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An Uncountably Categorical Theory Whose Only
Computably Presentable Model Is Saturated

Denis R. Hirschfeldt, Bakhadyr Khoussainov,
and Pavel Semukhin

Abstract We build an ℵ1-categorical but not ℵ0-categorical theory whose only
computably presentable model is the saturated one. As a tool, we introduce a
notion related to limitwise monotonic functions.

1 Introduction

An important theme in computable model theory is the study of computable models
of complete first-order theories. More precisely, given a complete first-order theory
T , one would like to know which models of T have computable copies and which
do not. A special case of interest is when T is an ℵ1-categorical theory. In this paper
we are interested in computable models of ℵ1-categorical theories, and we always
assume that these theories are not ℵ0-categorical. In addition, since we are interested
in computable models, all the structures in this paper are countable.

We assume that all languages we consider are computable. A complete theory
T in a language L is ℵ1-categorical if any two models of T of power ℵ1 are iso-
morphic. We say that a model A of T is computable if its domain and its atomic
diagram are computable. A model A is computably presentable if it is isomorphic
to a computable model, which is called a computable presentation of A. The reader
is referred to [2] for the basics of computable model theory and to Soare [12] for the
basics of computability theory.

In [1], Baldwin and Lachlan developed the theory of ℵ1-categoricity in terms of
strongly minimal sets. They showed that the countable models of an ℵ1-categorical
theory T can be listed in an ω + 1 chain

A0 4 A1 4 · · · 4 Aω,
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where the embeddings are elementary, A0 is the prime model of T , and Aω is the
saturated model of T . Based on the theory developed by Baldwin and Lachlan, Har-
rington [4] and Khisamiev [5] proved that if an ℵ1-categorical theory T is decidable
then all the countable models of T have computable presentations. Thus, for de-
cidable ℵ1-categorical theories the question of which models of T have computable
presentations is fully settled. However, the situation is far from clear when the theory
T is not decidable. The following definition is given in [9].

Definition 1.1 Let T be an ℵ1-categorical theory and let A0 4 A1 4 · · · 4 Aω

be the countable models of T . The spectrum of computable models of T is the set
{i : Ai has a computable presentation}. If X ⊆ ω + 1 is the spectrum of computable
models of some ℵ1-categorical theory, then we say that X is realized as a spectrum.

There has been some previous work on the possible spectra of computable models of
(undecidable) ℵ1-categorical theories. For example, Nies [11] gave an upper bound
of 60

3(∅ω) for the complexity of the sets realized as spectra. Interestingly, the fol-
lowing are the only subsets of ω + 1 known to be realizable as spectra: the empty
set, ω + 1 itself ([4], [5]), the initial segments {0, . . . , n}, where n ∈ ω ([3], [10]),
the sets (ω + 1) \ {0} and ω ([9]), and the intervals {1, . . . , n}, where n ∈ ω ([11]).
Our main result adds {ω} to this list by showing that there exists an ℵ1-categorical
theory whose only computably presentable model is the saturated one.

This paper is organized as follows. Section 2 contains the proof of a computability-
theoretic result that will be used in constructing the desired theory. In Section 3 we
introduce the basic building blocks of the models of this theory, which are called
cubes. Finally, Section 4 contains the proof our main result.

2 A Computability-Theoretic Result

Limitwise monotonic functions were introduced by Khisamiev ([6], [7], [8]) and
have found a number of applications in computable model theory. In particular,
Khoussainov, Nies, and Shore [9] used them to show that (ω + 1) \ {0} is realized as
a spectrum. We now introduce a related notion.

Let [ω]
<ω denote the collection of all finite sets of natural numbers, and let ∞

be a special symbol. We define the class of S-limitwise monotonic functions from
ω to [ω]

<ω
∪ {∞}, where S is an infinite set. This class captures the idea of a

family A0, A1, . . . of uniformly c.e. sets, each of which is either finite or equal to S
(represented by the symbol ∞), such that we can enumerate the set of i for which
Ai = S.

Definition 2.1 Let S be an infinite set of natural numbers. An S-limitwise mono-
tonic function is a function f : ω → [ω]

<ω
∪ {∞} for which there is a computable

function g : ω × ω → [ω]
<ω

∪ {∞} such that
1. f (n) = lims g(n, s) for all n, and
2. for all n, s ∈ ω, the following properties hold:

(a) if g(n, s + 1) 6= ∞ then g(n, s) ⊆ g(n, s + 1),
(b) if g(n, s) = ∞ then g(n, s + 1) = ∞, and
(c) if g(n, s) 6= ∞ and g(n, s + 1) = ∞ then g(n, s) ⊂ S.

