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Cuppability of Simple and Hypersimple Sets

Martin Kummer and Marcus Schaefer

Abstract  Anincomplete degree is cuppable if it can be joined by an incomplete
degree to a complete degree. For sets fulfilling some type of simplicity property
one can now ask whether these sets are cuppable with respect to a certain type
of reducibilities. Several such results are known. In this paper we settle all the
remaining cases for the standard notions of simplicity and all the main strong
reducibilities.

There are two sides to every question.
—Protagoras, quoted in Diogenes
Laertius, Lives of Eminent Philoso-
phers.

1 Introduction

In his approach to constructing an incomplete c.e. degree, Emil Post attempted to
define structural properties of c.e. sets that would force their incompleteness. In
his groundbreaking 1944 paper “Recursively enumerable sets of positive integers
and their decision problems” ([24], reprinted in Davis’s The Undecidable [1]), this
goal led him to isolate many of the classical concepts of computability, including
creativity, many-one reducibility, bounded and unbounded truth-table reducibility,
simplicity, hypersimplicity, and hyperhypersimplicity.

Among other results, Post showed that simple sets exist and cannot be bounded
truth-table complete. In other words, the bt¢-degree a of a simple set is an interme-
diate brt-degree: Op;; <py @ <py 0'p;;. More is true: the brr-degree of a simple set
cannot even be joined with another bounded truth-table degree below 0y, to yield
the complete degree: if a is a simple btt-degree and aUDb is the complete bt¢-degree,
then b is the complete brf-degree. We say that simple sets are not btt-cuppable ([7],
[8], [10], [26]).
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Post also showed that hypersimple sets exist and cannot be truth-table complete.
In degree-theoretic terms, hypersimple degrees are of intermediate truth-table de-
gree. But are they ¢¢-cuppable? It is known that hypersimple degrees are not wtt-
cuppable [9], but ¢¢-cuppability has been a long-standing open question.

In this paper we investigate how structural notions such as simplicity and hy-
persimplicity force the noncuppability of degrees for different types of reductions,
generalizing the classical incompleteness results.

Definition 1.1 A set A is called r-cuppable in the c.e. degrees, or cuppable in the
c.e. r-degrees, if there is a c.e. set B such that K <, A @ B and K ¥%; B, where
r is a class of reductions such as many-one (), bounded truth-table (btt), bounded
disjunctive (bd), conjunctive (c), disjunctive (d), positive (p), parity (), truth-table
(tt), weak truth-table (wtt), Q, Turing (T) reductions. We call A r-cuppable if there
isa set B such that K <; A @ B and K %£; B, where r is a class of reductions.

We define the less familiar reductions in Section 2.
The following proposition summarizes the known results on the cuppability of
degrees.

Proposition 1.2
1. A simple set is not m-cuppable (Lachlan [14]).
2. A simple set is not btt-cuppable (Downey [7], Schaefer [26], also see Theo-
rem 3.8).
. A hypersimple set is not c-cuppable (Degtev [3]).
4. A hypersimple set is not wtt-cuppable in the c.e. degrees (Downey and
Jockusch [9]).
5. A K-hypersimple set is not e-cuppable to K in the 28 enumeration de-
grees (Nies and Sorbi [20]).

W

The most notable omission in this series of results is the case of truth-table reduc-
tions. We will settle the general truth-table case in Section 6: in contrast with the
result that hypersimple sets cannot be wt¢-cuppable, they can be t¢-cuppable, even
in the c.e. degrees. However, dense simple sets are not #z-cuppable (Theorem 6.13).

We discuss special truth-table reducibilities in Section 3, which covers conjunc-
tive, disjunctive, and bounded truth-table reductions, Section 4 on positive reduc-
tions, and Section 5 on the parity reduction. Q-reducibility is investigated in Sec-
tion 7; for Q-reducibility the noncuppability turns into an even stronger nonsplitting
theorem: if a = b U c¢is Q-complete, then either b or ¢ is Q-complete.

In Section 7 we also show that Marchenkov’s result that a c.e., semirecursive, #-
maximal set is not Turing-complete does not yield a noncuppability result for c.e. T-
degrees; it does, however, give noncuppability results for p-, #1-, and wt¢-degrees as
we show in Section 6.3. A detailed account of Post’s program can be found in [21],
Chapter 3.

2 Terminology and Notation for Reductions

We write (D;);eq for the canonical enumeration of the finite sets and (W;);e, for
the standard enumeration of the c.e. sets. We will use y4 to be the characteristic
function of A, that is,

1 xeA

0 else,

xalx) = l



Cuppability of Simple and Hypersimple Sets 351

as well as the characteristic vector of A, that is,

xar, o xn) = (xalxr), .o, xa()).

For any finite set D = {x; < --- < x,}, let yo(D) = ya(x1,...,x).
In the context of numbers, the symbol @ will denote the parity operator, that is,
addition modulo 2.!

bounded truth-table A <y B if there is a computable f and a computable
a o x {0, 1}* — {0, 1} (for some k) so that |D )| = k
and
x€A = ax(xg(Drw)) =1,
writing a, (v) for o (x, v).
bounded disjunctive A <pq B if there is a computable f and a k so that

|Dy(x)l =k and
xX€A &< DrxyNB #3.
disjunctive A <4 B if there is a computable f so that
xX€A &< DiyyNB#3.
conjunctive A <. B if there is a computable f so that

x €A < Djsu) CB.
parity” A <g B if there is a computable f so that
xX€A < |DpyNBl=1 (mod?2)
For later reference we call the expression
xB(x1) & -+ ® yp(x,) a parity condition (for B and
{x1, ..., x,}). So we have equivalently,
x € A <= the parity condition for
B and D¢y evaluates to 1.
positive A <p B if there is a computable f and a computable
a o x {0,1}* — {0, 1} so that a,(-) is a positive func-
tion; that is, ax(xs(D)) < ax(ys(D)) for any finite set D
and all S € ¢/, and
xXeA ax(XB(Df(x))) =1,
writing a, (v) for o (x, v).
truth-table A <y B if there is a computable f and a computable
a:wx{0,1}* — {0, 1} so that
x €A = ax(xg(Dsx)) =1,
writing a (v) for a(x, v).
0 A <q B if there is a computable f so that
x €A & Wy C B.
weak truth-table A <wu B if there is a Turing-reduction ®X so that A = ®8
and the use of ®® on input x is computably bounded in x.

