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Unifying Functional Interpretations

Paulo Oliva

Abstract This article presents a parametrized functional interpretation. De-
pending on the choice of two parameters one obtains well-known functional in-
terpretations such as Gödel’s Dialectica interpretation, Diller-Nahm’s variant of
the Dialectica interpretation, Kohlenbach’s monotone interpretations, Kreisel’s
modified realizability, and Stein’s family of functional interpretations. A func-
tional interpretation consists of a formula interpretation and a soundness proof.
I show that all these interpretations differ only on two design choices: first, on
the amount of counterexample for A which becomes witnesses for ¬A when
defining the formula interpretation and, second, the inductive information about
the witnesses of A which is considered in the proof of soundness. Sufficient
conditions on the parameters are also given which ensure the soundness of the
resulting functional interpretation. The relation between the parametrized inter-
pretation and the recent bounded functional interpretation is also discussed.

1 Introduction

In [8] Gödel developed his Dialectica interpretation (also known as functional in-
terpretation) with the goal of proving relative consistency of first-order arithmetic.
The consistency of arithmetic was reduced to that of a quantifier-free calculus based
on the language of finite types. He successfully showed that quantifier dependencies
can be totally captured by functional dependencies so that logic is eliminated in favor
of higher-order objects. Around the same time, Kreisel observed that similar proof
interpretations in fact give much more than just relative consistency results. The in-
terpretations can also be used to make explicit computational information hidden in
the logical structure of the proof. In [13] Kreisel then gives a clear account of Gödel’s
Dialectica interpretation and uses it to define the constructive truth of mathematical
theorems. In the same paper Kreisel also sketches an “alternative interpretation,”
which was further developed in [14] and came to be called modified realizability.
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It is normally held that one weakening of Gödel’s Dialectica interpretation is that
it assumes decidability of atomic formulas, known as the contraction problem. This
happens because when interpreting the contraction axiom the Dialectica interpreta-
tion must, in loose terms, pick one counterexample out of two candidates, which
can be done by checking which one is indeed a counterexample. This checking re-
lies on the decidability of atomic formulas. Moreover, it might as well be that both
candidates are indeed counterexamples, which implies that the choice at this point
is not unique, making the Dialectica interpretation noncanonical (cf. Hyland [10],
Section 2.3.1). A variant of the Dialectica interpretation in which this problem is
circumvented was then suggested in [4] and is known as the Diller-Nahm variant of
Dialectica interpretation. The trick suggested is simply to collect all such counterex-
amples, postponing the actual decision. In [17] Stein showed that this idea could be
generalized, and he defines a family of interpretations parametrized by the type level
from which counterexamples are collected.

In [11] and [12], Kohlenbach observes that Howard’s majorizability relation [9]
can be used to define monotone versions of both Gödel’s Dialectica interpretation
and Kreisel’s modified realizability, where majorants, rather than precise witnesses,
are obtained from proof. This allows for new (even ineffective) principles to be inter-
preted. More recently, in Ferreira and Oliva [7], a new functional interpretation based
on Bezem’s strong majorizability relation [3] has been developed—labeled bounded
functional interpretation. The main motivation for this new interpretation was to ob-
tain effective versions of conservation results for weak König’s lemma in the setting
of feasible analysis (cf. Ferreira [5]; Ferreira and Oliva [6]). The interpretation also
provides a new solution to the contraction problem.

The goal of this article is to show that all these functional interpretations can be
viewed as special cases of a single parametrized interpretation via a careful instanti-
ation of two parameters. The two parameters capture two degrees of freedom in the
definition of a functional interpretation: (1) the interpretation of a negated formula
¬A given the interpretation of A, (2) the witnessing information which is inductively
carried from axioms to the conclusion.

It is important to stress that those are not the only degrees of freedom in the defini-
tion of a functional interpretation. For instance, one could imagine an interpretation
in which atomic formulas also have computation content, as in the formulas-as-types
isomorphism; or that “implication” (and ultimately “negation”) is given a different
interpretation, as in the modified realizability with truth. What I intend to show,
however, is that all the functional interpretations mentioned above coincide except
at those two points. Axiomatic conditions on the two parameters are presented that
are sufficient to guarantee that soundness proofs go through, and indeed a single,
uniform soundness proof is presented, covering any choice of parameters that meets
these conditions.

Note that the approach presented here is purely syntactic and intends to show that
different functional interpretations appear very different simply due to a nonuniform
use of notation. Therefore, getting the appropriate logical formal system and abstract
definition of a functional interpretation has been the most labor intensive part of this
work. Once those are in place, it is actually easy to see the striking similarities
between the various functional interpretations. Hopefully, this common syntactic
framework can also help in the development of a common semantical understanding
of functional interpretation, for instance, along the lines of [10].
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1.1 Functional interpretations Let us abbreviate by x and t sequences of vari-
ables x0, . . . , xn and terms t0, . . . , tm , respectively. In this article, a functional in-
terpretation of a formal system T into a system S is taken to be a pair of effective
mappings:

1. a formula interpretation which maps formulas of T into formulas of S with
two (possibly empty) disjoint sequences of free-variables x and y

A 7→ |A|
x
y

such that A is equivalent (in some reasonable model) to ∃x∀ y|A|
x
y; quantifier

dependencies of the form ∀∃ are interpreted via functional dependencies with
the help of the schema of choice

AC : ∀y∃x A(x, y) → ∃ f ∀y A( f y, y)

using a multi-sorted language;
2. a soundness proof which maps a T-proof of A into an S-proof of B

(π : A)T 7→ (π̃ : B)S

for some formula B such that S ` B → ∃x∀ y|A|
x
y; above (π : A)T denotes

that π is a T-proof of A. The soundness proof in which B is the formula
∀ y|A|

t
y, for some sequence of terms t , will be called standard soundness.

The system T is referred to as the interpreted system while S is called the verifying
system. In the formula |A|

x
y the sequence of variables x marks the computational

information required by A, or the constructive content of A. Any sequence of terms
t for which ∀ y|A|

t
y holds is called a witness for A. The sequence of variables y marks

the position of the possible counterexamples for concrete potential witnesses t; that
is, in order to show that t is not a witness for A one must produce a sequence of terms
s such that ¬|A|

t
s. Therefore, the soundness proof component of the interpretation

gives a way of translating a proof of A into a proof of some formula B which implies
the existence of witnesses for A.

Due to the modularity of the soundness proof, a functional interpretation of T can
be easily extended to an interpretation of extensions of T given some conditions on
the new axioms and rules. For that reason I will mainly focus on the core of the
interpretation, that is, the interpretation of intuitionistic predicate logic. Extensions
of the core interpretation will be discussed in Section 2.3.

1.2 The interpreted system IL Tables 1 and 2 describe a deduction system, which
I will refer to by IL, for intuitionistic predicate logic. IL is basically a natural deduc-
tion system in sequent style, with contexts 0 and 1 modeled as multisets. Notice,
however, that the formulation of the elimination rules for disjunction, implication,
and existential quantifier deviate from the standard presentations of natural deduc-
tion systems.

Nevertheless, the logical rules of IL for ∨E, →E, and ∃E, together with the cut
rule, allow one to derive the corresponding rules of Troelstra and Schwichtenberg
[19], (Section 2.1.8). In the other direction, ∨E, →E, and ∃E of IL can be directly
derived from the corresponding rules of [19] simply with the help of the identity
axiom A ` A. The new rule (cut) of IL is also derivable in the system of [19] via a
detour of →I followed by →E. Another difference is that contraction of assumptions
is done explicitly via the contraction rule (con), since contexts are being viewed as
multisets rather than sets. The treatment of the contexts as multisets implies that in
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the rule →I a single copy of A is removed from the context, whereas in →E a single
copy of A is added to the context.

As usual, there are two side conditions on the quantifier rules. In the rule ∀I, the
variable z must not appear free in 0. The side condition for ∃E is that the variable z
must not appear free in 0 nor in B.

Recall that ¬A is defined as A → ⊥. For the rest of the article I write 0 ` 1 for
provability in IL. When referring to provability in some extension T of IL the system
will be explicitly attached to the provability symbol as 0 `T A.

A ` A (id) ⊥ ` A (efq)

0 ` A ∧ B
∧El

0 ` A

0 ` A ∧ B
∧Er

0 ` B

0 ` A 1 ` B
∧I

0, 1 ` A ∧ B

0 ` A
∨Il

0 ` A ∨ B

0 ` B
∨Ir

0 ` A ∨ B

0, A ` C 1, B ` C
∨E

0, 1, A ∨ B ` C

0, A ` B
→ I

0 ` A → B

0 ` A → B
→E

0, A ` B

0 ` B
(wkn)

0, A ` B

0, A, A ` B
(con)

0, A ` B

0 ` A 1, A ` B
(cut)

0, 1 ` B

Table 1 Propositional fragment of IL

The main motivation for defining IL as above is purely to localize context manipu-
lations such as those performed in the rules of contraction and cut. Avoiding rules
which involve change of context points naturally to a natural deduction formulation.
One should notice, however, that the natural deduction treatment of disjunction, im-
plication, and existential elimination involves a hidden application of the cut rule,
which we intend to localize in IL. Therefore, we adopt a more primitive formulation
of those rules. What results at the end is (an apparently awkward) hybrid system
between a natural deduction and a Gentzen formulation of intuitionistic logic. As we
will see, this formulation will prove very useful in pinpointing the few places where
the various functional interpretations mentioned in the introduction differ.

It is worth noting that issues of normalization or cut elimination for IL are irrel-
evant for the purposes of this article. We only need that any proof in intuitionistic
predicate logic can be translated into a proof in IL, where its proof analysis via func-
tional interpretation can take place in a controlled way (cf. Remark 2.3).

