b ′′, r) is obtained from the expression of
u mod Ik(b ′, b ′′, m) by removing all terms involving monomials divisible by a
variable〈A|E〉 with |A| = |E| > r, we assume for the rest of the proof that
r = m.

Let P be theb ′′ × b ′′ matrix overk,

P =


0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...

0 1 . . . 0 0
1 0 . . . 0 0

,
with ones on the indicated diagonal and zeros elsewhere, and letY = (Yij ) be a
(b ′ + b ′′)× b ′′ matrix of indeterminates. SpecializingY to the(b ′ + b ′′)× b ′′ ma-
trix

(
X
P

)
(this isX on top ofP),we define a mapk[Y ] → k[X]. Composing with

the inclusionGk(b ′ + b ′′, b ′′)→ k[Y ], we obtain a homomorphism

ϕ̄ : Gk(b
′ + b ′′, b ′′)→ k[X].

On the level of generators,̄ϕ is described as follows. ForA = {a1 < · · · <
ab ′′ } ⊂ {1, . . . , b ′ + b ′′ }, let A ∩ {b ′ + 1, . . . , b ′ + b ′′ } = {as+1, . . . , ab ′′ } and set
U = {b ′ + b ′′ − ab ′′ + 1, . . . , b ′ + b ′′ − as+1+ 1} ⊂ {1, . . . , b ′′ }. Thenϕ̄ is given
by

〈A|1, . . . , b ′′ 〉Y 7→
{
(−1)b

′′(b ′′−1)/2 if A = {b ′ +1, . . . , b ′ + b ′′ },
(−1)b

′′(b ′′−1)/2 5U,E〈D|E〉X if A 6= {b ′ +1, . . . , b ′ + b ′′ },
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whereD = A\{b ′ +1, . . . , b ′ + b ′′ } andE = {1, . . . , b ′′ } \U. By substituting (in
the formula just displayed)〈A〉 for 〈A|1, . . . , b ′′ 〉Y and by deletingX, we lift ϕ̄ to
a mapϕ : Qk(b ′ + b ′′, b ′′)→ Qk(b ′, b ′′, m).

As in [13, Lemma 2.2], one checks thatϕ induces an isomorphism of the par-
tially ordered setsM \{〈b ′ +1, . . . , b ′ + b ′′ 〉} andV. Furthermore, it is immediate
from the definition ofϕ that there exists a uniquẽu ∈ NM such that deg(ũ) =
deg(u) = 2 andϕ(ũ) = ±u.

Let st(ũ) = ∑
rũw̃w̃ be the unique (see Remark 6.3) expression ofũ modulo

Ik(b ′+b ′′, b ′′) as ak-linear combination of6(M)-standard monomials, and note
that for eachw̃ we haveϕ(w̃) = ±w withw /∈6(V ). Applyingϕ to ũ− st(ũ) we
see thatu−∑±rũw̃w ∈ Ik(b ′, b ′′, m), hence st(u) =∑±rũw̃w.

Pick w̃ with rũw̃ 6= 0. Note that deg(ũ) = deg(w̃) (sinceIk(b ′ + b ′′, b ′′)
is homogeneous), and let〈A1〉 be the smallest variable dividing̃w. If A1 =
{b ′ + 1, . . . , b ′ + b ′′ }, then deg(w) < deg(w̃) = deg(ũ) = deg(u) and henceu >
w. Thus we may assume for the rest of the proof thatA1 6= {b ′ +1, . . . , b ′ + b ′′ }.

Then the image of〈A1〉 underϕ is of the form±〈D1|E1〉, and〈D1|E1〉 is the
smallest variable dividingw. Let 〈A2〉 be any variable dividing̃u. As remarked
in (6.3), the ringGk(b ′ + b ′′, b ′′) is an ordinal Hodge algebra on(M,�), hence
〈A1〉 ≺ 〈A2〉. Thus the image of〈A2〉 underϕ has the form±〈D2|E2〉, and
〈D1|E1〉 ≺ 〈D2|E2〉. Therefore〈D1|E1〉 is smaller than any variable dividingu,
and since deg(w) ≤ deg(u) we obtainu > w.

Proof of Theorem 6.1

For t = 2,4,5,6, writeFt for the set of all elements inQk(b) of the form (1.t).
LetF1 denote the set of elements inQk(b) of the form

|0|=t∑
0⊆{1,...,bk}\(3∪H∪K)

5H,0 50,K〈G | H ∪ 0〉k〈0 ∪K | F 〉k+1

for k = 1, . . . , n−1 and for all subsetsG ⊆ {1, . . . , bk−1}, H,K,3 ⊆ {1, . . . , bk},
andF ⊆ {1, . . . , bk+1} such that|G| = m ≤ rk, |H | = m − t, |F | = s ≤ rk+1,

|K| = s − t, and|3| < t ≤ min(s,m).
SetF3 = ⋃n

i=1Dk(Vi) and note that—by [15, Cor. 1.2], Remark 2.4(a), and
(6.4)—there is an inclusion

F =
6⋃
i=1

Fi ⊂ Ik(b).