For more background on computability terminology and standard notation please
check [21], [22], [27], or [28].
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3 Conjunctive, Disjunctive, and Bounded Truth-Table Reductions

The following old result of Lachlan (see [21], I11.9.3, or [27], 11.4.16) is at the root
of many of the truth-table results.

Proposition 3.1 (Lachlan [14]) IfK <y A x B and at least one of A and B is c.e.,
then either K <y, A or K <, B.

Since simple sets cannot be m-complete and A & B <, A x B, this immediately
implies that simple sets are not m-cuppable, and it is not much harder to obtain the
same result for conjunctive reductions, as Degtev did in 1979 (see [22], p. 603).

Lemma 3.2 (Degtev [3]) If K <. A @ B, and at least one of A and B is c.e., then
either K <. A, or K <. B.

The lemma immediately implies the following theorem, since hypersimple sets can-
not be tt-complete, let alone c-complete.

Theorem 3.3 (Degtev) A hypersimple set is not c-cuppable.
The following proof is taken from Odifreddi [22], Exercise X.7.23c.

Proof of Lemma 3.2 By assumption, there are computable functions f and g such
that x € K if and only if Dy(yy € A and Dgr) € B. Let E = {x : Dys(y) C A}
and F' = {x : Dg(x) € B}. Then at least one of E and Fisc.e.,and K <p E x F,
whence K <y E, or K <y F by Lachlan’s result. This implies the conclusion of
the lemma. O

Lachlan’s result was elegantly restated by Kobzev.

Proposition 3.4 (Kobzev [12])

1. If A is productive and B is c.e., then either AN B or AN B is productive.
2. If A is creative and B is computable, then either AN B or A N B is creative.

To deal with disjunctive reductions we need a strengthening of Kobzev’s result: a
uniform version of Proposition 3.4(ii). Lachlan’s proof, however, on which Kobzev’s
is based, uses a nonuniform proof: two strategies are pursued, one trying to build a
reduction to A and the other a reduction to B. Furthermore, the second strategy will
only yield a reduction which is correct up to finitely many errors. Fortunately, the
first strategy yields a reduction uniformly; hence, if we know that the first strategy
succeeds, we get the reduction uniformly.

Lemma 3.5 (Uniform Kobzev (creative sets)) If A is creative and B is computable
and we know that exactly one of AN B and A N B is creative and which one it is,
then we can find an m-reduction from K to that set uniformly in an m-reduction from
K to A and a computable index of B.

Proof Assume that exactly one of AN B and A N B is creative and we know which
one. Start the Lachlan proof with the uniform strategy working on the set we know
to be creative. Since the other strategy has to fail (the other set not being creative)
this will (uniformly) yield a reduction to the creative set. t

With this tool we can settle the disjunctive case, which is basically taken from [10]
and [26].
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Lemma 3.6 If A is a simple set, and K <q A @& B, then K <4 B.

Note that we cannot expect a result analogous to Lemma 3.2, since there are c.e. sets
A and B so that K <qg A @ B without either K <4 A, or K <4 B, being true (just
let A and B be a Friedberg splitting of K).

The lemma immediately implies the following theorem.

Theorem 3.7  Simple sets are not d-cuppable.

Proof of Lemma 3.6 Assume K <g A @ B. Then there are two computable func-
tions f and g such that x € K ifand only if D,y N A # @ or Dg(x) N B # .

For a set D define Ep = {x : Dyx) € D}. We claim that there is a finite set
D C A such that K N Ep is creative. Since x € K N Ep if and only if x € Ep and
Dg(xy N B # < the claim implies that K <, K N Ep <4 B and we are done.

We are left with the verification of the claim. Assume for a contradiction that
K N Ep is not creative for any finite set D C A. Because of Proposition 3.4(ii) this
means that K N Ep is creative for all finite subsets D of A. By Lemma 3.5 we can

even find a productive function for K N Ep uniformly in the finite set D. Start with
Fy = @and Cyp = EF,. Then Cy is a c.e. set in the complement of K N Ef,; hence we

can effectively find an element yp € K N E_F0 —Co=Kn E_p0 using the productive
function. For this element we have Dy, N A = & and Dy, € Fo = @. We
repeat this procedure with F; = D (y,) U Fo, C1 = EF, and so on. Because of the
uniformity we get a c.e. set U?io F; which is a subset of A, since all the F; are, and
infinite, since F; C F;41 for all i. This contradicts the simplicity of A. O

The result also implies that simple sets are not btz-cuppable in the c.e. degrees using
aresult of Lachlan [16] and Kobzev [12] that bt¢-complete sets are bd-complete and
observing that, in the proof of Lemma 3.6, the disjunctive reduction to B is bounded
if the original reduction was. This result was first shown by the second author [26],
and, independently, by Downey [7]. Downey’s paper contains the stronger result,
using a different proof, that simple sets are not b¢¢-cuppable. We show how to extend
the proof in [26] to obtain the same result.

Theorem 3.8 (Downey [8])  Simple sets are not btt-cuppable.
The theorem is an immediate consequence of the following lemma.
Lemma 3.9 If A is simple, and K <y A @ B, then K <py B.

Lachlan and Kobzev independently showed that btf-complete sets are bd-complete,
the former using the technique of Proposition 3.1, the latter giving a proof using his
result on productive sets. We will need a slight generalization of this result which we
will prove following Kobzev’s ideas.

Lemma 3.10 If K <y A ® B, and A is c.e., then there are computable functions
f and g and a truth-table o such that

xe€K < [DfuxyNA#3IVIa(xs(Dgx))) = 1]
where | Dy x| < k for all x, and some k € .

Taking B to be the empty set implies the original result by Lachlan and Kobzev.
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Proof Let K <p¢ A @ B. We can assume that the reduction uses a fixed truth-table
(Fischer, see [21], I11.8.6): x € K if and only if

a(XA(Df(X)), XB(Dg(x)))) =1

where f and g are computable functions generating the queries to A and B, respec-
tively, and | D g (x)| = k1, |Dg(x)| = k2 for some fixed k1, k2 € w and all x. We will
show by induction on k = k| + k that there are functions f’ and g’ such that

xeK o [DpmNA#S]VI[a(xs(Dy () = 1. (1)

If k = 1, then either K <y A® B <y A x B,or K <y A & B. In the first case,
Lachlan’s result implies that either K < A or K <p, B both of which are subsumed
by Schema (1). The second case implies K <., B since A is c.e.