1.3 The verifying system Tω Since we wish to define a parametrized interpreta-
tion of IL, the verifying system will not be fully specified until we have considered
concrete instantiations of the parameters. Nevertheless, we can prove properties of
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0 ` A(z)
∀I

0 ` ∀z A(z)

0 ` ∀z A(z)
∀E

0 ` A(s)

0 ` A(s)
∃I

0 ` ∃z A(z)

0, A(z) ` B
∃E

0, ∃z A(z) ` B

Table 2 Quantifier rules

the parametrized interpretation by making use of an abstract formal system Tω in
the sense that we just describe the essential properties (which we refer to as con-
ditions) that any verifying system Tω must have for any given instantiation of the
parametrized interpretation in order to ensure soundness.

As mentioned above, quantifier dependencies will be replaced by functional de-
pendencies. This means that Tω will be an extension of IL over the language of
finite types. The set of finite types T is inductively defined as follows: o ∈ T and
if ρ, σ ∈ T then ρ → σ ∈ T . We often omit the parenthesis in, for example,
ρ → (τ → σ) writing simply ρ → τ → σ , assuming right associativity of the
functional type construction. We also define the type level of each element of T in-
ductively as follows: level(o) := 0 and level(ρ → τ) := max{level(ρ)+1, level(τ )}.
The types in T of the form o → · · · → o are called the pure types. Since the pure
types are in one-to-one correspondence with the natural number, we often write n
instead of the pure type of type level n. We leave open how the treatment of higher-
order equality is handled in the verifying system Tω as this is not essential for the
interpretation. As we discuss in Section 2.3, however, the treatment of higher-order
equality in the interpreted theory (once we extend IL to a language of finite types) is
essential.

We use f, g, h, u, v, w, x, y, z for variables and s, t, r, q for terms of arbitrary
type. The variables i, j, k, m, n will be used to range over the basic type o. In
Section 3.4, however, we will make use of i, j to quantify over an arbitrary but fixed
pure type.

The first assumption we will make on the higher-order system Tω is that it en-
joys the property of combinatorial completeness. In particular, given any term t and
variable x there is a functional term λx .t such that

(β) `Tω A((λx .t) s) ↔ A(t[s/x])

for arbitrary formulas A.
Our second assumption is that the following substitution rule is admissible in Tω

(t/x) if 0(x) `Tω A(x) then 0(t) `Tω A(t)

for any context 0 and formula A, where the sequence of terms t has the same type
as the sequence of variables x, and t is free for x in A and 0.

The third assumption we make on Tω is that its language has two constants tt and
ff (of type o) such that `Tω tt 6= ff and a family of ternary constants if(no, xρ, yρ) (for
each type ρ ∈ T ) such that

(Ctt) n = tt `Tω A(if(n, x, y)) ↔ A(x),

(Cff) n 6= tt `Tω A(if(n, x, y)) ↔ A(y)
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for arbitrary formulas A(x). We will also assume that in Tω the logical constructor
for disjunction A ∨ B is replaced by a (more primitive) ternary constructor A ∨s B—
so-called flagged disjunction—where A, B are formulas and s is a term of basic type.
The logical rules for the flagged disjunction, which replace those for the standard
disjunction, are given as

0 ` A
∨Il

0 ` A ∨tt B

0 ` B
∨Ir

0 ` A ∨ff B

0, s = tt, A ` C 1, s 6= tt, B ` C
∨E .

0, 1, A ∨s B ` C

The flagged disjunction A ∨n B is the logical counterpart of the if-then-else term
construction and can be viewed as an abbreviation for either (n = tt∧A)∨(n 6= tt∧B)
or (n = tt → A) ∧ (n 6= tt → B)—in which case the rules above should be viewed
as derivable rules. In order to derive ∨E with the second abbreviation, however, one
needs the extra assumption n = tt ∨ n 6= tt. The standard disjunction A ∨ B can be
defined via the flagged disjunction as A ∨ B :≡ ∃n(A ∨n B).

Remark 1.1 Note that if Tω is an arithmetical theory the constants tt, ff can be
simply taken to be numerals 0, 1 and if(n, x, y) can be defined via recursion. In fact,
since all functional interpretations considered here have been developed with a focus
on arithmetical theories, we shall assume that tt ≡ 0, ff ≡ 1 (particularly in the proof
of Theorem 2.2). When interpreting purely logical theories such as IL, we assume
that if(n, x, y) is taken as a primitive with axiom schema as given above.

We will also assume that the language (predicates and constants) of IL are included
in the language of Tω and that there is an injective mapping of variables of IL into
the ground type variables of Tω. Therefore, to each atomic formula of IL there cor-
responds a unique atomic formula of Tω.

Finally, the parametrized interpretation of IL into a theory Tω will contain an
uninterpreted bounded universal quantifier ∀x @ t A(x), where A(x) is a formula
with a distinguished sequence of free-variables x, and t is a sequence of terms. This
should be viewed as an abbreviation rather than a new formula construct, and the
symbol @ is merely part of the abbreviation. For instance, ∀x @ t A(x) could be an
abbreviation for either A(t) or ∀x A(x). For each fixed choice of the abbreviation
∀x @ t A(x) we will consider of particular interest the following class of formulas of
Tω.

Definition 1.2 (@-bounded formulas) Let the abbreviation ∀x @ t A(x) be fixed.
The class of @-bounded formulas of Tω (we denote arbitrary formulas in this class by
Ab and Bb) are those built out of atomic formulas via conjunction (Ab ∧ Bb), flagged
disjunction (Ab ∨s Bb), implication (Ab → Bb), and bounded universal quantifier
(∀x @ t Ab(x)). Formulas of the form ∀x Ab will be called ∀ @-bounded formulas.

In order to guarantee that this abbreviation behaves as a universal quantifier we will
assume the following: for each @-bounded formulas Ab, Bb and context 0

(A1) if 0 `Tω Ab then ∀x @ t 0 `Tω ∀x @ t Ab,

(A2) `Tω ∀x, y @ r, t (Ab ∧ Bb) ↔ (∀x @ r Ab ∧ ∀ y @ t Bb),

(A3) `Tω ∀x, y @ r, t (Ab ∨s Bb) ↔ (∀x @ r Ab ∨s ∀ y @ t Bb),

(A4) `Tω ∀x @ t Ab ↔ Ab, if x 6∈ FV(Ab)
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assuming, in the cases of (A2) and (A3), that x 6∈ FV(Bb) and y 6∈ FV(Ab). Notice
that (A3) is only required to hold for the flagged disjunction, which is an intuitionisti-
cally reasonable assumption given decidability of equality for the basic type o. More-
over, from (A1) and (A4) one can conclude that 0 `Tω Ab implies 0 `Tω ∀x @ t Ab,
if x 6∈ FV(0).

Finally, in order to ensure that the abbreviation behaves as a bounded quantifier
we will make use of three further conditions. For all @-bounded formulas Ab( y) and
a fixed sequence of free-variables y there must exist sequences of terms b1, b2, and
b3 (over the free-variables of Ab( y) other than y) in the language of Tω such that

(B1) ∀ y @b1x Ab( y) `Tω Ab(x),

(B2) ∀ y @b2 y0 y1 Ab( y) `Tω ∀ y @ yi Ab( y), for i ∈ {0, 1},

(B3) ∀ y @b3hb Ab( y) `Tω ∀z @ b∀ y @ hz Ab( y),
where the application hz of one sequence h to a sequence of arguments z is an abbre-
viation for h0z, . . . , hn z. Intuitively, the conditions above capture the requirement
that every (sequence of) element(s) x is effectively and uniformly bounded by b1x;
any element bounded by either y0 or y1 is also bounded by b2 y0 y1; and if z is
bounded by b then any element bounded by hz is also bounded by b3hb.

In the following I will denote by cρ the lifting of an arbitrary o-type constant co

of Tω to the type ρ, which can always be done via λ-abstractions.

2 Parametrized Functional Interpretation of IL

The goal of this article is to show that both the formula interpretation and the sound-
ness proof can be parametrized so that instantiations of those parameters will give
rise to most of the known functional interpretations. We will, however, start with
a parametrization of the formula interpretation together with a standard soundness,
assuming the properties of the parameter abbreviation ∀x @ t A(x) outlined in Sec-
tion 1.3 above. In Section 4, we then introduce a second parameter abbreviation to
be used in the soundness proof and show that further conditions on the second pa-
rameter allow us to prove a parametrized soundness for the parametrized formula
interpretation.

2.1 Parametrized formula interpretation Suppose that the interpretations for A
and B have already been given so that x and v are witnesses for A and B if ∀ y|A|

x
y

and ∀w|B|
v
w, respectively. According to modified realizability, a witness for the

implication A → B is simply a sequence of functionals f producing witnesses for
B given witnesses for A; that is,

∀ y|A|
x
y → ∀w|B|

f x
w .

This is very much in the spirit of the BHK interpretation of intuitionistic logic, where
such functionals f are associated with proofs of A → B. A proof of the implication
A → B, however, provides another construction which is normally disregarded: for
each x and w, the conclusion |B|

f x
w follows from finitely many instantiations of the

premise. The required instantiations can be read off (uniformly on x, w) from the
proof, giving rise to a second construction g satisfying the stronger statement

∀ y ∈ gxw |A|
x
y → |B|

f x
w
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where gxw is a finite set. Moreover, if the formula |A|
w
y is decidable it is possible to

obtain a functional g′ which selects a single element from the finite set gxw so that

|A|
x
g′xw → |B|

f x
w .