Since by (5.8) the standard monomials are linearly independent moduloIk(b),
to complete the proof of (6.1) it suffices to show that, for each minimal generator
u of 6(b), there exists a monic elementf fromF with u = in(f ).

Because6(b) is generated by the elements ofV max(b) (see Definition 5.6) and
by the nonstandard products of pairs of variables, the minimal generators of6(b)

are contained in the union of the sets
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61= {〈G|H 〉k−1〈K|F 〉k | 2 ≤ k ≤ n, K � H̄ },
62 = {〈A|E〉k | 1≤ k ≤ n, |A| = |E| = rk},

63 = {〈A|E〉k〈D|F 〉k | 1≤ k ≤ n, 〈A|E〉k � 〈D|F 〉k � 〈A|E〉k},
64 = {〈A〉k〈D〉k | 1≤ k ≤ n, A � D � A},

65 = {〈A〉k〈E|F 〉k | 1≤ k ≤ n, E � A},
66 = {〈G|H 〉k−1〈K〉k | 2 ≤ k ≤ n, K � H̄ }.

Thus, the possible cases foru are as follows: (1)u ∈62; (2) u ∈63; (3) u ∈64;
(4) u∈65; (5) u∈66; and (6)u∈61.

In case (1),u = 〈A|E〉k with |A| = |E| = rk for some 1≤ k ≤ n, and it is
immediate from (5.4) thatu = in(f ), wheref ∈F2 is the monic polynomial

f =
{
u− 〈A〉n if k = n,
u−5Ē,E〈A〉k〈Ē〉k+1 if 1 ≤ k ≤ n−1.

In case (2),u ∈ 6(Vk) for somek, and we are done by (6.4). In case (3),u ∈
6(Mk) for somek, and we are done by (6.2).

In case (4),u = 〈A′ 〉k〈E ′|F 〉k for some 1≤ k ≤ n, where

A′ = {a1 < · · · < ark }, E ′ = {e1 < · · · < es}, F = {f1 < · · · < fs}
satisfyaq > eq for some 1≤ q ≤ s andai ≤ ei for 1 ≤ i ≤ q − 1. Using (1.5)
with

A = {a1, . . . , aq−1}, C = {e1, . . . , eq, aq, . . . , ark }, E = {eq+1, . . . , es}
yieldsu = in(f ), wheref ∈F5 is the monic polynomial

f =
|0|=q∑

C∩A⊂0⊂C\E
5A,C\0 5C\0,0 50,E〈A ∪ (C \ 0)〉k〈0 ∪ E | F 〉k;

hence we are done in this case.
In case (5) we haveu = 〈G|H ′ 〉k〈K ′ 〉k+1 for some 1≤ k ≤ n−1, with

G = {g1 < · · · < gm}, H ′ = {h1 < · · · < hm}, K ′ = {k1 < · · · < krk+1}
such thath̄p > kp for some 1≤ p ≤ rk+1 andh̄i ≤ ki for 1≤ i ≤ p − 1 (where
H ′ = {h̄1 < · · · < h̄bk−m}). The inequalities̄hp−1 ≤ kp−1 < kp < h̄p imply kp =
hq for some 1≤ q ≤ m. Set

H̃ = {h̄1, . . . , h̄p−1}, H ′′ = {h1, . . . , hq}, K ′′ = {k1, . . . , kp}.
ClearlyH ′′ ∩ H̃ = ∅ andH ′′ ∪ H̃ = {1, . . . , kp}, hence

K ′′ ∩ H̃ = K ′′ \ (K ′′ ∩H ′′).
Set

K = K ′ \ (K ′′ ∩H ′′), H = H ′ \ (K ′′ ∩H ′′), 3 = H̃ \ (K ′′ ∩ H̃ ).
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We have(K ′′ ∩H ′′) ∩ (H ∪K ∪3) = ∅ and|K ′′ ∩H ′′| = |K ′′| − |K ′′ ∩ H̃ | =
p − |H̃ | + |3| = |3| + 1. Since{1, . . . , kp} ⊂ (K ∪ 3 ∪ H ) ∪ (K ′′ ∩ H ′′),
the setK ′′ ∩ H ′′ contains the smallestt elements ofK ∪3 ∪H, where t =
|K ′′ ∩ H ′′|. Thus (1.6) withG,K,H,3 yieldsu = in(f ), wheref ∈ F6 is the
monic polynomial