Assume k > 1. Let C = {x : Dy N A # &} (which is a c.e. set). By
Proposition 3.4 there are two cases.

Case 1 K N C is productive. Then K U C is creative, and x € K U C if and only if

[a(xa(Dfx))s xB(Dgx))) = 11V [Dyfy N A # 2.
This is equivalent to
[a(xa(Dyr))s xB(Dg(x)) = 1A DpyNA =]V [DruyNA # 2],
or, in other words,
[@(0°", x8(Dg())) = 11V [Dyy N A # 2],
Since K U C is creative we can define f’ and g’ as required in Schema (1).

Case 2 K N C is productive. Since C is c.e. there is a computable function / such
that C = h(w). Let K; = h~'(K N C). Then K] is creative (using that K N C is
productive). We have x € K if and only if #(x) € K (if and only if 2(x) € K N C).
By definition, i(x) € C;thatis, D (x)) N A # @ for all x. Define

Ri = {x:Dyfnu) =1{» <--- <y}, and y; is the first
element of D f(;(x)) enumerated in A},

for (1 <i < k). The R; are a computable partition of w; hence by Proposition 3.4(ii)
there is an i such that K1 N R; is creative. Moreover, x € K1 N R; if and only if

o' (xa(D ), x8(Dg)) = 1,
where we obtain a’ from a by setting the ith input to one, and D ¢/(x) = D r(n(x)) —{¥i}
for Dynyy = {y1 < -+ < ) and g'(x) = g(h(x)). Since | D pr(x)|+|Dyr(n)| < k,
we can now apply the induction hypothesis to obtain the result. U

With this we are now ready to prove Lemma 3.9. The proof is virtually identical to
the proof of Lemma 3.6.

Proof of Lemma 3.9 Suppose K <y A @ B where A is simple. By Lemma 3.10
we know that there are computable functions f and g such that x € K if and only if
DrxyNA # ora(xp(Dg))) = 1.

For a set D define Ep = {x : Dyx) € D}. We claim that there is a finite set
D C A such that K N Ep is creative. Since x € K N Ep if and only if x € Ep and
a(xB(Dg(x))) = 1 the claim implies that K <, K N Ep <py B and we are done.

Assume for a contradiction that the claim is wrong, and K N Ep is not creative
for any finite set D € A. Because of Proposition 3.4 this means that K N Ep is
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creative for all finite subsets D of A. By Lemma 3.5 we can even find a productive

function for K N Ep uniformly in the finite set D. Start with Fp = & and Cy = EF,.
Then Cj is a c.e. set in the complement of K N E_FO; hence, we can effectively find

an element yp € K N E_pO —Co=Kn E_FO using the productive function. For this
element we have D () N A = & and Dy(y,) € Fo = &. We repeat this procedure
with F{ = Dy, U Fo, C1 = EF,, and so on. Because of the uniformity we get
a c.e. set U?io F; which is a subset of A, since all the F; are, and infinite, since
F; C F;41 for all i. This contradicts the simplicity of A. O

4 Positive Reductions
Theorem 4.1  Hypersimple sets are not p-cuppable in the c.e. degrees.
We will prove the theorem in the following form.
Lemma 4.2  If A is hypersimple, B is c.e., and K <, A ® B, then K <, B.

For the proof we will use a uniform version of Kobzev’s result for productive sets.
Note that this result is not symmetric: the proof would not yield a reduction to AN B
uniformly.

Lemma 4.3 (Uniform Kobzev (productive sets)) If A is productive, B is c.e., and
we know that A N B is not productive, then A N B is productive, and an m-reduction
from K to AN B can be found uniformly in an m-reduction from K to A and an index
of B.

Proof As above we use Lachlan’s proof, and start it with the two sets AU B and
AUB. The strategy for reducing K to AU B must fail (since AN B is not productive),
and hence the first strategy, namely, the one reducing K to ‘AU B, must succeed. We
only need to observe that the resulting reduction can be determined uniformly in the
index of the reduction from K to A and an index of B. O

With this we can complete the proof.

Proof of Lemma 4.2 Assume K <p A @ B. Then there are computable functions
f, g, and a, such that

xeK & ax(xa(Dfx)), x8(Dg(x))) =1,
and ay is positive. Let S, = A U {x : x > n}, and define
Ep = {x s ax(xs,(Dy(x)), x8(Dg(x))) = 1}.
The set E,, is c.e. (uniformly in n) since B is. There are two cases.
Case 1 There is an n such that K N E,, is productive.
Case 2 K N E, is productive for all n (uniformly in n by Lemma 4.3).

In Case 1 we note that

x€KNE, & ax(xa(Dsw), x8(Dg(x))) =0
A ox(xs,(Dg))» xB(Dg(x))) =0
< Ox ()(Sn (Df(x))a XB (Dg(x))) = 0.
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The last equivalence is true because ay(xs,(Dr(x)), xB(Dg(x))) = 0 implies
ax(xa(Drx)), xB(Dg(x))) =0 (since A € S, and ay is positive). Since KNE,is
productive, this shows that K <, B (S, is computable).

In Case 2 we can effectively in n find an element /(n) of K N E,. Note that

xekn E, & ax(XA(Df(x))» XB(Dg(x))) =0
AN ax(XSn (Df(x))a XB(Dg(x))) =1

This means that A and §, must differ on Dy() or, in other words, D fn))
N{m:m >n}NA # @. Hence, A is not hypersimple. U

Remark 4.4 In Theorem 6.11 we will show how to construct a hypersimple set
H and a 2-ce. set A such that K <q A x H but not K <, A. That is, positive
hypersimple degrees can be p-cuppable. However, as we will see in Corollary 6.15,
dense simple sets are not p-cuppable.

5 Parity Reductions

We know that hypersimple sets cannot be t#-complete. However, as we will see in
Section 6 they may be ¢¢-cuppable, even in the c.e. degrees. The next result shows
that this does not happen if we sharpen ¢¢-reducibility to parity-reducibility.