The element g′xw can, for instance, be taken to be any element y ∈ gxw such
that |A|

x
y does not hold or an arbitrary element if |A|

x
y holds for all (finitely many)

elements of gxw.
The three choices of the interpretation of A → B described above correspond

to modified realizability, the Diller-Nahm interpretation, and Gödel’s original func-
tional interpretation. This papers considers a parametrization of the amount of infor-
mation produced by g by defining the interpretation of implication as

∀ y @ gxw |A|
x
y → |B|

f x
w ,

leaving open what ∀ y @ gxw |A|
x
y stands for. Under some basic conditions on the

choice of the abbreviation ∀x @ t A(x) (described in Section 1.3) a standard sound-
ness theorem can be proved for such parametrized interpretation. This implies that
any instantiations of the abbreviation satisfying these conditions will give rise to
a different functional interpretation. As examples of other interpretations we will
present Stein’s family of functional interpretations and the recent bounded functional
interpretation.

Definition 2.1 (Parametrized formula interpretation) To each formula A of IL we
associate a @-bounded formula |A|

x
y of Tω as follows.

|P| :≡ P

for atomic formulas P , where the variables of IL are mapped to variables of type o
in Tω. Notice that for atomic formulas the tuples of witnesses and counterexamples
are both empty. Assume we have already defined |A|

x
y and |B|

v
w; we define

|A ∧ B|
x,v
y,w :≡ |A|

x
y ∧ |B|

v
w,

|A ∨ B|
x,v,n
y,w :≡ |A|

x
y ∨n |B|

v
w,

|A → B|
f ,g
x,w :≡ ∀ y @ gxw |A|

x
y → |B|

f x
w ,

|∀z A(z)| f
y,z :≡ |A(z)| f z

y ,

|∃z A(z)|x,z
y :≡ |A(z)|x

y.

In the clause for implication, if v (respectively, y) is the empty sequence then f
(respectively, g) is also taken to be the empty sequence. Similarly, in the clause for
universal quantification, if x is the empty sequence then f is also taken to be the
empty sequence.

Notice that, except for the bounded quantifier in the treatment of implication, the in-
terpretation of an arbitrary formula A is a quantifier-free formula. It should be noted,
however, that the types of variables in the resulting formula might be of arbitrary
level depending on the logical complexity (i.e., the nesting of universal quantifiers
and implications) in the formula A.

We present now a standard soundness proof for the parametrized formula inter-
pretation. This should be viewed as a preparation for the next step, a parametrization
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of the soundness proof. The following theorem will be shown to be a special case of
the parametrized soundness proof.

Theorem 2.2 (Standard soundness) Let Tω and the abbreviation ∀x @ t A(x) be
chosen so that the conditions outlined in Section 1.3 hold. If 0 ` A then there are
sequences of terms t, r ∈ L(Tω) such that

∀w@ r |0|
v
w `Tω |A|

t
y

where if FV(A) ∪ FV(0) ≡ {a} then FV(t) ⊆ {a, v} and FV(r) ⊆ {a, v, y}.

Proof In the treatment of various rules we will make use of an arbitrary (but fixed)
sequence c of closed terms cρ of appropriate type. The proof proceeds by induction
on the structure of the IL-proof of 0 ` A. The axioms of identity A ` A are
associated with the Tω-derivation of ∀ y′ @b1 y |A|

x
y′ ` |A|

x
y, which is guaranteed by

condition (B1). Moreover, given that falsity is an atomic formula we have | ⊥ | ≡ ⊥,
which means that we can associate the ex-falso sequitur quodlibet axioms ⊥ ` A
with new instances ⊥ ` |A|

c
y.

For each logical rule we show how the terms for the interpretation of the conclu-
sion can be obtained given terms for the interpretation of the premises. If a substitu-
tion is performed, we will explicitly show the relevant free-variables in the relevant
terms. We will assume without loss of generality that the multisets 0, 1 consist of a
single formula, since manipulations of formulas in 0, 1 are done pointwise.

Conjunction introduction (∧I)

∀w0 @ r0 |0|
v0
w0

` |A|
t0
y0

∀w1 @ r1 |1|
v1
w1

` |B|
t1
y1

∧I
∀w0 @ r0 |0|

v0
w0

, ∀w1 @ r1 |1|
v1
w1

` |A|
t0
y0

∧ |B|
t1
y1 (D.2.1)

∀w0 @ r0 |0|
v0
w0

, ∀w1 @ r1 |1|
v1
w1

` |A ∧ B|
t0,t1
y0, y1

The reader can check that the free-variables condition on witnessing terms is
maintained; that is, if (for i ∈ {0, 1}) the free-variables of t i are included
in {vi } ∪ FV(Ai , 0i ), then the free-variables of t0, t1 are trivially included in
{v0, v1} ∪ FV(00, 01, A0, A1), similarly for the free-variables of r0 and r1. We will
not focus on this point for the rest of this proof.

Conjunction elimination (∧E)

∀w@ r[ y0, y1] |0|
v
w ` |A ∧ B|

t0,t1
y0, y1 (D.2.1)

∀w@ r[ y0, y1] |0|
v
w ` |A|

t0
y0

∧ |B|
t1
y1 (c/ y1)

∀w@ r[ y0, c] |0|
v
w ` |A|

t0
y0

∧ |B|
t1
c

∧El
∀w@ r[ y0, c] |0|

v
w ` |A|

t0
y0

The case ∧Er is treated similarly.

Disjunction introduction (∨I)

∀ y @ r |0|
x
y ` |A|

t0
w0

∨Il
∀ y @ r |0|

x
y ` |A|

t0
w0

∨0 |B|
c
w1 (D.2.1)

∀ y @ r |0|
x
y ` |A ∨ B|

0,t0,c
w0,w1

∀ y @ r |0|
x
y ` |B|

t1
w1

∨Ir
∀ y @ r |0|

x
y ` |A|

c
w0

∨1 |B|
t1
w1 (D.2.1)

∀ y @ r |0|
x
y ` |A ∨ B|

1,c,t1
w0,w1

Disjunction elimination (∨E) For the sake of simplicity we will omit the assump-
tions 0 and 1 in the case of disjunction elimination.
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∀ y0 @ r0 |A|
x0
y0

` |C |
t0
w

(Ctt)
n = 0, ∀ y0 @ r0 |A|

x0
y0

` |C |
if(n,t0,t1)
w

∀ y1 @ r1 |B|
x1
y1

` |C |
t1
w

(Cff)
n 6= 0, ∀ y1 @ r1 |B|

x1
y1

` |C |
if(n,t0,t1)
w

∨E
∀ y0 @ r0 |A|

x0
y0

∨n ∀ y1 @ r1 |B|
x1
y1

` |C |
if(n,t0,t1)
w

(A3)
∀ y0, y1 @ r0, r1 (|A|

x0
y0

∨n |B|
x1
y1

) ` |C |
if(n,t0,t1)
w

(D.2.1)
∀ y0, y1 @ r0, r1 |A ∨ B|

n,x0,x1
y0, y1

` |C |
if(n,t0,t1)
w

Implication introduction (→I)

∀z @ q |0|
u
z , ∀ y @ r |A|

x
y ` |B|

t
w

→ I
∀z @ q |0|

u
z ` ∀ y @ r |A|

x
y → |B|

t
w

(β)
∀z @ q |0|

u
z ` ∀ y @ (λxλw.r)xw |A|

x
y → |B|

(λx.t)x
w (D.2.1)

∀z @ q |0|
u
z ` |A → B|

(λxλw.r),λx.t
x,w

where λx.t abbreviates λx.t0, . . . , λx.tn (similarly for λxλw.r).

Implication elimination (→E)

∀z @ q |0|
u
z ` |A → B|

r,t
x,w (D.2.1)

∀z @ q |0|
u
z ` ∀ y @ rxw |A|

x
y → |B|

t x
w

→ E
∀z @ q |0|

u
z , ∀ y @ rxw |A|

x
y ` |B|

t x
w

Cut
∀ y0 @ r0[z] |0|

x0
y0

` |A|
s
z

(A1)
∀z @q′

∀ y0 @ r0[z] |0|
x0
y0

` ∀z @q′
|A|

s
z

∀ y1 @ r1 |1|
x1
y1

, ∀z @q |A|
v
z ` |B|

t
w

(s/v)
∀ y1 @ r ′

1 |1|
x1
y1

, ∀z @q′
|A|

s
z ` |B|

t ′
w

(cut)
∀z @q′

∀ y0 @ r0[z] |0|
x0
y0

, ∀ y1 @ r ′
1 |1|

x1
y1

` |B|
t ′
w

(B3)
∀ y0 @b3(λz.r0[z])q′

|0|
x0
y0

, ∀ y1 @ r ′
1 |1|

x1
y1

` |B|
t ′
w

where t ′, q ′, and r ′

1 are obtained from t, q, and r1 via the substitution s/v.