f =
|0|=t∑

0⊂{1,...,bk}\(3∪H∪K)
5H,0 50,K〈G | H ∪ 0〉k〈0 ∪K〉k+1;

hence we are done in case (5), too.
Finally, in case (6) we haveu = 〈G|H ′ 〉k〈K ′|F 〉k+1 for some 1≤ k ≤ n − 1,

with
G = {g1 < · · · < gm}, H ′ = {h1 < · · · < hm},
K ′ = {k1 < · · · < ks}, F = {f1 < · · · < fs}

such thath̄p > kp for some 1≤ p ≤ s and h̄i ≤ ki for 1 ≤ i ≤ p − 1 (where
H ′ = {h̄1 < · · · < h̄bk−m}). DefineK, H, and3 as in case (5) and note that the
argument given there yieldsu = in(f ), wheref ∈F1 is the monic polynomial

f =
|0|=t∑

0⊂{1,...,bk}\(3∪H∪K)
5H,0 50,K〈G | H ∪ 0〉k〈0 ∪K | F 〉k+1.

The proof of Theorem 6.1 is now complete.

7. Combinatorial Structure

The goal of this section is to prove the combinatorial results needed to study the
singularities ofRk(b). For this purpose we consider the simplicial complex1(b)

that hasV(b) as vertex set, whereF ⊂ V(b) is a face of1(b) if and only if the
monomialwF = ∏

v∈F v is standard. Our aim is to show that1(b) has a good
combinatorial structure in the following sense (cf. [7, p. 211]).

(7.1) Definition. A simplicial complex1 of dimensiond is constructibleif:

(a) 1 is a simplex; or
(b) there exist properd-dimensional constructible subcomplexes11,12 ⊂ 1

such that11∩12 is constructible of dimensiond −1 and11∪12 = 1.
(7.2) Remarks. (a) An easy induction on the number of facets shows that, if11

and12 are constructible, then they are pure and their join11∗12 is constructible.
(b) If (P,≺) is a bounded poset that is a distributive lattice, then the associated

simplicial complex of chains inP is shellable [3] and hence constructible.

To show that1(b) is constructible, it is more convenient to state and prove the
result for a whole class of subcomplexes of1(b).
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Let V ′1 = {〈A|D〉1 ∈ V1 | r1− 1 ≥ |A|}, setP(b) = M1 ∪ V ′1, and extend the
partial orders onV ′1 andM1 to a partial order onP(b) by setting

〈A|D〉1 ≺ 〈C〉1 ⇐⇒ A ≺ C.
ForA ⊂ {1, . . . , b0} with |A| = r1, define

PA(b) = {v ∈P(b) | v � 〈A〉1};
1A(b) = {F ∈1(b) | F ∩ P(b) ⊆ PA(b)}.

Remark. It is easy to see from the definitions that the assignmentF 7→ L(wF )

is one-to-one and identifies the simplicial complex1(b)with a certain set of stan-
dard multitableaux. This alternative description of1(b) is useful in visualizing
the objects we will consider. Thus a faceF of 1(b), with associated standard
multitableau

L(wF ) =
C1

A1

∣∣∣∣∣∣
E1

C2

A2

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣
En−1

Cn

An

∣∣∣∣∣∣
En
, (∗)

is a face of the simplicial complex1A(b) precisely when the multitableau A

C1

A1

∣∣∣∣∣∣
E1

C2

A2

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣
En−1

Cn

An

∣∣∣∣∣∣
En


is also standard (it is obtained from(∗) by placing on top ofC1 the tableau whose
only row contains|A| = r1 boxes and whose entries are the elements ofA).

(7.3) Theorem. For eachA, the simplicial complex1A(b) is constructible. In
particular, the complex1(b) = 1{1,...,r1}(b) is constructible.

The proof of this theorem requires some preparation.
Let S be the set of(r1−1)-element subsets of{1, . . . , b1}. ForE ∈S set

PA,E(b) = M1∪ {〈C|D〉1 ∈PA(b) | D � E}.
ClearlyPA,E(b) ⊆ PA(b), and it is easy to check that both posets are bounded and
are distributive lattices. In particular, the corresponding simplicial complexes of
chains1(1)A,E(b) and1(1)A (b) are constructible by Remark 7.2(b).