Theorem 5.1 A hypersimple set is not ®-cuppable.

Proof Let A be hypersimple and assume that K <g A @ B where B is any, not
necessarily c.e., set. We show that K <g B.

Uniformly, for any given x, we construct a c.e. set B, and a sequence of disjoint
finite intervals I;}, n € w, inductively as follows. By the recursion theorem, we may
assume that we have a parity reduction @, from B, to A @ B.

Suppose we have constructed intervals I, m < n. Let k be their maximum
element. Choose 25! + 1 new numbers and compute the maximum element k" used
by @, when applied to any of the new numbers. Let I} = [k + 1, k'].

Simultaneously, we enumerate A until we find an interval I’ that is contained in A.
Such an interval has to exist since otherwise each interval intersects A contradicting
the hypersimplicity of A.

Suppose we find I’ = [k + 1, k'] € A. Consider the 2! 4 1 numbers chosen in
the construction of this interval. Each such number i gives rise to a parity condition
pi = D, (i). Then there must be two distinct numbers a < b < k whose parity
conditions agree on queries to A which are at most k. Moreover, the queries to the
A-part which are larger than k can be evaluated since each such query is answered in
the positive.

Now do the following: If x € K we enumerate a into B, otherwise B, = J.
Then x € K if and only if the joined parity condition p, & p, evaluates to 1. But in
this condition all queries to A cancel out or can be evaluated. Therefore, we have in
fact a parity reduction to B. (|

6 Truth-Table Reductions

6.1 The case of hypersimple sets ~ The main open cuppability problem is that for
truth-table reductions. Unexpectedly, there are hypersimple sets that are ¢¢-cuppable,
even in the c.e. degrees. Such sets have to be wtf-complete, by the result of Downey
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and Jockusch [9]. This explains why the proof is rather involved: Lachlan’s sep-
aration of wtt-completeness from ¢¢-completeness was the most intricate proof for
separating completeness notions [16] (or [21, Theorem II1.9.1]).

Theorem 6.1  There is a hypersimple set that is tt-cuppable in the c.e. degrees.

Proof By a finite injury argument, we construct c.e. sets A, B and a c.e. co-
retraceable set H such that K <4 A@ H and B % A. Partition o into an ascending
sequence of intervals I, x > 0, such that

1] =x+ 1.
We will have 0 ¢ H. The tt-reduction @ of K to A & H is defined as follows:
x € K <= thenthelementof I, isin A wheren = max{y <x:y & H}.

Define a function f : @ — wasfollows: f(0) =0, f({+1) = f()+2({+2)+1.
Without loss of generality, we may assume that K C range(f).

Construction of A, B, H The construction proceeds in stages. At the beginning of
stage s + 1 we enumerate for each x € K with x < s the nth number of I, into A,
where n = max{y < x : y ¢ H,}. In this way we will have satisfied in the end that
K <4 A® H via ©.

For each i we will satisfy the following requirement R;:

(R}) If p; is total then B £ A via the ¢¢-reduction coded by ¢;.

Each i is in exactly one of the states SETUP, WAIT, or PLAY. At the beginning of the
construction all i are in state SETUP.

We say that i requires attention at stage s + 1 if one of the following conditions
holds.

(a) i is in state SETUP.

(b) i isin state WAIT and ¢; ;(x;) is defined where x; is the current diagonalization
witness of i.

(c) i isin state PLAY and a number less than or equal to the use of the 7f-operator
coded by ¢; (x;) was enumerated into A since the last time when i received
attention.

At stage s+ 1 the least i that requires attention receives attention. Then the following
is done according to which state i is in.

(@ Ifi is in state SETUP let £ be minimal such that {x : x > f({)} N Hy = &
and £ > {; forall j < i. Welet {; = €. Allocate the numbers in the interval
T, ={x: f(£;) <x < f(€; + 1)} to i and choose a new unused diagonalization
witness x;. Put all j > i into state SETUP and put i into state WAIT.

(b) If i is in state WAIT and g@; s(x;) is defined let u; be the maximal use of
the associated ¢f-operator aiX (x;). Find u’ such that u; € I,,. Dump all z with
f€ +1) <z <max(Hy U{u'}) into H.

Let b; be the greatest element of 7; that does not belong to Hy, and leta; = b; — 1.
Consider the game on al.X (x;) where initially X = A; and where player 1 may
enumerate the a;th element of 7, into X and player 2 may enumerate the b; th element
of I, into X for any x with f(£; + 1) < x < u’. After w rounds player 1 wins if and
only if X (x;) = 0.
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Since this is essentially a finite game, it is determined and we can determine
effectively which player has a winning strategy. Also this strategy is effective.

(a) If player 1 has a winning strategy, we choose it, let v; = 0, and enumerate x;

into B.
(b) If player 2 has a winning strategy (i.e., he has a strategy that achieves
al.x (x;) = 1 in the end) choose it and let »; = 1. Then dump all

x > bj, x < max(Hy) into H and put all j > i into state SETUP.
. . Ay
Enumerate elements into A according to the chosen strategy such that o, **' (x;) = v;.
Put i into state PLAY.

(c) If i is in state PLAY and elements less than or equal to u; have been enumer-
ated into A since the last time it received attention, do the following: Let x be the
minimum of the enumerated elements. We distinguish two cases.

Case 1 Ifx < max(/f(,)), then dump all z > a;, z < max(H,) into H, cancel the
witness of i and choose an unused new one, and set the state of i equal to wAIT and
the state of all j > i equal to SETUP.

Case 2 Otherwise, by the assumption on K, x > min({ s, +1)). Then each of the
enumerated elements x’ must be the b;th element of I/, if v; = 0, and the a;th
element of I/, if v; = 1. Now enumerate elements into A according to the chosen

strategy such that ol.A”' (xi) = v;. Keep the state of i equal to PLAY.

End of construction ]

Verification

Lemma 6.2  H is co-retraceable.

Proof This follows from dumping. ]
Lemma 6.3 K <4 A® H.

Proof By the primary action taken in each stage s + 1 we get
xe K = 04 () =1.