Weakening
∀u @ r |0|

v
u ` |B|

t
w (wkn)

∀u @ r |0|
v
u, ∀ y @ c |A|

x
y ` |B|

t
w

Contraction We only show the relevant variables x0, x1 in the terms r0, r1 and t:

∀ y@ r0[x0, x1] |A|
x0
y , ∀ y@ r1[x0, x1] |A|

x1
y ` |B|

t[x0,x1]
w

(x/x0, x/x1)
∀ y@ r0[x, x] |A|

x
y, ∀ y@ r1[x, x] |A|

x
y ` |B|

t[x,x]
w

(B2)
∀ y@b2(r0[x, x], r1[x, x]) |A|

x
y, ∀ y@b2(r0[x, x], r1[x, x]) |A|

x
y ` |B|

t[x,x]
w

(con)
∀ y@b2(r0[x, x], r1[x, x]) |A|

x
y ` |B|

t[x,x]
w

Universal quantifier (∀I/E)

∀w@ r |0|
v
w ` |A(z)|t

y
(β)

∀w@ r |0|
v
w ` |A(z)|(λz.t)z

y (D.2.1)
∀w@ r |0|

v
w ` |∀z A(z)|λz.t

y,z

∀w@ r[z] |0|
v
w ` |∀z A(z)|t

y,z
(s/z)

∀w@ r[s] |0|
v
w ` |∀z A(z)|t

y,s (D.2.1)
∀w@ r[s] |0|

v
w ` |A(s)|ts

y
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Existential quantifier (∃I/E)

∀w@ r |0|
v
w ` |A(s)|ty

(D.2.1)
∀w@ r |0|

v
w ` |∃z A(z)|t,sy

∀u@ r |0|
v
u, ∀ y@q |A(z)|xy ` |B|

t
w

(D.2.1)
∀u@ r |0|

v
u, ∀ y@q |∃z A(z)|x,z

y ` |B|
t
w

�

Remark 2.3 In contrast to cut elimination, in a functional interpretation the cut rule
is interpreted again by another instance of the cut rule with the help of condition
(B3) which, due to the presence of the parameter relation, states an abstract form
of functional application or composition. On the other hand, the quantifier rules
are eliminated via the use of higher-order functionals. In this respect, one might
view functional interpretations as quantifier-elimination procedures. Obviously, new
quantifiers might be introduced in the interpretation of implication—via the abbre-
viation ∀x @ t A(x)—and quantifier rules might be introduced again in order to deal
with conditions (B1), (B2), and (B3).

2.2 Completeness We have seen how a proof of A in IL can be transformed into
a proof (in the system Tω) that some sequence of terms t is a witness for A. This sec-
tion describes three (parametrized) schemata which, over Tω, allow one to conclude
A from the fact that A has witnesses. Those are the schema of choice (described in
Section 1.1), the schema of independence of premise for ∀ @-formulas,

IP@ : (∀x Ab(x) → ∃ yB( y)) → ∃ y(∀x Ab(x) → B( y)),
and the Markov principle for @-bounded formulas,

MP@ : (∀x Ab(x) → Bb) → ∃b(∀x @ b Ab(x) → Bb).

Let T# denote the extension of Tω with these three axiom schemata.

Theorem 2.4 For arbitrary formulas A in the language of IL, T# proves A ↔

∃x∀ y|A|
x
y.

Proof The proof is by induction on the logical structure of A, the only nontrivial
case being when A has the form A → B:

A → B IH
⇐⇒ ∃x∀ y|A|

x
y → ∃v∀w|B|

v
w

Tω

⇐⇒ ∀x(∀ y|A|
x
y → ∃v∀w|B|

v
w)

IP@
⇐⇒ ∀x∃v(∀ y|A|

x
y → ∀w|B|

v
w)

Tω

⇐⇒ ∀x∃v∀w(∀ y|A|
x
y → |B|

v
w)

MP@
⇐⇒ ∀x∃v∀w∃b(∀ y @ b |A|

x
y → |B|

v
w)

AC
⇐⇒ ∃ f , g∀x, w(∀ y @ gxw |A|

x
y → |B|

f x
w )

(D.2.1)
⇐⇒ ∃ f , g∀x, w|A → B|

f ,g
x,w .

The case ∀x A(x) also uses the principle of choice. �

Since we have left open what the abbreviation ∀x @ t A(x) might stand for, we are
not in a position to claim that the interpretation of the principles MP@, IP@, and AC
will be trivialized by the interpretation, as is the case for each of the instantiations
considered in Section 3.
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2.3 Extensions of the parametrized interpretation In this section we indicate how
Theorem 2.2 can be extended in several ways already on the level of the parametrized
interpretation, that is, prior to any concrete instantiations of the parameter abbrevia-
tion ∀x @ t A(x) being considered. For the first extension we will make use of the
following definition.

Definition 2.5 (Purely universal formulas) We denote by U the class of formulas
of the form ∀ yA( y) where A( y) is built out of atomic formulas via conjunction and
implication.

It is easy to see that for formulas B ∈ U (say B ≡ ∀ yA( y)) we have |B| y ≡ A( y).
This implies that formulas B in U do not ask for witnesses (the tuple of witnessing
variables is empty) and, moreover, B implies its parametrized interpretation no mat-
ter what the choice of the abbreviation ∀x @ t A(x) is. Therefore, in Theorem 2.2,
axioms in U can be added to the interpreted theory IL given that those are also added
to the verifying theory Tω.

Another trivial generalization of Theorem 2.2 is to extend the language of the
interpreted theory IL to the language of all finite types. This gives rise to a system
which we will refer to as ILω. One must simply notice that the interpretation of
quantifiers given in Definition 2.1 can be easily generalized as

|∀zρ A(z)| f
y,z :≡ |A(zρ)|

f z
y |∃zρ A(z)|x,z

y :≡ |A(zρ)|x
y

if the language of the interpreted theory already contains quantification over higher-
order variables. In order to have an interpretation of ILω on the parametrized level
(before instantiations) one needs to be careful about the treatment of higher-order
equality. We would like to have a purely universal axiomatization, that is, by formu-
las in U, so that the interpretations of the axioms are implied by the axioms them-
selves. For instance, we can adopt a minimal treatment of extensionality (see Section
3.3 of Troelstra [18]), in the sense that only equality between terms of the basic type
o is taken as primitive in the language and the axiom schemata characterizing the
behavior of the logical constants (combinators) 5 and 6 are in the class U. Obvi-
ously, as concrete instantiations of the parametrized interpretation are considered the
amount of extensionality allowed will also vary.

The basic parametrized interpretation of intuitionistic logic can also be extended
to deal with arithmetic. Let Heyting arithmetic in all finite types HAω be an ex-
tension of ILω with constants for zero and the successor function, together with the
appropriate quantifier-free axioms, and the induction rule:

` A(0) A(n) ` A(n + 1)
IND .

` A(n)

Without loss of generality we can assume that the subproofs ` A(0) and A(n) `

A(n +1) do not contain extra assumptions as this is enough for deriving all instances
of the induction schema. The language of HAω also contains the recursor R for
Gödel’s primitive recursion in all finite types, with quantifier-free axioms (subR),

` P(Rxy0) ↔ P(x) ` P(Rxy(n + 1)) ↔ P(yn(Rxyn)),

where P(·) is an atomic formula with a distinguished variable of appropriate type.
It is easy to show that (subR) can be extended to arbitrary formulas A. The system
HAω has a parametrized functional interpretation since witnessing terms for ` A(n)
can be produced out of witnesses for ` A(0) and A(n) ` A(n + 1) as
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` |A(0)|sy
∀I

` ∀ y|A(0)|sy

` ∀ y|A(0)|
R(s,λn.t,0)
y

∀ y′ @q[x, y] |A(n)|xy′ ` |A(n + 1)|t x
y

(A1)
∀ y|A(n)|xy ` ∀ y|A(n + 1)|t x

y
(R(s, λn.t, n)/x)

∀ y|A(n)|
R(s,λn.t,n)
y ` ∀ y|A(n + 1)|

t R(s,λn.t,n)
y

(subR)
∀ y|A(n)|

R(s,λn.t,n)
y ` ∀ y|A(n + 1)|

R(s,λn.t,n+1)
y

IND .
` ∀ y|A(n)|

R(s,λn.t,n)
y

We do not consider here extensions of the parametrized interpretation in order to deal
with classical logic or comprehension principles (cf. Spector [16], Berger and Oliva
[2]), since those are normally dealt with via complementary translations such as the
negative (double-negation) translation and Friedman’s A-translation. Therefore, the
combinations of the interpretations discussed here with those translations, for ex-
ample, Kreisel’s non-counterexample interpretation and Shoenfield’s interpretation
[15], are out of the scope of this article.

3 Instantiations of ∀x @ t A(x)

We will see next that by simply instantiating the abbreviation ∀x @ t A(x) in the
parametrized functional interpretation we obtain well-known functional interpre-
tations, both the formula interpretation and the corresponding standard soundness
theorem—see, however, the discussion about the more subtle bounded functional in-
terpretation on Section 3.5. In each case we fix the verifying theory Tω and explicitly
give the families of sequences of terms b1, b2, and b3 (of Tω) and argue that condi-
tions (B1), (B2), and (B3) hold for such choices. Notice also that for each instantia-
tion of ∀x @ t A(x) the @-bounded formulas constitute a concrete class of formulas,
characterizing in each case the (formula) range of each concrete interpretation.

3.1 Kreisel’s modified realizability The first instantiation we consider is Kreisel’s
modified realizability, first discussed in [13] and further elaborated in [14]. Modi-
fied realizability is nowadays normally viewed as a higher-order variant of Kleene’s
realizability where realizers are functionals rather than numeric codes of partial re-
cursive functions. Therefore, it is surprising that it was discovered via a detailed
analysis of Gödel’s Dialectica interpretation (see [13]). By showing that both mod-
ified realizability and the Dialectica interpretation are two straightforward instances
of the parametrized interpretation we confirm Kreisel’s impression that the two in-
terpretations are rather similar. In most expositions modified realizability is defined
as follows.

Definition 3.1 (Modified realizability [13], [14]) For each formula A of IL we
associate a new formula x mr A of ILω (x is a sequence of fresh variable) inductively
as follows:

ε mr P :≡ P, for atomic formulas P,

where ε is the empty sequence of variables. Assume we have already defined x mr A
and v mr B; we define
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x, y mr A ∧ B :≡ (x mr A) ∧ (v mr B),

x, v, n mr A ∨ B :≡ (x mr A) ∨n (v mr B),

f mr A → B :≡ ∀x((x mr A) → ( f x mr B)),

f mr ∀z A(z) :≡ ∀z( f z mr A(z)),

x, z mr ∃z A(z) :≡ x mr A(z).