Remark. A face of1(1)A (b) (resp.,1(1)A,E(b)) is a subsetF of PA(b) (resp.,
PA,E(b)) such that every two elements ofF are comparable in the partial order.
It follows easily thatF is also a face of1(b); therefore,1(1)A (b) and1(1)A,E(b) are
simplicial subcomplexes of1(b). Thus a faceF of 1(b) is a face of1(1)A (b) pre-
cisely when the standard multitableau associated withF has the formC1

A1

∣∣∣∣∣∣
E1
∣∣∣∣∣∣∅

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣∅
 (∗∗)

(i.e., when the tableauxAi, Ci, Ei are trivial for 2≤ i ≤ n) and the multitableau
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C1

A1

∣∣∣∣∣∣
E1
∣∣∣∣∣∣∅

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣∅
 (∗∗∗)

is also standard. Similarly,F is a face of1(1)A,E(b) precisely when its standard
multitableau has the form(∗∗) and the multitableau A

C1

A1

∣∣∣∣∣∣
E1

Ē

∣∣∣∣∣∣∅
∣∣∣∣∣∣ · · ·

∣∣∣∣∣∣∅


is also standard (it is obtained from(∗∗∗) by placing underneathE1 the tableau
whose only row contains|Ē| = r2 + 1 boxes and whose entries are the elements
of Ē).

We say thatE ∈S coversD ∈S if D � E andD � D ′ � E impliesD = D ′.
(7.4) Lemma. If E covers the setsE1, . . . , Ek, then the simplicial complex

k⋃
i=1

1(1)A,Ei(b)

is constructible.

Proof. We proceed by induction onk. The casek = 1 is just the statement that
1(1)A,E1

(b) is constructible. Assume thatk ≥ 2 and that the assertion is true for
k − 1 sets. The simplicial complexes

⋃k−1
i=1 1

(1)
A,Ei

(b) and1(1)A,Ek (b) are then con-
structible by induction. It thus suffices to show that they have the same dimen-
sion d and that their intersection is constructible of dimensiond − 1. We have(⋃ k−1

i=1 1
(1)
A,Ei

(b)
) ∩ 1(1)A,Ek (b) = ⋃k−1

i=1 1
(1)
A,Eik

(b), whereEik is covered by both
Ei andEk. In particular, the intersection is constructible by the induction hypoth-
esis. Furthermore, ifD ′ is covered byD, then it is immediate from the definitions
that a maximal simplex of1(1)A,D ′(b) can be completed to a maximal simplex of
1(1)A,D(b) by adjoining a single vertex (of the form〈C|D〉1 for a suitableC). Since
the complexes1(1)A,Ej (b) and1(1)A,Eik (b) are pure by Remark 7.2(a), the assertion
about the dimensions follows immediately and completes the proof of the lemma.

Let E = {e1 < · · · < er1−1} ⊂ {1, . . . , b1}, let Ē = {ē1 < · · · < ēr2 < ēr2+1} be
its complement, and set̃E = {ē1, . . . , ēr2}. Recall thatS is linearly ordered, and
denote byE+ the smallest element ofS strictly greater thanE.

(7.5) Lemma. If E covers a setD such thatD̃ 6= Ẽ andD̃ = (D+)∼, thenẼ =
(E+)∼.

Proof. SinceE is a cover,D = {e1, . . . , ei+1, . . . , er1−1} for some 1≤ i ≤ r1−1;
henceei+1= ēk for some1≤ k ≤ r2+1. ThereforeD̄ = {ē1, . . . , ēk−1, . . . , ēr2+1}
and, asD̃ 6= Ẽ,we must have1≤ k ≤ r2. SinceD̃ = (D+)∼,we obtain(D+)− =
{ē1, . . . , ēk − 1, . . . , ēr2, ēr2+1+ 1} and henceD ≺ D+. ThereforeD+ coversD,
and sinceD+ 6= E we must haveD+ = {e1, . . . , ei + 1, . . . , ej − 1, . . . , er1−1} for
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somei < j ≤ r1− 1. But thenE+ = {e1, . . . , ej − 1, . . . , er1−1} and(E+)− =
{ē1, . . . , ēr2, ēr2+1+1}, which yieldsẼ = (E+)∼.
(7.6) Remark. If D̃ = Ẽ, thenD̄ andĒ coincide except possibly at their great-
est element. If in additionD ≤ D ′ ≤ E, then necessarilỹD = D̃ ′ = Ẽ.
Proof of Theorem 7.3.We argue by induction onn. If n = 1, then1A(b) =
1(1)A (b) and hence is constructible. Assumen ≥ 2 and that the assertion holds for
n−1. Let b̃ = (b̃0, . . . , b̃n−1), whereb̃i = bi+1 for i = 0, . . . , n−1. We consider
V(b̃) as a subset ofV(b) via the identificationV(b̃) = V2 tM2 t · · · t Vn tMn.