For the other direction, note that when we enumerate for some i in state PLAY at
stage s’ a number y, which is the nth element of I, into A according to the chosen
strategy, then 7 is not the greatest element of H,N[0,...,x], foralls > s":
(a) If v; = 0, then y is the g;th element of I, and the b; = (a; + 1)th element
is greater and does also not belong to Hy . If later this element is enumerated
into H, then the a;th is also enumerated into H (this can only happen by a
dumping action of some j < i).

(b) If v; = 1, then y is the b;th element of I,. But in that case we already
enumerated b; into H when we determined the strategy. Thus the assertion
holds trivially. O

Lemma 6.4 Each R; is satisfied. Therefore, K %y A.

Proof This follows by induction on i. First, it is easy to see that in each stage s
the intervals 7;, if defined, form an ascending sequence in i. Second, we show by
simultaneous induction on i the following statements:
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(1) i is only finitely often in state SETUP.

(2) i is either almost always in state WAIT (then ¢; is not total) or almost always
in state PLAY.

(3) i receives attention only finitely often.

(4) R; is satisfied.

Suppose this holds for all j < i and consider a stage s” such that no j < i requires
attention for all s > s’. Then at the latest at stage s’, i is put into state WAIT with
some witness x; and an interval 7;. Let £ = ¢;, which does not change from this
stage on.

(a) If @; (x;) is not defined then i will stay in state WAIT in all of the following
stages and will never require attention anymore.

(b) If @;(x;) is defined, then i will reach the state PLAY. Since there may be at
most £ + 1 numbers of K that may cause that a new witness is chosen, i
switches back to WAIT at most £ 4 1 times. If ¢; is defined for all of these
new witnesses, then i will end up in state PLAY and never leave it. Otherwise,
it will end up in state waIrt, but this means that ¢; is not total.

Therefore, we have shown (1) and (2). Also, clearly, (3) holds if i ends up in state
WAIT.

Now suppose i ends up in state PLAY and consider s” such that, at stage s” + 1,
i enters state WAIT from state SETUP for the last time. Then 7; consists of 2(£ + 2)
numbers all in ﬁx”—i—b Each time when at some later stage i leaves PLAY and enters
WAIT this happened since a number f(k),k < { was enumerated into K (which
caused enumerations into A by the global 7z-reduction ® and maybe additionally by
the strategy of some R; with j < i).

Clearly, this happens at most £ 4- 1 times. Each time the two greatest elements of
T; are enumerated into H. Since |T;| = 2(£ + 2), there will be at least 2 elements
from H in 7} left. Thus the numbers a;, b; € T; will always be defined when the
state changes from WAIT to PLAY.

Now consider the final change from WAIT to PLAY. From then on, we will always
work on a fixed ¢z-operator aiX (x;) for the final witness x;. Clearly, A changes below
the use only finitely often. Therefore, (3) holds. Since A will never change below
I7 (1), our strategy ensures that oiA (x;) = v; # B(x;).

Note that, by the dumping when we were in WAIT for the last time, for any
x > f(€+ 1) with max(Iy) less than or equal to the use of at.X (x;), we have that
max(ﬁﬂ [0, x]) equals b;, if v; = 0 and equals a;, if v; = 1. Therefore, the numbers
that are forced into such an interval by the ¢¢-reduction @ are always equal to a legal
move of the opponent in the corresponding game. The strategy is chosen in such a
way that these moves are countered by additional numbers we enumerate into A such
that aiAS (x;) = v; after each such stage s and in the end. Thus, B is not ¢¢-reducible
by the 7z-reduction coded by ¢; and R; is satisfied; that is, (4) holds. O

Lemma 6.5 H is hypersimple.

Proof From Lemmas 6.3 and 6.4, it follows that H is noncomputable. Since every
c.e., noncomputable co-regressive set is hypersimple ([4], [5], or [21], Ex. II1.3.14a),
Lemma 6.2 implies that H is hypersimple. O
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Remark 6.6 The idea of using games and strategy-stealing to diagonalize a f¢-
operator appears first in [13] and later in [19]. There it was used in the realm of
Kolmogorov complexity to construct certain wzz-complete but not ¢f-complete sets.
Such sets were first constructed by Lachlan [16] using a different method that is less
flexible.

Remark 6.7  Since there are c.e., semirecursive sets S for which K <y S, the
requirement K <y ®4®# in the proof of Theorem 6.1 can alternatively be written
as S <y ®A®H  This allows us to assume that elements get enumerated into the I,
as initial segments of a computable linear ordering. This simplifies the presentation
of the enumeration game played by the two players to the following game: given a
number 7, the two players alternately play a number x < n, where each player has
to play numbers in nondecreasing order. The positions of the game are pairs (x, y)
with x being the current value of player 1 and y being the current value of player 2.
A particular pair (x, y) is either a 1-position or a 2-position. The initial position is
(0, 0). The legal moves of player i are moves to an i-position (i = 1,2). A player
loses if he does not have a legal move when it is his turn to move.

The game corresponds to enumerating increasing initial segments of an n-element
linear ordering. The ¢¢-operator determines which positions are 1-positions.

For this game it is easy to decide which player has a winning strategy by having
both players follow this strategy: in position (a, b) if the position is a 1-position and
player 1 moves or a 2-position and player 2 moves, do not do anything; otherwise,
pick the smallest number x > a (player 1) or x > b (player 2) such that (x, b) is a
1-position (or (a, x) is a 2-position if player 2 moves). If there is no such move, the
active player has lost.

The player who wins this simulation also has a winning strategy for the original
game; that is, the winning strategy is to extend the initial segments as conservatively
as possible (and necessary). This simplifies the finite game that has to be considered
in the proof of Theorem 6.1, but it does not simplify the proof.

Remark 6.8 Downey [6] gave a general construction of c.e., noncomputable
non-t¢-cuppable sets. His proof can be adapted to show that such sets can be co-
retraceable. Thus our result cannot be generalized to arbitrary c.e., noncomputable,
co-retraceable sets.

Remark 6.9 It is easy to make H low by adding standard lowness requirements or
Turing-complete, by encoding the Halting Problem. Are there c.e., noncomputable
Turing degrees that do not contain t¢-cuppable hypersimple sets? This question
seems to be hard and appears to require new techniques.

The proof of Theorem 6.1 can be adapted to yield an r-maximal instead of a co-
retraceable set.

Theorem 6.10  There is an r-maximal set H that is tt-cuppable in the c.e. degrees.