We refer to g as a witness to f being S-limitwise monotonic.

Note that if f is an S-limitwise monotonic function then its witness g can be chosen
to be primitive recursive.
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Definition 2.2 A collection of finite sets is S-monotonically approximable if it is
equal to { f (n) : f (n) 6= ∞} for some S-limitwise monotonic function f .

The main result of this section is the following computability-theoretic proposi-
tion, which shows that there is an infinite set S and a family of sets that is not S-
monotonically approximable and has certain properties that will allow us to code it
into a model of an ℵ1-categorical structure.

Proposition 2.3 There exists an infinite c.e. set S and uniformly c.e. sets A0, A1, . . .
with the following properties:

1. each Ai is either finite or equal to S,
2. if x ∈ S then x ∈ Ai for almost all i ,
3. if x /∈ S then x ∈ Ai for only finitely many i ,
4. if Ai is finite then there is a k ∈ Ai such that k /∈ A j for all j 6= i , and
5. {Ai : |Ai | < ω} is not S-monotonically approximable.

Proof Let g0, g1, . . . be an effective enumeration of all primitive recursive functions
from ω × ω to ω<ω

∪ {∞} such that for all n, s ∈ ω, if ge(n, s + 1) 6= ∞ then
g(n, s) ⊆ g(n, s + 1), and if g(n, s) = ∞ then g(n, s + 1) = ∞.

We want to build S and A0, A1, . . . to satisfy (1) – (4) and the requirements Re
stating that if ge is a witness to some function f being S-limitwise monotonic, then
{Ai : |Ai | < ω} is not S-monotonically approximable via f .

For each e, we define a procedure for enumerating Ae. We think of the procedures
as alternating their steps, with the eth procedure taking place at stages of the form
〈e, k〉, which we call e-stages. All procedures may enumerate elements into S. The
eth procedure is designed to satisfy Re by ensuring that if ge is a witness to some
function f being S-limitwise monotonic and every f (n) 6= ∞ is equal to some Ai ,
then Ae is finite and not equal to f (n) for any n. The eth procedure works as follows.

Let Ae[s] and S[s] denote the set of all numbers enumerated into Ae and S, re-
spectively, by the end of stage s. The main idea is to find an appropriate number
ne such that if lims ge(n, s) = Ae for some n then n = ne, and let Ae[s] al-
ways contain an element not in ge(ne, s), thus ensuring that either Ae is finite but
lims ge(ne, s) 6= Ae or ge(ne, s) is eternally playing catch-up, and hence does not
come to a limit.

At the first e-stage s, put 〈e, 0〉, 〈e, 1〉, and all elements of S[s] into Ae. Let
me,s = 1 and let ne be undefined. (For each e-stage t , we will let me,t be the largest
m such that 〈e, m〉 ∈ Ae[t].)

At any other e-stage s, proceed as follows. Let t be the previous e-stage. If ne is
undefined and there is an n 6 s such that ge(n, s) = Ae[t], then let ne = n. If ne
is now defined and ge(ne, s) = Ae[t] then put

〈
e, me,t − 1

〉
into S, put

〈
e, me,t + 1

〉
and all elements of S[s] into Ae, and let me,s = me,t + 1. Otherwise, let me,s = me,t
and do nothing else.

This finishes the description of the eth procedure. Running all procedures con-
currently, as described above, we build a uniformly c.e. collection of sets A0, A1, . . .
and a c.e. set S. Now our goal is to show that these sets satisfy the properties in the
statement of the proposition.

Since at every stage s at which we put numbers into Ae, we put S[s] into Ae and
the second largest element of Ae[s − 1] into S, every infinite Ae is equal to S. This
shows that the first property in the proposition holds.
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Since for each e we put S[s] into Ae, where s is the first e-stage, every element
of S is in cofinitely many Ae. This shows that the second property in the proposition
holds.

Since the only way a number of the form 〈e, k〉 can enter Ai for i 6= e is if it first
enters S, every number that is in infinitely many Ai must be in S. This shows that
the third property in the proposition holds.

If Ae is finite, then m = lims me,s exists, and 〈e, m〉 is in Ae but not in A j for
j 6= e. This shows that the fourth property in the proposition holds.