Thus1(b̃) becomes a simplicial subcomplex of1(b).

Remark. A faceF of1(b) is a face of1(b̃) precisely when its multitableau has
the form ∅

∣∣∣∣∣∣C2

A2

∣∣∣∣∣∣
E2

C3

A3

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣
En−1

Cn

An

∣∣∣∣∣∣
En
,

whereA1, C1, andE1 are trivial. IfE ⊂ {1, . . . , b1} with |E| = r2, thenF ∈1(b)
is a face of1E(b̃) precisely when its multitableau is as just displayed, and the
multitableau ∅

∣∣∣∣∣∣
E

C2

A2

∣∣∣∣∣∣
E2

C3

A3

∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣
En−1

Cn

An

∣∣∣∣∣∣
En


is also standard.

If r1 = 1, then1A(b) = 1(1)A (b) ∗ 1(b̃) and hence is constructible by Remark
7.2(a) and by the induction hypothesis. Thus we may also assume thatr1 ≥ 2.

ForE ⊂ {1, . . . , b1} with |E| = r1−1, set

1A,E(b) = {F ∈1A(b) | F ∩ P(b) ⊆ PA,E(b) andF ∩ P(b̃) ⊆ PẼ(b̃)}.
Remark. A faceF of 1(b) with associated standard multitableau(∗) is a face
of 1A,E(b) precisely when the multitableau A

C1

A1

∣∣∣∣∣∣∣∣
E1

Ē

C2

A2

∣∣∣∣∣∣∣∣
E2

C3

A3

∣∣∣∣∣∣∣∣ · · ·
∣∣∣∣∣∣∣∣
En−1

Cn

An

∣∣∣∣∣∣∣∣
En


is also standard; here, on top ofC1 is placed the tableau whose only row has the
elements ofA as entries, and betweenE1 andC2 is inserted the tableau whose
only row has the elements of̄E as entries.

It follows that
1A,E(b) = 1(1)A,E(b) ∗1Ẽ(b̃); (7.7)

hence, by Remark 7.2(a) and by the induction hypothesis,1A,E(b) is constructible.
Furthermore, it is easy to see that ifE = {e1 < · · · < er1−1} andD = {d1 < · · · <
dr1−1} then
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1A,E(b) ∩1A,D(b) = 1(1)A,C ′(b) ∗1C̃ ′′(b̃), (7.8)

whereC ′ = {c ′1 < · · · < c ′r1−1} is given byc ′i = max(ei, di) for 1≤ i ≤ r1−1 and
C ′′ = {c ′′1 < · · · < c ′′r1−1} is given byc ′′i = min(ei, di) for 1≤ i ≤ r1− 1. It fol-

lows from (7.7) and (7.8) that a facet of1A,D(b) is in1A,E(b) if and only if D̃ =
Ẽ andD ≤ E. If this is the case, then it is clear that we actually have an inclusion
1A,D(b) ⊂ 1A,E(b).

LetM = {E ∈S | E = max{D ∈S | D̃ = Ẽ}}. ForE ∈M define

ϒA,E(b) =
⋃

D∈M,D≤E
1A,D(b).

The observations from the previous paragraph imply thatF is a facet ofϒA,E(b) if
and only ifF is a facet of1A,D(b) for someD ∈MwithD ≤ E. Since1A(b) =
ϒA,{1,. . .,r1−1}(b), Theorem 7.3 will be proved once we show thatϒA,E(b) is a con-
structible simplicial complex. This we do by induction on the linearly ordered
setM.

LetE0 be the smallest element ofM. ThenϒA,E0(b) = 1A,E0(b) and hence is
constructible.

Let E > E0 and assume the claim holds for allD < E. Let E1, . . . , Ek be all
the elements ofS that are covered byE and havẽEi 6= Ẽ. BecauseE ∈M, it
is immediate from (7.5) and (7.6) thatEi ∈M for i = 1, . . . , k. LetD ∈M with
D < E, and chooseC ′ as in (7.8); thus we havẽE � C̃ ′. SinceẼ1, . . . Ẽk are all
possible covers of̃E, we haveẼ ≺ Ẽj � C̃ ′ for somej. Then necessarilyC ′ �
Ej ≺ E, and we obtain from (7.8) that

1A,E(b) ∩1A,D(b) ⊂ 1(1)A,Ej (b) ∗1Ẽ(b̃) = 1A,E(b) ∩1A,Ej (b).