Sketch of Proof For this proof we combine (a) Lachlan’s construction of an r-
maximal set which is not dense simple (see [15], [22], pp. 393f. or [27], X.5.10)
with (b) our construction of a hypersimple ¢¢-cuppable set. The construction in (a)
uses a sequence of intervals (7},), <, Which can be used for diagonalization as in (b).
To this end we associate with each interval that has not been completely enumerated
into H a tt-operator g;; we can arrange things so that ¢; is associated with the ith in-
terval which has not been completely enumerated into H; in other words, an interval
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T,, might be associated in turn with ¢;,, 0;,, and so on, where n > iy > i ---; this
works if the interval is chosen large enough. Once the interval does not change any-
more, as part of (a), the diagonalization in part (b) will be successful. If the interval
changes, we choose a new witness and enumerate the a;th and the b;th element of
the interval into H as in the previous proof. U

The following two results are rather conventional diagonalization arguments that are
simplified versions of the construction of Theorem 6.1. We therefore provide only
proof sketches.

We next make good on our promise from Section 4 by showing how to modify
the proof of Theorem 6.1 to work for positive reductions.

Theorem 6.11  There is a hypersimple set H and a 2-c.e. set A such that
K <q Ax Hbut K £, A.

Sketch of Proof We are using the setup of the proof of Theorem 6.1 and define

x € K <= thereisann < |I| such that the nth element of I,
belongsto Aandn € H.

In this way we satisfy K <4 A x H.

To diagonalize the positive ¢¢-operator al.X we have numbers in the interval T;
to play with. Let b; = min(7; N H;) and a¢; = b; — 1. Then we check whether
we can enumerate numbers into X which are the a;th numbers of I, for x with
f(€+1) <x <u'suchthato (x;) = 1.

If yes, we enumerate these numbers into A and keep x; out of B. This achieves
Bxj)=0#1= aiA (x;). Note that since the t¢-operator is positive it will stay at
1 even if additional elements are enumerated for the sake of the global requirement
K<q4A®H.

If no, we enumerate x; into B, a; into H, and put the g;th element of I, into
H if x with f(£ + 1) < x < u is enumerated into K. Then we know that
o (xi) =0 # 1= B(x).

Note that in this case the game degenerates to a 1-mover. If the setup of the
ith diagonalization is canceled by the action of some j < i and the yes-case has
happened, we take back the numbers we enumerated into A. This makes A 2-c.e. [l

The next result shows that the noncuppability result of Downey and Jockusch for
computably enumerable degrees cannot be strengthened.

Theorem 6.12  There is a hypersimple set H and a 2-c.e. set A such that
K <t A®H but K fwn A.

Sketch of Proof Again we use the setup of Theorem 6.1. This time it is convenient
to replace K by a c.e. semirecursive set S =y K. Let S be the lower cut of a
computable linear ordering <. We will make sure that

x €S <= (a)the nth element of I, is even and belongs to A, or
(b) the nth element of I, is odd and does not belong to A,
wheren = max{y <x:y & H}.

To diagonalize the wtt-operator al.X we are playing with the numbers in 7;. Let

b; = max(T; N Fs) and a; = b; — 1. Furthermore, we may assume that b; is even.
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Let z; < --- < zi be the linear ordering of all x with f(€ + 1) < x < u’. Let
Y1, ..., Yk be the g;th elements of I, ..., I, respectively. We enumerate the y;s
one by one in the inverse ordering (starting with yx) into A and wait until aiA (x;) is
defined and equal to 0, after each new element has been enumerated.

If at one point we wait forever, either aiA (xj) =1 # 0 = B(x;) or aiA (x;) is
undefined. In either case aiX is diagonalized.

So suppose the wtt-operator is always defined and equal to 0. Then we enumerate
x; into B, b; into H and reset the enumeration of A to a previous stage as long as
some elements z; are enumerated into S. Since we can assume that the z;s are
enumerated according to the ordering <, the y; are extracted in the reverse ordering
as they have been enumerated (in addition we may have to extract some of the b;th
elements of the I, to restore a previous stage of A). This makes sure that we always
have 0/ (x;) = 0 # 1 = B(x;) and A is 2-c.e. O

6.2 The case of dense simple sets  In the previous section we saw that hypersimple
sets may be tz-cuppable. For sets with thinner complements this is no longer true as
we will see presently.

A set A is dense immune if the function p4 enumerating it in order dominates
every total computable function. A is dense simple if it is c.e. and its complement
is dense immune. Any dense simple set is hypersimple. On the other hand, hyper-
hypersimple sets, and thus maximal sets, are dense simple.

We will use Robinson’s result [25] that a set A is dense immune if and only if for
every disjoint strong array (V;);ce there is an m such that |V, NA| < nforalln > m
(see [27], XI.1.10).

Theorem 6.13 A dense simple set is not tt-cuppable.

Proof Suppose M is dense simple and K <y A@ M via a tt-reduction @. Applying
a clever idea of Downey [6], Theorem 2.1, we will show that M <y A, and, thereby,
K <y A.

We construct a c.e. set B as follows. By the recursion theorem, we can assume
that we have an m-reduction f from B to K. Partition @ into a sequence of in-
tervals Iy, I, I, ... with |I,|] = n. Let mg = 0 and let m,4+; be the maximum
of m, + 1 and the largest element used by ® on any input from f(I,), and define
Jp={x:my <x <muy41}.

For every n, enumerate M = U?‘:’OMS until J,41 N ‘M contains less than n + 1
elements xp, ..., x; (k < n). Pick k corresponding elements yi, ..., yt in I, and
enumerate y; in B if and only if x; in M. This concludes the construction of B.

We claim that M <y A. Since M is dense simple we know that

|J, "M| <n

for all n > a (for some a). We define a t¢-reduction from M to A inductively
(following the idea of Downey). For every element x € U;<,J; pick a t-reduction
from M to A. Forx € J,4+1 (n+1 > a) proceed as follows: Simulate the construction
of B until J,4 contains less than n + 1 elements of M;. By the choice of a, the
simulation terminates. If x € M, let the reduction map to true. Otherwise, x equals
one of the x; and is associated with some y; € I,,. By construction x € M if and only
if y; € B ifand only if f(y;) € K if and only if ®4®M (f(y;)) = 1. The use of ® on
input f(y;) is bounded by m, 4. By the inductive assumption we have ¢¢-reductions
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for any x’ < m, | from M to A. Hence we can rebuild the 7z-reduction for f(y;)
replacing every query to M by queries to A. In this way we obtain a ¢¢-reduction for
x from M to A. (]

Note that virtually the same proof holds for wt¢-reductions.
Corollary 6.14 A dense simple set is not wtt-cuppable.