We now show that the last property in the proposition holds. Assume for a contra-
diction that {Ai : |Ai | < ω} = { f (n) : f (n) 6= ∞} for some S-limitwise monotonic
function f witnessed by ge. Then ne must eventually be defined, since otherwise Ae
is finite but not in the range of f .

First suppose that f (ne) 6= ∞. At the e-stage s0 at which ne is defined, ge(ne, s0)
contains 〈e, 0〉 and 〈e, 1〉. If there is no e-stage s1 > s0 at which ge(ne, s1) = Ae[s0],
then f (ne) cannot equal any of the Ai , since Ae is then the only one of our sets
that contains 〈e, 1〉, and 〈e, 1〉 ∈ ge(ne, s0). So there must be such an e-stage s1.
Note that ge(ne, s1) contains 〈e, 2〉. By the same argument, there must be an e-stage
s2 > s1 such that ge(ne, s2) = Ae[s1], and this set contains 〈e, 3〉. Proceeding in this
way, we see that ge(ne, s) never reaches a limit.

Now suppose that f (ne) = ∞. Let s0 be the least s such that ge(ne, s) = ∞, and
let t be the largest e-stage less than s0. It is easy to check that

〈
e, me,t − 1

〉
∈ g(ne, t)

but
〈
e, me,t − 1

〉
/∈ S[t]. We never put

〈
e, me,t − 1

〉
into S after stage t , so in fact〈

e, me,t − 1
〉

/∈ S. Since ge(ne, t) ⊆ ge(ne, s0 − 1), we have ge(ne, s0 − 1) 6⊂ S,
contradicting the choice of ge. �

3 Cubes

In this section we introduce a special family of structures which we call cubes. These
will be used in the next section to build an ℵ1-categorical theory. They generalize
the n-cubes and ω-cubes used in [9].

We work in the language L = {Pi : i ∈ ω}, where each Pi is a binary predicate
symbol. We will define structures for sublanguages L′ of L. Any such structure
can be thought of as an L-structure by interpreting the Pi not contained in L′ by the
empty set. We denote the domain of a structure denoted by a calligraphic letter such
as A by the corresponding roman letter A.

We begin with the following inductive definition of the finite cubes.

Definition 3.1 Base case. For n ∈ ω, an (n)-cube is a structure A = ({a, b}; PA
n ),

where PA
n (x, y) holds if and only if x 6= y.

Inductive Step. Now suppose we have defined σ -cubes for a nonrepeating sequence
σ = (n1, . . . , nk), and let nk+1 /∈ σ . An (n1, . . . , nk, nk+1)-cube is a structure C
defined in the following way. Take two σ -cubes A and B such that A ∩ B = ∅ and
let f : A → B be an isomorphism. Let C be the structure

(A ∪ B; PA
n1

∪ PB
n1

, . . . , PA
nk

∪ PB
nk

, PC
nk+1

),

where PC
nk+1

(x, y) holds if and only if f (x) = y or f −1(x) = y.
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Example 3.2 Let σ be a finite nonrepeating sequence. Consider A = Z
|σ |

2 as a
vector space over Z2, with basis b1, . . . , b|σ |. If we define the structure A with
domain A by letting PA

σ(i)(x, y) if and only if x + bi = y, then A is a σ -cube.

The following property of finite cubes, which is easily checked by induction, shows
that we could have taken Example 3.2 as the definition of a σ -cube.

Lemma 3.3 Let σ be a finite nonrepeating sequence. Any two σ -cubes are isomor-
phic.

Furthermore, we have the following stronger property.

Lemma 3.4 If σ is a finite nonrepeating sequence and τ is a permutation of σ , then
every τ -cube is isomorphic to every σ -cube.

Proof Let A and B be a σ -cube and a τ -cube, respectively. By Lemma 3.3, we can
assume that A and B are constructed as in Example 3.2. Since τ is a permutation
of σ , there is a bijection f such that σ(i) = τ( f (i)). Let ϕ be the vector space
isomorphism induced by taking bi to b f (i). We then have

PA
σ(i)(x, y) iff x + bi = y iff ϕ(x) + ϕ(bi ) = ϕ(y)

iff ϕ(x) + b f (i) = ϕ(y) iff PB
τ( f (i))(ϕ(x), ϕ(y)) iff PB

σ(i)(ϕ(x), ϕ(y)).

Thus ϕ is an isomorphism from A to B. �

So instead of “σ -cube”, where σ = (n1, . . . , nk), we will write “A-cube”, where
A = {n1, . . . , nk}. (This notation matches that of [9], if we make the usual set-
theoretic identification of n with {0, . . . , n − 1}.)