LetE− ∈M be the element immediately precedingE. By Lemma 7.4 and Remark
7.2(a), the complexϒ = ϒA,E−(b)∩1A,E(b) =

(⋃k
i=11

(1)
A,Ei

(b)
)∗1Ẽ(b̃) is con-

structible. LetF be a facet ofϒ. Sinceϒ is pure by Remark 7.2(a), dimϒ =
dimF. Furthermore,F is a facet of1(1)A,Ei(b) ∗ 1Ẽ(b̃) for some 1≤ i ≤ k.

ThusF can be completed to a facet of1A,E(b) by adding a single vertex of the
form 〈C|E〉1, andF can be completed to a facet of1A,Ei(b) (i.e., to a facet of
ϒA,E−(b)) by adding the single vertex〈Ẽi〉1. Since both1A,E(b) andϒA,E−(b)
are constructible (and hence pure), we obtain dim1A,E(b) = dimϒA,E−(b) =
dimϒ + 1. ThereforeϒA,E(b) = ϒA,E−(b) ∪ 1A,E(b) is constructible, which
completes the proof of Theorem 7.3.

8. Singularities

Our goal in this section is to prove Theorems 2.7 and 2.9. As a main step in the
proof of Theorem 2.7, we have the following.

(8.1) Theorem. If k is a field thenRk(b) is Gorenstein.

Proof. We setR = Rk(b) and in(R) = Qk(b)/6(b)Qk(b). Since6(b) is
generated by square-free monomials, in(R) is the Stanley–Reisner ring of the
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simplicial complex1(b). It is known that a constructible simplicial complex is
Cohen–Macaulay (CM for short) over every field (see e.g. the discussion after [7,
Cor. 5.1.14]);therefore, in(R) is a CM ring by (7.3).

By Theorem 6.1we have a monomial order onNV(b) such that6(b) = in(Ik(b)).
Thus, by [2] (see also[17, Thm. 15.17]) there exist a finitely generatedk-algebra
R and a flatk-algebra homomorphismk[t ] −→ R, together withk[t ]-algebra iso-
morphismsR/tR ∼= in(R) andψ : R t

∼= R ⊗k k[t, t−1], such that the following
diagram commutes:

k[t ] −−→ R ⊆−−→ R t∥∥∥ yψ |R ∼=
yψ

k[t ] −−→ R ⊗k k[t ]
⊆−−→ R ⊗k k[t, t−1].

The ringsR, R, andS = R⊗k k[t, t−1] are homomorphic images of CM rings,
so well-known results (see e.g. [31, Sec. 24]) imply that their non-CM loci are
Zariski-closed. Furthermore, as the extensionR −→ S is faithfully flat with reg-
ular fibers,S is not CM at a primep if and only if R is not CM at the prime
p ∩ R. Thus, if V(J ) ⊆ Spec(R) is the non-CM locus ofR, thenV(JS) =
V(J [t, t−1]) ⊆ Spec(S) is the non-CM locus ofS.

LetV(I ) ⊆ Spec(R)be the non-CM locus ofR,and note that the ringR/tR ∼=
in(R) is CM. By flatness,t isR-regular and soR is CM at each prime containing
t. ThereforeV(IR t ) ⊆ Spec(R t ) is the non-CM locus ofR t , and 1= u + vt
for someu ∈ I andv ∈ R. In particular, for some positive integerm we obtain
ψ(u)m = (1− ψ(v)t)m = 1+ v1t + · · · + vst s ∈ J [t, t−1] with vj ∈ R for j =
1, . . . , s. Thus 1∈ J ; henceV(J ) = ∅ and soR is CM. Since by Theorem 2.6
the ringR is factorial, it is Gorenstein by [7, Cor. 3.3.19].

The proof of (2.7) is now straightforward.

Proof of Theorem 2.7.By (5.8), the ringR = Rk(b) is a free (and hence a faith-
fully flat) k-module, and it remains only to show that the extensionk −→ R has
Gorenstein fibers. This, however, is immediate from (8.1).

Unless specified otherwise, for the rest of this sectionk is a field of characteristic
p > 0.

Our goal now is to prove Theorem 2.9, and we start by recalling some notions
from the theory of tight closure created by Hochster and Huneke [24]. For more
details, we refer the reader to the excellent exposition in [28].

LetR be a Noetheriank-algebra, and letI = (x1, . . . , xs) be an ideal. Thetight
closureI ∗ of I is the ideal consisting of all elementsx ∈R for which there exists
c = c(x)∈R such thatc /∈⋃p∈Min(R) p andcxq ∈ (xq1 , . . . , x qs ) for all q = pe �
0. The idealI is tightly closedif I ∗ = I. The ringR is F-regular if, for eachp∈
Spec(R), every ideal ofRp is tightly closed.