The proof also works for positive reductions, since the rebuilt ¢¢-reduction is positive
if ® and the reductions from the inductive assumption are positive.

Corollary 6.15 A dense simple set is not p-cuppable.

6.3 The case of semirecursive, n-maximal sets  In Theorem 6.13 we saw that
dense simple sets are not rz-cuppable, and, therefore, maximal sets are not tf-
cuppable. This remains true if we relax maximality to #-maximality assuming the
set in question is c.e. and semirecursive, a natural assumption in light of Degtev’s
and Marchenkov’s solution to Post’s problem.

Theorem 6.16 A c.e., semirecursive, and n-maximal set is not tt-cuppable.

Lemma 6.17  Assume A is c.e., noncomputable, semirecursive, and n'-maximal.
Then there is a (coarser) positive equivalence relation n such that A is 5-
maximal and for any strong array (J,)new that partitions o, and P, = {[x], :
x € Jy,m < n},n € w, there is a finite set Q of n-equivalence classes from A such
that

Hlxly:xeJaNAand[x], ¢ PL,UQ} <1
for all n.

We can modify the proof of Theorem 6.13 to apply to semirecursive 7-maximal sets
by replacing Robinson’s result with our Lemma 6.17. As in Theorem 6.13, the proof
can also be made to work for p- or wtz-reductions.

Proof of Lemma 6.17 Since A is semirecursive, it is the lower cut of a computable
linear ordering ([21], Proposition III.5.4, attributed to McLaughlin and Appel
by [11]). Assume A is 7'-maximal. We replace 7’ by the transitive and symmetric
closure 7 of the relation x#”y defined as

xn'y Vv (@)x <y <z Axy'z].

(This idea is due to Kobzev as described in [22], p. 595.) It follows that # is a
positive equivalence relation (coarser than #) and A is 5-closed. Furthermore, A is
n-maximal and the linear ordering is compatible with #; that is, for all x, y, z,

XHZAX <Yy <Z= Xn)y.

Define (a;);icq and (b;);cq as follows:

bp = min{n:J,NA # &},
a; = min{Jy N A} (the minimum with respect to <),
<
bi+1 = min{n > b; : thereisana € J, N A witha < a;}.

Both sequences are well-defined, since A is not computable. Furthermore, (;);c(, is
strictly decreasing with respect to <. There is a c.e. set B 2 A such that

BN A = Uicolaily.
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(This is easily done by approximating a; using approximations A instead of A.)
Since A is #7-maximal, we can conclude that either B N'A or B N A is 5-finite.
If BN A were n-finite, then A = {[bl; : lal; < [b];and [a], € B ﬂZ} would
be c.e., contradicting the assumption. We conclude that BNAIis n-finite; that is,
0 :={x],:x e ‘BN A} is finite. Assume [J, N A] 4 contains exactly k equivalence
classes [x1]; < --- < [x¢], with representatives from J,, and choose i minimal such
that b; > n. Then a; < x; by definition of a;. Any [x;], (j > 2) that does not

occur among [ai]y, . .., [a;], has empty intersection with B and therefore occurs in
Q. Hence, [x1], is the only (potentially) new 5-equivalence class in J;, N A. This
proves the lemma. O

7 Q- and T-Cuppability

Post’s original program of finding structural properties that force Turing-incomplete-
ness was completed twenty years after the priority constructions of Friedberg and
Muchnik using #-maximality and the relationship between Tennenbaum’s Q- and
Turing-reductions for semirecursive sets. While there is a strong noncuppability
result for Q-reductions, #-maximality and semirecursiveness are not strong enough
to force noncuppability with respect to Turing reductions.

Theorem 7.1 IfK <9 A® B, then K <g Aor K <q B.

Proof Suppose K <g A @ B. There are computable functions g, / such that for all
X,
xeK & We) SA AN Wiy €B.

Uniformly for each x, we construct a c.e. set H,. By the recursion theorem we may
assume that we have two computable functions gy, sy such that for all n,

ne H, & ng(n) CAN th(") < B.

If x ¢ K then, for all n, we enumerate n into Hy if and only if n € K. If x € K we
let Hy = w. Let M, = |U,,c, We, (n)- Note that M, C A if x € K, by the definition
of H,.

Now there are two cases.

Case 1 If thereis an x ¢ K such that M, C A, then Wy () C A for all n. But this
means thatn € K if and only if n € H, if and only if W, (,y C B; thatis, K <q B.

Case2 Ifforall x ¢ K we have M, Z A, then for all x,
xeK & M, CA;

thatis, K <q A. In either case we are done. O

By the Join Theorem for 0’ by Posner and Robinson ([23], see also [17], Theo-
rem 5.1, or [22], Theorem X1.3.10) any noncomputable incomplete 7-degree is T -
cuppable (even by a low degree). Therefore, we will consider in the following only
T -cuppability in the c.e. degrees.

Marchenkov showed that every c.e., semirecursive, and #-maximal set is 7T-
incomplete (see [18] or [21], IIL.5). Indeed, the proof proceeds by showing that
such a set is not Q-complete. By the previous result, it is therefore not Q-cuppable.
However, the next result shows that such a set may very well be T-cuppable in the
c.e. degrees.
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Theorem 7.2 There is a c.e., semirecursive, and n-maximal set A, for some positive
equivalence relation n, that is T -cuppable by a low c.e. set.

Proof We modify Degtev’s construction [2] as presented in [21], II1.5.19, and as-
sume that the reader is familiar with it. In particular, we are using the sets B} as
explained there to construct the needed positive equivalence relation #. The idea is
that in each stage s we have the finite equivalence classes B}, i € o, that partition
Ay such that max(B;) < min(B;, ) for all i. The i-state of B; is the highest i-state
of a member of B; at stage s (i-states of numbers being defined as in the well-known
maximal set construction). Now if there exist e < ¢ < s such that the e-state of
B, is higher than the e-state of B; then we may let B; increase its e-state by putting

Bt = Uf/:e B} and BSI} = Bg,ﬂ., for all j > 0. If we can arrange that each B}
converges to a finite set and can maximize its e-state, then it follows as in the max-
imal set construction that A is #-maximal with respect to the constructed positive
equivalence relation.