We now define infinite cubes.

Definition 3.5 Let α = (n0, n1, . . .) be an infinite nonrepeating sequence of nat-
ural numbers. An α-cube is a structure of the form

⋃
i∈ω Ai , where each Ai is an

{n0, . . . , ni }-cube, and Ai ⊂ Ai+1.

As with finite sequences, the order of an infinite sequence α does not affect the
isomorphism type of α-cubes, so we can talk about S-cubes, where S is an infinite
set. To show that this is the case, we will use the following fact, which is easy to
check. Suppose that A ⊂ B ⊂ C are finite, Z is a C-cube, and X ⊂ Z is an A-cube.
Then there exists a B-cube Y such that X ⊂ Y ⊂ Z.

Lemma 3.6 If σ is an infinite nonrepeating sequence and τ is a permutation of σ ,
then every τ -cube is isomorphic to every σ -cube.

Proof Let σ = (m0, m1, . . .) be an infinite nonrepeating sequence, and let
τ = (n0, n1, . . .) be a permutation of σ . Let si = {m0, . . . , mi } and ti = {n0, . . . , ni }.

Let A be a σ -cube and let B be a τ -cube. Then A =
⋃

i∈ω Ai , where each Ai is
an si -cube, and Ai ⊂ Ai+1. Similarly, B =

⋃
i∈ω Bi , where each Bi is a ti -cube,

and Bi ⊂ Bi+1.
We build a sequence of finite partial isomorphisms ϕ0 ⊆ ϕ1 ⊆ · · · such that

Ai ⊆ dom ϕ2i+1 and Bi ⊆ rng ϕ2i+2. We begin with ϕ0 = ∅.
Given ϕ2i , let k > i be such that Ak ⊇ dom ϕ2i , and let l be such that Bl ⊇ rng ϕ2i

and sk ⊆ tl . Then there is an sk-cube C ⊆ Bl such that rng ϕ2i ⊆ C . Extend ϕ2i to
an isomorphism ϕ2i+1 : Ak → C.
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Given ϕ2i+1, proceed in an analogous fashion to define a finite partial isomor-
phism ϕ2i+2 including Bi in its range. Now ϕ =

⋃
i∈ω ϕi is an isomorphism from A

to B. �

4 The Main Theorem

In this section we prove the main result of this paper.

Theorem 4.1 There exists an ℵ1-categorical but not ℵ0-categorical theory whose
only computably presentable model is the saturated one.

Proof Let {Ai }i∈ω and S be as in Proposition 2.3. Fix an enumeration of {Ai }i∈ω

such that at each stage exactly one element is enumerated into some Ai . (For in-
stance, we can take the enumeration given in the proof of Proposition 2.3.) Construct
a computable model Mω =

⋃
n∈ω Mn

ω as follows. Begin with Mn
ω[0] = ∅ for all n.

At stage s + 1, if An[s + 1] 6= An[s] then extend Mn
ω[s] to an An[s + 1]-cube using

fresh large numbers.
It is clear that this procedure can be carried out effectively so that Mω is com-

putable. Furthermore, Mω is the disjoint union of one An-cube for each n ∈ ω. In
particular, every infinite cube in Mω is an S-cube.

Now let T = Th(Mω) be the first-order theory of Mω. We show that T is ℵ1-
categorical but not ℵ0-categorical, Mω is saturated, and the only computably pre-
sentable model of T (up to isomorphism) is Mω.

We begin by showing that T is ℵ1-categorical. Since T includes sentences saying
that for each n and x there is at most one y such that Pn(x, y), we are free to use
functional notation and write Pn(x) = y instead of Pn(x, y). For n ∈ S, let k(n) be
the number of elements x ∈ Mω for which PMω

n (x) is not defined. For n /∈ S, let
k(n) be the number of elements x ∈ Mω for which PMω

n (x) is defined. Note that
k(n) is finite for all n.