The free-variables of the formula x mr A are x and those already free in A.

In order to obtain modified realizability from the parametrized functional interpre-
tation we take ∀x @ t A(x) to be an abbreviation for ∀x A(x). In this case, the
definition of implication given in Definition 2.1 when instantiated becomes

|A → B|
f
x,w :≡ ∀ y |A|

x
y → |B|

f x
w ,

where the sequence of variables g can be assumed to be empty. Notice that condi-
tions (B1), (B2), and (B3) clearly hold for such choice, with the sequences of terms
b1, b2, and b3 taken to be the empty sequence.

Lemma 3.2 In Definition 2.1, let ∀x @ t A(x) be an abbreviation for ∀x A(x).
Then, for all formulas A in the language of IL,

`Tω (x mr A) ↔ ∀ y|A|
x
y.

Proof By induction on the logical structure of A. The case in which A is
atomic is trivial. For the composite cases, assume (x mr A) ↔ ∀ y|A|

x
y and

(v mr B) ↔ ∀w|A|
v
w. We then have

( f mr A → B)
(D.3.1)
⇐⇒ ∀x((x mr A) → ( f x mr B))

IH
⇐⇒ ∀x(∀ y|A|

x
y → ∀w|B|

f x
w )

Tω

⇐⇒ ∀x, w(∀ y |A|
x
y → |B|

f x
w )

(D.2.1)
⇐⇒ ∀x, w|A → B|

f
x,w

(x, v mr A ∧ B)
(D.3.1)
⇐⇒ (x mr A) ∧ (v mr B)

IH
⇐⇒ ∀ y|A|

x
y ∧ ∀w|B|

v
w

Tω

⇐⇒ ∀ y, w(|A|
x
y ∧ |B|

v
w)

(D.2.1)
⇐⇒ ∀ y, w|A ∧ B|

x,v
y,w

(x, v, n mr A ∨ B)
(D.3.1)
⇐⇒ (x mr A) ∨n (v mr B)

IH
⇐⇒ ∀ y|A|

x
y ∨n ∀w|B|

v
w

Tω

⇐⇒ ∀ y, w(|A|
x
y ∨n |B|

v
w)

(D.2.1)
⇐⇒ ∀ y, w|A ∨ B|

x,v,n
y,w
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( f mr ∀z A(z))
(D.3.1)
⇐⇒ ∀z( f z mr A(z))

IH
⇐⇒ ∀z(∀ y|A(z)| f z

y )
(D.2.1)
⇐⇒ ∀z, y|∀z A(z)| f

y,z

(x, z mr ∃z A(z))
(D.3.1)
⇐⇒ x mr A(z)

IH
⇐⇒ ∀ y|A(z)|x

y
(D.2.1)
⇐⇒ ∀ y|∃z A(z)|x,z

y

The equivalence between ∀ y|A|
x
y ∨n ∀w|B|

v
w and ∀ y, w(|A|

x
y ∨n |B|

v
w) makes use

of the decidability of the atomic formula n = 0. �

The soundness of the modified realizability interpretation follows directly from The-
orem 2.2 and Lemma 3.2.

3.2 Gödel’s Dialectica interpretation We show that, similarly to modified realiz-
ability, the Dialectica interpretation can be obtained as a straightforward instantiation
of the parametrized interpretation. The Dialectica interpretation is normally defined
as follows.

Definition 3.3 (Dialectica interpretation [1], [8]) For each formula A of IL we
associate new formulas AD and AD such that AD

≡ ∃x∀ yAD(x, y) (where AD is
quantifier-free) inductively as follows:

(P)D
:≡ P, when P is an atomic formula.

Assume AD
≡ ∃x∀ yAD(x, y) and B D

≡ ∃v∀wBD(v, w). We then define

(A ∧ B)D
:≡ ∃x, v∀ y, w(AD(x, y) ∧ BD(v, w)),

(A ∨ B)D
:≡ ∃x, v, n∀ y, w(AD(x, y) ∨n BD(v, w)),

(A → B)D
:≡ ∃ f , g∀x, w(AD(x, gxw) → BD( f x, w)),

(∀z A(z))D
:≡ ∃ f ∀z, yAD( f z, y, z),

(∃z A(z))D
:≡ ∃z, x∀ yAD(x, y, z).

where in each case (·)D is defined as the maximal quantifier-free subformula of (·)D .
For instance, (A∨B)D ≡ AD(x, y)∨n BD(v, w) and (A → B)D ≡ AD(x, gxw) →

BD( f x, w).

In order to obtain Gödel’s original functional interpretation from the parametrized
functional interpretation we take ∀x @ t A(x) to be an abbreviation for A(t). In this
case, the definition of implication can again on the metalevel be simplified to

|A → B|
f ,g
x,w :≡ |A|

x
gxw → |B|

f x
w

and that is what we use in the following. Notice also that the @-bounded formulas
are simply the quantifier-free formulas. Therefore, we can take the verifying system
Tω to be the quantifier-free fragment of ILω.

We must show that conditions (B1), (B2), and (B3) hold for such choice of the
abbreviation. Condition (B1) holds by taking b1 y := y . The fact that condition
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(B2) holds now is not as trivial as in the case of modified realizability. For any
quantifier-free formula Aqf( y) we must produce a sequence of terms b2 satisfying

Aqf(b2 y0 y1) `Tω Aqf( y0) ∧ Aqf( y1).

This can be achieved, for example, if for each quantifier-free formula Aqf we can
produce a term tAqf satisfying

`Tω Aqf( y) ↔ tAqf y = 0.

If this is the case we can define b2 y0 y1 := if(tAqf y0, y1, y0) . Given the choice for

the abbreviation above condition (B3) reduces to Aqf(b3hb) `Tω Aqf(hb), and we
can simply take b3hb := hb .

Lemma 3.4 In Definition 2.1, let ∀x @ t A(x) be an abbreviation for A(t). Then,
for all formulas A in the language of IL,

`Tω AD(x, y) ↔ |A|
x
y.

Proof With the simplification outlined above for the case of implication, one can
immediately see that the definition of AD(x, y) coincides precisely with the defini-
tion of |A|

x
y (Definition 2.1) taking ∀x @ t A(x) as an abbreviation for A(t). �

The soundness of Gödel’s Dialectica interpretation then follows directly from Theo-
rem 2.2 and Lemma 3.4.

3.3 Diller-Nahm functional interpretation The Diller-Nahm functional interpre-
tation is normally viewed as a variant of Gödel’s Dialectica interpretation where
decidability of atomic formulas is no longer necessary. That is achieved by collect-
ing all candidate witnesses rather than deciding which candidate is indeed a witness
(as in the Dialectica interpretation). The gain of not having to assume that atomic
formulas are decidable comes with a cost: instead of producing witnessing terms
from a proof of A, the Diller-Nahm interpretation only produces a finite collection
of candidate witnesses, with the assurance that one of those is indeed a witness.

For the Diller-Nahm interpretation we will assume that the verifying theory Tω is
defined over a language where the finite types T are extended with finite sequence
constructions; that is, if ρ ∈ T then ρ∗

∈ T . Naturally, we also assume that Tω

contains constants (with appropriate defining axioms) for handling finite sequences,
such as a length functor len(·) : ρ∗

→ o, sufficient arithmetic for indexing the finite
sequences, and a binary less-than relation on the basic type.

Definition 3.5 (Diller-Nahm interpretation [4]) For each formula A of IL we asso-
ciate new formulas A∧ and A∧ of Tω such that A∧

≡ ∃x∀ yA∧(x, y) (with A∧(x, y)
a 0-bounded—that is, contains only bounded numerical quantifiers) inductively as
follows:

(P)∧ :≡ P, for atomic formulas P.

Assume A∧
≡ ∃x∀ yA∧(x, y) and B∧

≡ ∃v∀wB∧(v, w). We then define
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(A ∧ B)∧ :≡ ∃x, v∀ y, w(A∧(x, y) ∧ B∧(v, w)),

(A ∨ B)∧ :≡ ∃x, v, n∀ y, w(A∧(x, y) ∨n B∧(v, w)),

(A → B)∧ :≡ ∃ f , g∀x, w(∀i < len(g)A∧(x, gi xw) → B∧( f x, w)),

(∀z A(z))∧ :≡ ∃ f ∀z, yA∧( f z, y, z),

(∃z A(z))∧ :≡ ∃z, x∀ yA∧(x, y, z).

In each case the formulas (·)∧ are defined in the spirit of Gödel’s Dialectica interpre-
tation; for example, (A → B)∧ ≡ ∀i < len(g)A∧(x, gi xw) → B∧( f x, w).

The only difference from Gödel’s original functional interpretation is in the treat-
ment of implication. Rather than asking for a tuple of functionals gτ producing
the concrete witnesses, in the Diller-Nahm interpretation g has type τ ∗. It is also
possible to define the Diller-Nahm interpretation without extending the finite type
structure by simply coding finite sequences of type τ via a pair of an infinite se-
quence o → τ together with the length of the finite sequence. For simplicity we
abbreviate ∀i < len(g)A(gi ) by ∀x ∈ g A(x), since finite sequences can also be
viewed as finite multisets. Using this shorthand the treatment of implication can be
rewritten as

(A → B)∧ :≡ ∃ f , g∀x, w(∀ y ∈ gxw A∧(x, y) → B∧( f x, w)).