In addition to A we construct a c.e. low set L and a Turing reduction ®* such that
for all x, K (x) = ®L®4(x). Since adding requirements for lowness and satisfying
them by finite-injury is standard, the crucial point lies in the definition of ®.

We define useg (x), the use of ®X (x) at the end of stage s as follows:

usep(x) = 2xJU {2y +1:y < x}

{2x}U{2y+1:y < min(B;“)} if A changes at or below
max{y : 2y + 1 € use;(x)}

usest1(x) = in stage s + 1;

use; (x) otherwise.

Note that the definition is valid since min(BY) is nondecreasing in s and Bg = {x}.

For the standard enumeration of Turing reductions ®;,i € w, let u(i, s) denote
the use of (Di[: 2 (i) if it is defined after s steps of computation, and 0 otherwise. We
have to satisfy the following negative requirements:

Ny; : B; is finite
Ly, .
Naipr: 3% ©530) L — 7)) |
Ny; will help to make sure that A is indeed #-maximal, and N»; 4 is the usual low-
ness requirement for L (see [27], Chap. VII, 1). In addition, we have the positive
requirement that A is semirecursive. We satisfy this by dumping as in the original

construction. Finally, we have the positive requirement that K (x) = ®L®4(x) for
all x. We satisfy this by either enumerating x into L or enumerating

mg(x) = max{y ¢ Ay : 2y + 1 € uses(x)}

into A, if x appears in K at stage s + 1.
Let x;, t € w, be a computable enumeration without duplication of K.

At stage s + 1 we do the following.
1 s =2teven. Fori <t define restraints as follows:
r(2i, s) = max(B}),
r(2i +1,s) = u(,?).



366 Martin Kummer and Marcus Schaefer

Let ¢(2i) = mg(x;) and ¢(2i + 1) = x,. Leti’ < t be minimal such that
q(@") < r(@i’,s). If the minimum does not exist, let i’ = ¢.

If i’ is even, enumerate x; into L. If i’ is odd, choose z such that m(x;) € B and
dump all B; into A for j = z, ..., max(z, s). Note that in this way we preserved all

requirements N;, with i < i’.
2 sodd. Letthe sets B; maximize their e-state as explained above.

This completes the construction. O

Verification
Lemma 7.3  Forall i, limgr(i, s) exists and is finite and N; is satisfied.

Proof Using induction on i we may assume that lim,r(j, s) exists and is finite for
all j < i. Choose sg such that r(j,s) = r(j, sg) forall s > sg and all j < i. Letrg
denote the maximum restraint (let ro = —1 for i = 0).

All Bj, with 2j < i, are fixed finite sets by stage so. Let mq be their maximum
element. Note that mo = max(By,) for the maximum ko with 2kg < i. Fori = 0, let
ko = mog = —1.

Let m’ = min{m > mo : m ¢ Ag}; thatis, m" = min(B,‘ng). Note that for all
x > m’ we trivially have 2m’ + 1 € useqg(x).

By induction on s we show that, for all s,

Py x>m' = 2min(B} )+ 1 € use;(x).

Assume Pg holds; then we show that P holds:
1. If Bio 41 is dumped into A in stage s + 1, with s even, then A changes at or
below min(B,iOH). Since x > ko + 1, it follows that 2min(B£:i1) +1e€
usegy1(x).

2. If BI§O+1 is “eaten” by some B;, k < ko, in stage s+1, with s odd, then s < sg.

+1

Thus, min(B,iJ’ll) < m’ and so trivially 2min(B,iO+]) + 1 € usegyq (x).

+
This completes the inductive step.
Choose s1 > s such that x, > max(m’, ro+1) forall 2t > s;. Forall s = 2t > s;

it follows by P; that 2min(B,iO+l) + 1 € uses(x). Since min(B,iOH) ¢ Ay, we have
mg(x;) > m’ > mg and so it follows,

q(j) > r(j,s) forall j <i.
This means that requirement N; is preserved in stage s + 1 and so we are done:

(a) i even, that is, i = 2(kg + 1). For all stages s + 1 > s, B,§0+1 will never be
dumped into A nor will B,io 41 be eaten by some B;, k < ko, since these sets never
change again. Thus, the only way it increases is by eating some B; with k > ko + 1
that has a higher (kg 4 1)-state. But this can happen only finitely often. Therefore,

max (B;OH) exists and is finite; that is, NV; is satisfied.

(b)i odd, leti = 2kg + 1. In all stages s + 1 > s1, s = 2¢, the use of d),fo’ , (ko) is
preserved, if the computation converges. It follows that r(i, s) has a finite limit and
that N; is satisfied. [l

Lemma7.4 L islow.
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Proof This follows from Lemma 7.3 since all lowness requirements are satisfied.

O
Lemma 7.5 A is semirecursive and n-maximal.
Proof This follows from Lemma 7.3 and the arguments outlined above. (]
lemma7.6 K <7 L®A.
Proof By the construction, we have <DSLX€BAS (x,) = 1, for all s > 2t and
CDSLSGBAJ (x) =0, forall s and x ¢ K. Since all B, are finite, it follows that the use
of @ is finite and therefore it is a valid Turing reduction from K to L & A. (|

Remark 7.7 It is straightforward to combine the construction in [21], II1.5.19, with
permitting. Therefore, for any c.e., noncomputable set A, there is a c.e., noncom-
putable, semirecursive, #-maximal set B such that B <7 A. Since there exist c.e.,
noncomputable sets that are not T-cuppable in the c.e. degrees (see [27], XIII, 4.4),
it follows that there are also c.e., noncomputable, semirecursive, #-maximal sets that
are not T -cuppable in the c.e. degrees.

Notes

1. For sets, A @ B denotes the join of the two sets, {2a : a € A}U{2b+ 1 : b € B}. The
context should be clear in all cases.

2. Parity reducibility is also known as linear reducibility.
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