The ringR is F-rational if every parameter ideal ofR is tightly closed. Here
we call an ideal a “parameter ideal” if it is generated by a sequence of elements
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x1, . . . , xn whose images generate an ideal of heightn in any localizationRp of R
such that(x1, . . . , xn) ⊆ p∈Spec(R).

A local k-algebraR with maximal idealm is calledF-injective if the natu-
ral actionF : H i

m(R) −→ H i
m(R) of the Frobenius endomorphism ofR on the

local cohomology modules is injective for alli. WhenR is Cohen–Macaulay,
its F-injectivity is characterized by the property that, for any system of parame-
tersy1, . . . , yd of R (whered = dimR) and for anya ∈ R, the conditionap ∈
(y

p

1 , . . . , y
p

d ) impliesa ∈ (y1, . . . , yd); see [18, Prop. 1.4].
We need the following modification of a criterion of Fedder and Watanabe [19,

Prop. 2.13].

(8.2) Lemma. LetR be a local Cohen–Macaulay ring, essentially of finite type
over k. If there exists a regular elementz ∈ R such thatRz is F-rational and
Gorenstein and such thatR/zR is F-injective, thenR is F-rational.

Proof. BecauseRz is F-rational and Gorenstein, it follows thatRz is F-regular
(see e.g. [28, Thm. 1.5]). By [26, Thm. 6.2], there exists a powerzk of z such
thatzk is a completely stable test element ofR. Let I = (z, y2, . . . , yd) be a sys-
tem of parameters ofR. To show thatR is F-rational, it suffices by [19, Prop. 2.2]
to show thatI is tightly closed. Letw ∈ I ∗. Then forq = pe � 0 we have
zkwq ∈ (zq, y q2 , . . . , y qd ). Sincezq, y q2 , . . . , y

q

d is a regular sequence, it follows
thatwq ∈ (zq−k, y q2 , . . . , y qd ). Going moduloz yields w̃q ∈ (ỹ q2 , . . . , ỹ qd )R/zR;
hence the F-injectivity ofR/zR yieldsw̃ ∈ (ỹ2, . . . , ỹd). Lifting back toR gives
w ∈ (z, y2, . . . , yd) = I. ThusI = I ∗ and soR is F-rational.

LetR = Rk(b), let m ⊂ R be the maximal ideal ofR generated by the entries of
X(k) and the elements ofMk (k = 1, . . . , n), and letz = x(n)bn−1bn

.

(8.3) Lemma. The ringRm/zRm is F-injective and Cohen–Macaulay.

Proof. SinceR is CM by (2.7) and sincez is regular by (3.3), the ringRm/zRm

is CM.
We proceed with the proof of F-injectivity. Ifrn = 1 then setu = 〈bn−1〉n ∈

Qk(b); else setu = 〈bn−1|bn〉n ∈ Qk(b). We haveR/zR ∼= Qk(b)/(u, Ik(b)).
Observe thatu = in(u) does not divide the minimal generators of6(b) =
in(Ik(b)). Therefore, in(Ik(b), u) = (6(b), u) and thus

in(R/zR) = Qk(b)/(6(b), u)
is a Stanley–Reisner ring. The proof of [12, Cor. 2.2] shows that a Stanley–Reisner
ring is F-injective and thus is in(R/zR). Furthermore,u is regular on the CM ring
in(R) = Qk(b)/6(b); therefore, in(R/zR) ∼= in(R)/(u) is also CM. It follows
thatRm/zRm is F-injective by [12, Thm. 2.1].

Proof of Theorem 2.9.Let k be a perfect field. Assume first that chark = p > 0.
SinceR is Gorenstein, by [28, Thm. 1.5] it suffices to show thatR is F-rational.
We proceed by induction on|b|, as the case|b| = 1 is obvious. Note that by
(3.4) we have the isomorphismRz ∼= Rk′(b ′). SinceRk′(b ′) is a localization of
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a polynomial extension of the positively gradedk-algebraRk(b ′), it is F-rational
by the induction hypothesis and [26, Thm. (4.2)]. The same result shows that the
localization(Rm)z is F-rational. Because(Rm)z is also Gorenstein and the ring
Rm/zRm is F-injective by Lemma 8.3,Rm is F-rational by Lemma 8.2.

Sincek is perfect by assumption and sinceR is a positively gradedk-algebra
with irrelevant maximal idealm by Remark 2.4(b), the desired F-rationality ofR
follows by [25, Thm. 1.4]. This completes the proof of the first part of (2.9).

Assume next that chark = 0. SinceRk(b) = RZ(b)⊗Z k, it is immediate by
the first part of (2.9) thatRk(b) has F-rational type; hence it has rational singular-
ities by [36, Thm. 4.3].