Therefore, the Diller-Nahm interpretation can be viewed as an instantiation of the
parametrized functional interpretation where ∀xτ @ tτ∗

A(x) is an abbreviation for
∀x ∈ t A(x). In order to see that this is a valid abbreviation, we must produce families
of sequences of terms b1, b2, and b3 satisfying the conditions (B1), (B2), and (B3).
Those can be given independently of the formula Ab as

b1 y := 〈y0〉, . . . , 〈yn〉 b2 y0 y1 := y0 ∪ y1 b3hb :=
⋃

z∈b hz

where 〈y〉 denotes a singleton sequence and the union symbol above denotes point-
wise union of finite sequences (or multisets), which I assume to be definable in Tω.

Lemma 3.6 In Definition 2.1, let ∀x @ t A(x) be an abbreviation for ∀x ∈ t A(x).
Then, for all formulas A in the language of IL,

`Tω A∧(x, y) ↔ |A|
x
y.

The soundness of the Diller-Nahm interpretation follows directly from Theorem 2.2
and Lemma 3.6.

3.4 Stein’s family of interpretations In [17], a family of interpretations between
Diller-Nahm and modified realizability is defined, parametrized by a number n > 0.
The parameter n basically dictates the types of the universal quantifiers up to which
the interpretation leaves “untouched,” as done in the definition of modified realizabil-
ity. Universal quantifiers in the premise of an implication of type level greater than n
will be pulled out as a set of witnesses, similarly to the Diller-Nahm interpretation.
The interpretation we define below is a slight reformulation of Stein’s definition, in
the sense that for each formula A, our definition of An is intuitionistically (but not
syntactically) equivalent to his definition.

For the rest of this section we use the following notation: given a tuple of variable
x, we will denote by x the subtuple containing the variables in x which have type
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level ≥ n, whereas x denotes the subtuple of the variables in x which have type level
< n. The actual value of n will be clear from the context.

Definition 3.7 (Stein’s family of interpretations [17]) For each positive natural
number n, the interpretation of a formula A of ILω is a new formula An of the form
∃x∀ y∀ yAn , where An contains only universal quantifiers of type level < n and no
existential quantifier. The assignment is done inductively as follows:

(P)n
:≡ P, for atomic formulas P.

Assume we have An
≡ ∃x∀ y∀ yAn(x, y) and Bn

≡ ∃v∀w∀wBn(v, w); we define

(A ∧ B)n
:≡ ∃x, v∀ y, w∀ y, w(An(x, y) ∧ Bn(v, w)),

(A ∨ B)n
:≡ ∃x, v, m∀ y, w∀ y, w(An(x, y) ∨m Bn(v, w)),

(A → B)n
:≡ ∃ f , g∀x, w∀x, w(∀in−1

∀ yAn(x, gxwi, y) → Bn( f x, w)),

(∀zρ A(z))n
:≡ ∃ f ∀ y∀z∀ yAn( f z, y, z),

(∃zρ A(z))n
:≡ ∃z, x∀ y∀ yAn(x, y, z),

where (∀zρ A(x))n :≡ ∀z∀ yAn( f z, y, z) if level(ρ) < n, and ∀ yAn( f z, y, z) oth-
erwise. Above we are also abbreviating by in−1 a sequence of variables all of pure
type n − 1.

Whereas in the Diller-Nahm interpretation one collects potential witnesses into finite
multisets, in the case of Stein’s family of interpretations, one collects the potential
witnesses into an infinite set indexed by elements of the pure type (n−1). Therefore,
in the treatment of implication, the type of gxw is actually a finite sequence of
functionals of type (n−1) → τ , rather than a finite sequence of objects of type τ . For
the sake of simplicity and intuition we write quantifications of the form ∀in−1 A(t i)
as ∀ y ∈rng(t) A( y). We can then more clearly write the treatment of implication as

(A → B)n
:≡ ∃ f , g∀x, w∀x, w(∀ y ∈rng(gxw)∀ yAn(x, y) → Bn( f x, w)).

We show now that also Stein’s family of interpretations can be obtained from the
parametrized functional interpretation via the following instantiation:

(∗) ∀xτ @n t(n−1)→τ A(x) :≡ ∀x ∈rng(t)∀x A(x)

where τ is the type of the sequence x.
It is again easy to see that this choice complies with conditions (B1, B2, B3). In the

case of (B1) we can take b1 y := λi. y . As for (B2), all we need is a functional t of

type (n −1) → (o× (n −1)) whose range contains the set ({0, 1}× (n −1)). We can
then take b2 y0 y1 := λi.if((ti)0, y0(ti)1, y1(ti)1) where (ti)0 and (ti)1 represent

the first and second projections of the pair ti , respectively. In the case of condition
(B3), for simplicity, we consider singleton tuples only. We must produce a term b3
satisfying

∀yσ @b3hb Ab(y) `Tω ∀xτ @b ∀yσ @hx Ab(y).

The only nontrivial situation is when level(σ ) ≥ n and level(τ ) < n; that is, (b is not
used)

∀yσ
∈ b3h Ab(y) `Tω ∀xτ

∀yσ
∈ hx Ab(y),
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which stands for

∀in−1 Ab(b3hi) `Tω ∀xτ
∀ jn−1 Ab(hx j).

Since level(τ ) < n, we can then take b3hi := h(ti)0(ti)1 using any surjective
functional t : (n − 1) → (τ × (n − 1)).

Lemma 3.8 In Definition 2.1, let ∀x @ t A(x) be an abbreviation for ∀x @n t A(x)
as defined above. Then for all formulas A (let An

≡ ∃x∀ y∀ yAn(x, y)) in the lan-
guage of ILω,

`Tω An(x, y) ↔ |A|
x
y.

Proof We only present the case of implication. Assume An
≡ ∃x∀ y∀ yAn(x, y)

and Bn
≡ ∃v∀w∀wBn(v, w). Then

(A → B)n( f , g, x, w)
(D.3.7)
⇐⇒ ∀in−1

∀ yAn(x, gxwi, y) → Bn( f x, w)
(abb)
⇐⇒ ∀ y ∈rng(gxw)∀ yAn(x, y) → Bn( f x, w)

(∗)
⇐⇒ ∀ y @n gxw An(x, y) → Bn( f x, w)

IH
⇐⇒ ∀ y @n gxw |A|

x
y → |B|

f x
w

(D.2.1)
⇐⇒ |A → B|

f ,g
x,w . �

The soundness of Stein’s family of interpretations follows directly from the extension
of Theorem 2.2 to finite types (cf. Section 2.3) and Lemma 3.8.

3.5 Bounded functional interpretation In this section we show how the formula
interpretation component of the recent bounded functional interpretation [7] (b.f.i.
for short) relates to our parametrized formula interpretation set out in Section 2.1.
We will first need to extend Definition 2.1 to deal with bounded quantifiers which
will then allow for a simplification of the interpretation of disjunction. Although
we do not obtain the soundness of b.f.i. as a direct instantiation of Theorem 2.2, we
indicate how conditions (B1), (B2), and (B3) can be used to justify the design choices
of the bounded functional interpretation.

Let ILω be an extension of IL to the language of finite types with a minimal treat-
ment of extensionality, as discussed in Section 2.3. Moreover, let {≤

∗
ρ}ρ∈T represent

Bezem’s family of strong majorizability relations [3] and ILω
≤∗ denote the extension

of ILω axiomatizing1 the family of relations {≤
∗
ρ}ρ∈T as described in [7]. The type

of the relation ≤
∗ will always be clear from the context and we will omit the typing

subscript henceforth. If x ≤
∗ b we say that b majorizes x . Self-majorizing function-

als bρ→τ are called monotone, since for such functionals if x ≤
∗ a then bx ≤

∗ ba.
Contrary to [7], we will assume that monotone quantifiers (denoted in [7] by ∀̃ and
∃̃) are part of the language, with defining axiom schemata

` ∀̃bA(b) ↔ ∀b(b ≤
∗ b → A(b)) ` ∃̃bA(b) ↔ ∃b(b ≤

∗ b ∧ A(b)).

We will let variables a, b, c, d, e range over monotone objects.

Definition 3.9 For each formula A of ILω let [A] ∈ L(ILω
≤∗) be obtained induc-

tively as
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[P] :≡ [P], for atomic formulas,

[A ? B] :≡ [A] ? [B], for ? ∈ {∧, ∨, →},

[∀x A(x)] :≡ ∀̃b∀x ≤
∗ b [A(x)],

[∃x A(x)] :≡ ∃̃b∃x ≤
∗ b [A(x)].

The formula [A] can be viewed as a relativization of the quantifiers in A to Bezem’s
model of strongly majorizable functionals, since ∀̃b∀x ≤

∗ b A(x) and ∃̃b∃x ≤
∗ b A(x)

are, respectively, equivalent to ∀x(∃̃b(x ≤
∗ b) → A(x)) and ∃x(∃̃b(x ≤

∗ b)∧A(x)).
Moreover, the equivalence between A and [A] can be proved using the majorizability
axioms

MAJρ
: ∀xρ

∃̃bρ(x ≤
∗ b).

Note that the formulas [A] only contain monotone quantifiers (∀̃bA(b) and ∃̃bA(b))
and bounded quantifiers (∀x ≤

∗ a A(x) and ∃x ≤
∗ a A(x)). Let us denote by B the

class of formulas containing only those two kinds of quantifiers. We change slightly
the definition of the b.f.i. given in [7] to focus on the interpretation of formulas in B.