It is easy to see that Mω satisfies the following list of statements, which can be
written as an infinite set 6 ⊂ T of first-order sentences:

1. For each n, the relation Pn is a partial one-to-one function and Pn(x) = y
→ Pn(y) = x .

2. For all n 6= m and all x , we have Pn(x) 6= Pm(x) and Pn(x) 6= x .
3. For all n 6= m and all x , if Pn(x) and Pm Pn(x) are defined, then Pm(x) and

Pn Pm(x) are defined, and Pn Pm(x) = Pm Pn(x).
4. For all k, all n > n1 > n2 > · · · > nk , and all x , we have Pn1 , . . . , Pnk (x) 6=

Pn(x).
5. For each n ∈ S there are exactly k(n) many elements x for which Pn(x) is

not defined.
6. For each n /∈ S there are exactly k(n) many elements x for which Pn(x) is

defined.
7. Let Ai be finite, and let m ∈ Ai be such that m /∈ A j for all j 6= i . Then there

exists a finite Ai -cube Ci such that ∀x (Pm(x) is defined → x ∈ Ci ). (Note
that m /∈ S and Ci has k(m) many elements, so together with Statements 3
and 6, this statement implies that Ci is not contained in a larger cube.)

Remark 4.2 Note that Statements 1 and 3 imply the following statement: for all
n 6= m and all u, if Pn(u) and Pm(u) are defined then Pm Pn(u) and Pn Pm(u) are
defined and equal. To prove this let v = Pn(u), which, by Statement 1, implies that
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Pn(v) = u. Since Pm Pn(v) = Pm(u) is defined, applying Statement 3 with x = v,
we have that Pm(v) and Pn Pm(v) are defined, and Pn Pm(v) = Pm Pn(v). If we let
w = Pm(v) then Pm Pn(u) = w. Since Pn(w) = Pn Pm(v) = Pm Pn(v) = Pm(u),
Statement 1 implies that Pn Pm(u) = Pn Pn(w) = w. Thus Pm Pn(u) = Pn Pm(u).

Now suppose that M is a model of 6. Let A ⊆ ω and x ∈ M . Using the statements
above, it is easy to check that ∀n ∈ A (PM

n (x) is defined) if and only if x belongs to
an A-cube. It is also clear that if C1 and C2 are A-cubes in M and C1 ∩ C2 6= ∅,
then C1 = C2.

It now follows that M is the disjoint union of components M0 and M1, where M0
is the disjoint union of exactly one Ai -cube for each finite Ai . Let x ∈ M1. If n ∈ S
then there are k(n) elements in M0 on which PM

n is not defined. Statement 5 says
that there are exactly k(n) such elements in M . Hence PM

n (x) is defined. Similarly,
Statement 6 implies that if n /∈ S then PM

n (x) is not defined. Therefore, x belongs
to an S-cube. Thus, M1 is a disjoint union of S-cubes.

Let C be the class of all structures that are the disjoint union of exactly one Ai -
cube for each finite Ai and some finite or infinite number of S-cubes. Clearly, any
structure in C is a model of 6, and we have shown that any model of 6 is in C. Let
M be a model of 6. Each of the S-cubes in M is countable, so if |M | = ℵ1, then
there must be ℵ1 many such S-cubes. Therefore, any two models of 6 of size ℵ1
are isomorphic, and hence 6 is uncountably categorical. It now follows by the Łoś-
Vaught Test that any model of 6 is a model of T . Thus T is uncountably categorical
and, since C contains infinitely many nonisomorphic countable structures, T is not
countably categorical.

Lemma 4.3 Let M be a computable model of T . Then M contains infinitely many
S-cubes.

Proof Assume for a contradiction that M contains a finite number r of S-cubes
(which may be 0). We can assume without loss of generality that the domain of M is
ω. Let Ms be the structure obtained by restricting the domain of M to {0, . . . , s} and
the language to P0, . . . , Ps . Choose one element from each S-cube, say c1, . . . , cr .
Define a computable function g : ω × ω → [ω]

<ω
∪ {∞} as follows.

If x > s then g(x, s) = ∅. If x is connected to some ci in Ms then g(x, s) = ∞.
Otherwise, g(x, s) is the set of all k 6 s for which there is a y 6 s such that
PM

k (x, y).
Clearly, g(x, s) is computable. Also, if x belongs to some Ai -cube in M

then g(x, s) ⊆ Ai , and if g(x, s) = ∞ then x must belong to an S-cube. It
is now easy to check that f (x) = lims g(x, s) is S-limitwise monotonic and
{ f (x) : f (x) 6= ∞} = {Ai : |Ai | < ω}. But this contradicts the fact that
{Ai : |Ai | < ω} is not S-monotonically approximable. �

Since Mω is computable, it contains infinitely many S-cubes, and therefore is satu-
rated. Other countable models of T have only finitely many S-cubes, and hence do
not have computable presentations. �
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