9. Examples

Throughout this section,k is a field.
Let (H,�) be a partially ordered set of indeterminates, and letk[H ] be the

polynomial ring overk whose variables are the elements ofH. Let6 ⊆ NH be a
monomial ideal. A monomialu ∈NH is calledstandardwith respect to6 if u /∈
6. Let φ : k[H ] → A be a homomorphism ofk-algebras. In [14] the algebraA
is called aHodge algebra governed by6 and generated byφ(H ) if the following
two axioms are satisfied.

Hodge-1.The mapφ sends the set of standard monomials (with respect to6)

bijectively to a basis ofA as a module overk.

Hodge-2.If u ∈ 6 is a generator and if the unique expression ofφ(u) as a
linear combination of images of distinct standard monomialsvi (guaranteed by
Hodge-1) has the form

φ(u) =
∑
i

riφ(vi) with ri ∈ k \ {0},

then for eachx ∈H that dividesu and for eachi there exists ayi ∈H that divides
vi and satisfiesyi ≺ x.
(9.1) Example. In [35, p. 6], Pragacz and Weyman describe a structure of Hodge
algebra on the ringRk(b). The following example shows that the partial order they
propose on the indeterminates is not well-defined.

Let n = 2 andb = (b0, b1, b2) = (2,5,3). LetK = {1}, L = {1}, A = {1,2},
B = {1,2}, C = {1}, andD = {2}. Then (in the notation and definitions of [35,
p. 6]) the minors(K,L)1, (A,B)2, and(C,D)2 satisfy

(K,L)1 < (C,D)2, (C,D)2 < (A,B)2, and (K,L)1≮ (A,B)2.

This violates the transitivity axiom.

The structure of the universal rings is closely related to the structure of the coordi-
nate rings of the varieties of complexes overk, which have been extensively stud-
ied. Kempf [29] determines their main properties in characteristic 0. The papers
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of De Concini and Strickland [15] and of De Concini, Eisenbud, and Procesi [14]
adopt the characteristic-free approach of the theory of Hodge algebras.

In the examples that follow, we demonstrate that the structures proposed in [15]
and [14] do not satisfy the axioms for Hodge algebras. This suggests that the theory
of Hodge algebras is not suitable for the study of the generic structure of com-
plexes of free modules. A characteristic-free proof of the Cohen–Macaulayness of
the varieties of complexes that doesnot use the theory of Hodge algebras is given
in [32].

(9.2) Example. The following example shows that the construction of De Con-
cini and Strickland [15] does not satisfy the straightening axiom Hodge-2.

LetX(1) = (x(1)ij ) andX(2) = (x(2)ij ) be matrices of indeterminates of sizes 2×3
and 3×1, respectively. Letk[X(1), X(2)] be the polynomial ring overk with vari-
ables the entries ofX(1) andX(2), and setR = k[X(1), X(2)]/I1(X(1)X(2)). Thus
(in the terminology of [15]),R is the coordinate ring of the variety of complexes
W of k-vector spaces of ranksn0 = 2, n1= 3, andn2 = 1.

In R we have the relationx(1)11 x
(2)
11 = −x(1)12 x

(2)
21 − x(1)13 x

(2)
31 , which in the notation

of [15] has the form

[1 | 2,3]1[1 | ∅]2 = [1 | 1,3]1[2 | ∅]2 − [1 | 1,2]1[3 | ∅]2.

According to the definitions of [15, p. 71], the monomial on the left side of the
equality is not standard whereas the two monomials on the right side are standard.
In the partial order imposed in [15, p. 71], the minors [2| ∅]2 and [3 | ∅]2 are
not comparable to [1| 2,3]1. Furthermore we have [1| 2,3]1 < [1 | 1,3]1 <
[1 | 1,2]1.

This violates the axiom Hodge-2. The displayed relation also violates the
straightening condition (4) of [15, p. 71].

(9.3) Example. De Concini, Eisenbud, and Procesi propose in [14] a different
Hodge algebra structure on the coordinate ring of the variety of complexes. The fol-
lowing example shows that their standard monomials are not linearly independent.

With R as in the previous example and notation as in [14, Sec. 16], consider the
monomials

M1= (1 | 2)(1)(1,2 | 1,3)(1)(2 | 1)(2),
M2 = (1 | 3)(1)(1,2 | 1,2)(1)(2 | 1)(2),
M3 = (1 | 1)(1)(1,2 | 1,3)(1)(1 | 1)(2).

These are standard monomials in the sense of the definitions of [14, pp. 70–71]. A
simple calculation shows that inR one has

M1−M2 +M3 = 0.

This violates the axiom Hodge-1.
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