Definition 3.10 (Bounded functional interpretation [7]) For each formula A ∈ B
we associate formulas (A)B and AB of ILω

≤∗ such that (A)B
≡ ∃̃b∀̃cAB(b, c), with

AB(b, c) a bounded formula, as follows: (P)B
:≡ P , for atomic formulas P . As-

sume (A)B
≡ ∃̃b∀̃cAB(b, c) and (B)B

≡ ∃̃d∀̃eBB(d, e). We then define

(A ∧ B)B
:≡ ∃̃b, d∀̃c, e(AB(b, c) ∧ BB(d, e)),

(A ∨ B)B
:≡ ∃̃b, d∀̃c, e(∀̃c′

≤
∗ c AB(b, c′) ∨ ∀̃e′

≤
∗ e BB(d, e′)),

(A → B)B
:≡ ∃̃ f , g∀̃b, e(∀̃c≤

∗ gbe AB(b, c) → BB( f b, e)),

(∀̃a A(a))B
:≡ ∃̃ f ∀̃a, cAB( f a, c, a),

(∃̃a A(a))B
:≡ ∃̃a, b∀̃cAB(b, c, a),

(∀x ≤
∗ t A(x))B

:≡ ∃̃b∀̃c∀x ≤
∗ t AB(b, c, x),

(∃x ≤
∗ t A(x))B

:≡ ∃̃b∀̃c∃x ≤
∗ t ∀̃c′

≤
∗ c AB(b, c′, x),

where in each case (·)B is the maximal bounded subformula of (·)B, and ∀̃c≤
∗ t A(c)

abbreviates ∀c≤
∗ t (c ≤

∗ c → A(c)).

What we intend to show is that the b.f.i. presented in [7] can either be viewed as a
relativization of quantifiers (as described in Definition 3.9) followed by an interpre-
tation of formulas in B (according to Definition 3.10), or as originally presented by
combining these two steps into one and giving a direct interpretation of the standard
quantifiers as

(∀x A(x))B
:≡ ∃̃ f ∀̃a, c∀x ≤

∗a AB( f a, c, x),

(∃x A(x))B
:≡ ∃̃a, b∀̃c∃x ≤

∗a ∀̃c′
≤

∗ c AB(b, c′, x).

In either case, what one obtains is an interpretation of formulas of the basic the-
ory ILω (see Lemma 3.12). As observed by Ferreira, applying Definition 3.10 to
monotone quantifiers that have not been obtained via the relativization given in Def-
inition 3.9 would incur problems, since formulas ∃̃a A(a) in general need not be
monotone in a, which is necessary for the soundness proof of the b.f.i.
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Therefore, the bounded functional interpretation of ILω can be viewed as a quan-
tifier relativization via the formula mapping A 7→ [A] followed by an instantiation
of the parametrized interpretation (of formulas in B) as

∀x @ t A(x) :≡ ∀̃x ≤
∗ t A(x)

where the interpretation of quantifiers given in Definition 2.1 is applied to the mono-
tone quantifiers. Obviously, in order to compare Definitions 2.1 and 3.10 we must
first extend Definition 2.1 to deal with bounded quantifiers, which we do in a way
similar to the b.f.i.; that is,

(i) |∀x ≤
∗ t A(x)|bc :≡ ∀x ≤

∗ t |A(x)|bc ,

(ii) |∃x ≤
∗ t A(x)|bc :≡ ∃x ≤

∗ t ∀̃c′
≤

∗ c |A(x)|bc′ .

Remark 3.11 The bounded quantification over c′ in the interpretation of ∃x ≤
∗ t A(x)

is important since

∀̃c∃x ≤
∗ t Ab(c, x) → ∃x ≤

∗ t ∀̃cAb(c, x)

(which would be needed for the completeness of the interpretation) is generally false.
On the other hand,

∀̃c∃x ≤
∗ t ∀̃c′

≤
∗ c Ab(c′, x) → ∃x ≤

∗ t ∀̃cAb(c, x)

is a generalization of weak König’s lemma, as shown in [7].

In a functional interpretation, disjunctions A ∨ B are interpreted by the existence of
the flag n allowing the decidability of A∨n B. It is easy to see that given the presence
of bounded quantifiers (and a limited amount of arithmetic) disjunctions can equiv-
alently be interpreted via ∃n ≤

∗ 1 (A ∨n B). Based on the interpretation of bounded
existential quantifiers (ii) we can then simplify the interpretation of disjunction in
Definition 2.1 directly as

(iii) |A ∨ B|
b,d
c,e :≡ ∀c′

≤
∗ c |A|

b
c′ ∨ ∀e′

≤
∗ e |B|

d
e′

Lemma 3.12 Let Definition 2.1 be extended to deal with bounded quantifiers and
the interpretation of disjunction be simplified as in (i), (ii), and (iii) above. Moreover,
let ∀x @ t A(x) be an abbreviation for ∀x ≤

∗ t A(x), and let Definition 3.10 be
extended to deal with formulas in ILω directly, as originally presented in [7]. Then
for all formulas A ∈ L(ILω) (let (A)B

≡ ∃̃b∀̃cAB(b; c)) we have

`ILω
≤∗

AB(b; c) ↔ |[A]|
b
c

where we are separating via a semicolon the sequences of existentially and univer-
sally quantified variables in (·)B.

Proof The proof is by induction on the logical structure of A. The only nontrivial
cases are those of the quantifiers:
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(∀x A(x))B( f ; c, a)
(D.3.10)
⇐⇒ ∀x ≤

∗a (A(x))B( f a; c)
IH

⇐⇒ ∀x ≤
∗a |[A(x)]|

f a
c

(i)
⇐⇒ |∀x ≤

∗a [A(x)]|
f a
c

(D.2.1)
⇐⇒ |∀̃a∀x ≤

∗a [A(x)]|
f
c,a

(D.3.9)
⇐⇒ |[∀x A(x)]|

f
c,a

(∃x A(x))B(b, a; c) (D.3.10)
⇐⇒ ∃x ≤

∗a ∀̃c′
≤

∗ c (A(x))B(b; c′)
IH

⇐⇒ ∃x ≤
∗a ∀̃c′

≤
∗ c |[A(x)]|bc′

(i i)
⇐⇒ |∃x ≤

∗a [A(x)]|bc
(D.2.1)
⇐⇒ |∃̃a∃x ≤

∗a [A(x)]|b,a
c

(D.3.9)
⇐⇒ |[∃x A(x)]|b,a

c

Let maxτ {bτ , cτ
} be defined pointwise for all types τ ∈ T . Since only monotone

functionals are considered by the bounded functional interpretation, we might as-
sume that b and c in the interpreted formula |A|

b
c are sequences of monotone vari-

ables. Therefore, in order to satisfy conditions (B1, B2, B3) we can take

b1b := b b2b0b1 := max{b0, b1} b3hb := hb

since for monotone functionals b, b0, b1, h we have

b ≤
∗ b∧1

i=0(y ≤
∗ bi → y ≤

∗ max{b0, b1})

∀z ≤
∗ b(y ≤

∗ hz → y ≤
∗ hb).


Notice that instantiating ∀x @ t A(x) with ∀̃x ≤

∗ t A(x) without the prior rela-
tivization described in Definition 3.9 would render it impossible to satisfy already
condition (B1) since open terms in general do not have a majorant—unless its free-
variables are assumed to be monotone.

The soundness theorem for the b.f.i. does not follow directly from Theorem 2.2
and Lemma 3.12, due to the initial relativization of quantifiers. A more elaborate
soundness proof, however, does go through as described in [7].

4 Parametrized Soundness Proof

This section describes how the standard soundness theorem (Theorem 2.2) for the
parametrized formula interpretation can also be parametrized, via a second parame-
ter abbreviation. This gives rise to a family of soundness theorems for a family of
formula interpretations. The second parameter ∃x ≺ t A(x) should again be viewed
as a formula abbreviation. For instance, we can choose ∃x ≺ t A(x) to mean A(t).
In fact, this instantiation will give us back Theorem 2.2 as a special case of our
parametrized soundness theorem. It will be clear, however, that ∃x ≺ t A(x) can also
be taken to be ∃x ≤

∗ t A(x), where ≤
∗ is Howard’s majorizability relation (see [9]).

This was first observed in [11] and gives rise to so-called monotone versions of the
Dialectica interpretation and modified realizability. According to the framework set
up in Section 2, these monotone variants are a combination of the standard formula
interpretations with a monotone soundness proof.
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As conditions on the abbreviation ∃x ≺ t A(x) we will consider bounded versions
of (B1, B2, B3). For all @-bounded formulas Ab, with free-variables a, there are
sequences of closed terms b∗

1, b∗
2, b∗

3 such that
(B∗

1) `Tω ∃ν ≺b∗
1 ∀a, x(∀ y @νax Ab( y) → Ab(x))

(B∗

2) `Tω ∃χ ≺b∗
2 ∀a, y0, y1(∀ y @χa y0 y1 Ab( y)→∀ y @ yi Ab( y)), for i ∈{0, 1}

(B∗

3) `Tω ∃ξ ≺b∗
3 ∀a, h, b(∀ y @ ξahb Ab( y) → ∀z @ b∀ y @ hz Ab( y));

that is, we do not require the sequences of terms b1, b2, and b3 to be part of the
language, but only bounding terms b∗

1, b∗
2 , and b∗

3 for those, according to the choice
of the abbreviation ∃x ≺ t A(x).

Moreover, in order to ensure that ∃x ≺ t A(x) behaves as an existential quantifier
we add the following two conditions. First, for all @-bounded formulas Ab(a, x),
contexts 0 (consisting also of @-bounded formulas), and sequence of closed terms
s,
(E1) if ∀a0(a, x) `Tω ∀a Ab(a, x) then ∃x ≺ s ∀a0(a, x) `Tω ∃x ≺ s ∀a Ab(a, x).

Second, for each @-bounded formula Ab, sequence of closed terms s, and sequence
of terms t[x] (all free-variables of t contained in x), there exists a sequence of closed
terms t∗ such that
(E2) if `Tω ∃x ≺ s ∀a Ab(t[x], a) then `Tω ∃ y ≺ t∗ ∀a Ab( y, a).

We call t∗ ≺-majorizing terms for t . In particular, when the tuple x is empty we
have that `Tω ∀a Ab(t, a) implies `Tω ∃ y ≺ t∗ ∀a Ab( y, a).

We show that condition (B∗

1, B∗

2, B∗

3) together with (E1, E2) are sufficient for
proving the following parametrized version of the standard soundness theorem (The-
orem 2.2).

Theorem 4.1 (Parametrized soundness) Let the abbreviations ∀x @ t A(x) and
∃x ≺ t A(x) be fixed, and Tω be as in Section 1.3 with conditions (B1, B2, B3)
replaced by (B∗

1, B∗

2, B∗

3). Moreover, assume that conditions (E1, E2) hold. If 0 ` A
then there are sequences of closed terms t, r ∈ L(Tω) such that

`Tω ∃ f , g ≺ t, r ∀a, v, y |0 → A|
f a,ga
v, y

where FV(0) ∪ FV(A) ≡ {a}.

Proof Assuming conditions (E1) and (E2), the proof is a straightforward general-
ization of the proof of Theorem 2.2. We must simply be careful to show that in the
treatment of the identity axiom, the rule of contraction, and the cut rule we only use
the weaker conditions (B∗

1, B∗

2, B∗

3).
Consider a fixed instance A ` A of the identity axiom. By (B∗

1) we have a Tω-
derivation of

` ∃ν ≺b∗
1 ∀a, x, y(∀ y′ @νax y |A|

x
y′ → |A|

x
y)

which is equivalent to

` ∃ν ≺b∗
1 ∀a, x, y|A → A|

ta,νa
x, y

for t := λaλx.x. By condition (E2) we then get

` ∃ν, f ≺b∗
1, t∗ ∀a, x, y|A → A|

f a,νa
x, y .
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The contraction rule is treated as follows. Without loss of generality we can assume
that the context 0 consists of only two copies of A. Assume also, by induction
hypothesis, that we have closed terms r0, r1, t and a derivation of

∃g0, g1, f ≺ r0, r1, t ∀a, x0, x1, w|A ∧ A → B|
f a,g0a,g1a
x0,x1,w .

By condition (A2), we have (taking x0 = x1 = x)

∃g0, g1, f ≺ r0, r1, t ∀a, x, w(∀ y@ g̃0axw |A|
x
y ∧ ∀ y@ g̃0axw |A|

x
y → |B|

f̃ ax
w )︸ ︷︷ ︸

(i)

.

where g̃0axw :≡ g0axxw (similarly with g̃1 and f̃ ). Consider the following in-
stance of (B∗

2)

∃χ ≺b∗
2 ∀a, x, w(∀ y@χ(a, g̃0axw, g̃1axw) |A|

x
y → ∀ y@ g̃ j axw |A|

x
y).︸ ︷︷ ︸

(ii)

for j ∈ {0, 1}. It is easy to check that (i) and (ii) imply

∀a, x, w(∀ y@χ(a, g̃0axw, g̃1axw) |A|
x
y → |B|

f̃ ax
w ) (≡ ∀a, x, w|A → B|

f̃ a,χ̃a
x,w )

where χ̃axw := χ(a, g̃0axw, g̃1axw). Therefore, by condition (E1), we have

∃χ , g0, g1, f ≺b∗
2, r0, r1, t ∀a, x, w|A → B|

f̃ a,χ̃a
x,w .

Finally, by condition (E2) (with q[χ , g0, g1] ≡ λa, x, w.χ(a, g0axxw, g1axxw)
and s[ f ] ≡ λa, x. f axx) this gives

∃h, f ≺ q∗, s∗
∀a, x, w|A → B|

f a,ha
x,w .

For the cut rule assume we have derivations for (assume w.l.o.g. that 0 and 1 are
single formulas)

∃g0, h0 ≺ q0, t0 ∀a, v0, y(∀u0 @ g0av0 y |0|
v0
u0

→ |A|
h0av0
y )︸ ︷︷ ︸

(i)

and (making use of condition (A2))

∃g1, h1, f ≺q1, t1, s ∀a, v1, x, w(∀u1 @ g1av1xw |1|
v1
u1 ∧ ∀ y@h1av1xw |A|

x
y → |B|

f av1 x
w )︸ ︷︷ ︸

(ii)

corresponding to the assumptions of the cut rule. Consider also the following in-
stance of (B∗

3)

∃ξ ≺b∗
3 ∀b(∀u0 @ξ(g0av0, h1av1xw) |0|

v0
u0 → ∀ y@h1av1xw ∀u0 @ g0av0 y |0|

v0
u0 )︸ ︷︷ ︸

(iii)

where b ≡ g0, h1, a, v0, v1, x, w. By condition (A1) we can derive from (i), (ii),
(iii),

∀a, v0, v1, w|0 ∧ 1 → B|
f̃ a,ξ̃a, g̃1a
v0,v1,w

where above we are using the abbreviations

ξ̃av0v1w :≡ ξ(g0av0, h1av1(h0av0)w)

g̃1av0v1w :≡ g1av1(h0av0)w

f̃ av0v1 :≡ f av1(h0av0).
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By (E1) this gives

∃ξ , g0, g1, h0, h1, f ≺b∗
3, q0, q1, t0, t1, s ∀a, v0, v1, w|0 ∧ 1 → B|

f̃ a,ξ̃a, g̃1a
v0,v1,w .

Finally, by (E2), we get

∃ f , g, h ≺ s∗, q∗, t∗ ∀a, v0, v1, w|0 ∧ 1 → B|
f a,ga,ha
v0,v1,w

for appropriate terms s, q, t . The treatment of the logical rules, quantifiers, and
other structural rules follows easily from the corresponding instances in the proof of
Theorem 2.2 using (E1) and (E2). �

5 Final Remarks

Table 3 summarizes how different instantiations of ∀x @ t A(x) and ∃x ≺ t A(x) give
rise to different functional interpretations. The parametrized functional interpretation
allows one to localize the differences between the various interpretations and to un-
derstand their properties. For instance, neither the Diller-Nahm interpretation nor
the bounded functional interpretation require decidability of atomic formulas, but in
interestingly different ways. In the case of the Diller-Nahm interpretation decidabil-
ity is not necessary because potential witnesses are collected into finite sets, whereas
in the bounded functional interpretation potential witnesses are collected into sets of
functionals with a common majorant.

∀x @ t A(x) ∃x ≺ t A(x) Functional interpretations
A(t) A(t) Dialectica interpretation (1958)

∀x A(x) A(t) Modified realizability (1962)
∀x ∈ t A(x) A(t) Diller-Nahm interpretation (1962)

∀x ∈rng(t)∀x A(x) A(t) Stein’s family of interpretations (1979)
A(t) ∃x ≤

∗ t A(x) Monotone Dialectica interpretation (1996)
∀x A(x) ∃x ≤

∗ t A(x) Monotone modified realizability (1998)
∀̃x ≤

∗ t A(x) A(t) Bounded functional interpretation (2005)

Table 3 Instantiations of the parametrized functional interpretation

One should also notice that the parametrized functional interpretation can be ap-
plied directly to analyze proofs, leaving the instantiation to a later stage, after the
(parametrized) witnessing term and (parametrized) verifying proof have been ob-
tained. This can be achieved by adding to the language new bounded formulas
∀x @ t A(x) and ∃x ≺ t A(x), families of constants b∗

1, b∗
2, b∗

3 , and axiom schemata
corresponding to the relevant conditions. Starting with a proof of A what one then
obtains is a (partially specified) proof of ∃ f ≺ t ∀a, y|A|

f a
y , for some sequence of

(partially specified) closed terms t . These extracted terms t will potentially contain
the new constants added, and the verifying proof will potentially make use of the new
bounded formulas and their associated conditions. Extracting the abstract witnessing
term t allows for a comparison between the terms extracted via different functional
interpretations; namely, we know that terms extracted via different interpretations
will have the same structure and will only differ on the choices of b∗

1, b∗
2 , and b∗

3 .
This will be clear-cut when analyzing proofs of theorems whose interpretations do
not contain the abbreviation ∀x @ t A(x), for example, implication-free theorems or
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theorems in prenex normal form. For such formulas A the interpretation |A|
x
y will

be syntactically the same, regardless of the choice for the abbreviation ∀x @ t A(x),
although the extracted term t and the proof of ∃ f ≺ t ∀a, y|A|

x
y will be possibly

different.
The common framework presented above can also be used in the study and devel-

opment of new functional interpretations. For instance, one might consider instanti-
ating the second parameter abbreviation with ∃x A(x), which simply says that only
the existence of witnesses is looked for. Such interpretation will obviously give less
information when proofs are analyzed. However, it will also require much less from
the axioms and principles, as those need no longer have a witnessing term, but only
the existence of those needs to be assumed. In particular, arbitrary purely existential
axioms can be added to the interpreted theory, as long as those are also present in the
verifying theory.

It is worth noting the clear connection between conditions (B1) and (B3) and the
categorical conditions of identity and composition, as investigated in [10]. The focus
of this paper, however, has been on a purely syntactic comparison of the different
functional interpretations. I believe that such common syntactic framework can pave
the way to a better semantical understanding of functional interpretations, along the
lines of [10].

Note

1. Notice that, since the defining axioms for the relations {≤
∗
ρ}ρ∈T are not purely

universal and its interpretation cannot be witnessed by a term in the language
of ILω, in [7], the relation is axiomatized via a rule replacing the usual axiom
∀v∀u ≤

∗ v(su ≤
∗ tv ∧ tu ≤

∗ tv) → s ≤
∗ t . This entails the failure of the

deduction theorem.
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