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On Lovely Pairs and the (3y € P) Quantifier
Anand Pillay and Evgueni Vassiliev

Abstract  Given a lovely pair P < M of models of a simple theory T, we
study the structure whose universe is P and whose relations are the traces on P
of definable (in £ with parameters from M) sets in M. We give a necessary and
sufficient condition on 7' (which we call weak lowness) for this structure to have
quantifier-elimination. We give an example of a non-weakly-low simple theory.

1 Introduction

In [1] Baisalov and Poizat introduce and discuss the notion of the elimination of the
dy € P quantifier in elementary pairs P < M of models of a complete first-order
theory T. If T is stable, then (by definability of types) all pairs eliminate 3y € P.
They prove that the same is true if 7' is o-minimal and M is saturated over P. They
also state that “belle paires” of the theory of the random graph do not eliminate
dy € P. However, for T a simple theory, it is natural to consider lovely pairs rather
than belles paires. In this paper we investigate whether lovely pairs of a simple theory
eliminate 3y € P. In the process we come up with another combinatorial property
of forking, which we call “weak-lowness”.

Let us now give some more precise definitions. 7" will denote a complete first-
order theory in a language £. For a subset B of a model of 7', L£L(B) denotes £
together with constants for elements of B.

By a pair of models of T we will mean an elementary pair P < M of models.
We can view it as a structure (M, P) in the language £ p obtained by adding a new
unary predicate symbol P to the language £ of T. To specify the smaller model in
the pair (M, P), we will often use notation P (M) (rather than P). If A C M, P(A)
denotes A N P(M), the P-part of A. When we write (M, P) C (N, P), we mean
M C NandMNP(N)=P(M).
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Definition 1.1

(i) The pair P < M of models of T is said to eliminate the 3y € P quantifier,
if for every L-formula ¢ (x, y, z) and a in M there is an J£-formula v (x, w)
and b in M such that forall c € P, M = y(c, b) if and only if thereisd € P
such that M = ¢(c, d, a).

(i) We say that the 3y € P quantifier is uniformly eliminable for P < M if in
(i) above, ¥ (x, w) can be chosen to depend only on ¢ (x, y, z) (not a).

Remark 1.2 Let P < M be a pair of models of 7. For each .L-formula ¢ (x, y)
anda € M, let R, 4(x) be a new predicate symbol. Let .£* be the resulting language
(which depends of course on M). Let P* denote the structure in the language L£*,
with universe P, where each predicate R, ,(x) is interpreted by ¢ (P, a). In other
words, P* is the structure induced on P by L-formulas with parameters in M. Let
T* = Th(P*). Then P < M eliminates the 3y € P quantifier if and only if 7* has
quantifier-elimination in the language L£*.

We will assume knowledge of the basics of stability/simplicity theory, for which the
reader is referred to Wagner [4]. We first recall the notions of lowness and lovely
pairs which will play a role in this paper. The “low” property was introduced by
Buechler and Shami. Lovely pairs appear in Ben-Yaacov et al. [2].

Suppose now T to be a simple theory and work in a saturated model M. We say
that T is low if for any £-formula ¢ (x, y) and possibly infinite tuple z of variables,
the condition (on (y, z)) that ¢(x, y) forks over z is type-definable. Equivalently
for any formula ¢(x, y) there is k < ® such that for any indiscernible sequence
(bi :i <w), {p(x,b;) : i < w}isinconsistent if and only if it is k-inconsistent.

A (x-)lovely pair of models of T is a pair P < M of models of T such that for
any A C M of cardinality < |£| (< x) and complete L-type p(x) over A,

(i) some nonforking extension of p(x) over A U P is realized in M, and
(ii) if, moreover, p(x) does not fork over P(A) then p(x) is realized in P.

If T is stable, lovely pairs coincide with Poizat’s belles paires.

Definition 1.3 T is said to be weakly low if for any complete finitary type tp(a/B),
and any £(B)-formula ¢ (x, y, z) there is some £ (aB)-formula w (y) such that for
b independent from a over B, = w(b) holds if and only if ¢(a, b, z) does not fork
over Bb.

Note that any low theory is weakly low.

Remark 1.4  The following are equivalent:

(i) T is weakly low;

(i) for all a, B and L-formula ¢ (x, y, 7) there is k < w such that, whenever « is
independent from b over B, and (¢; : i < w) is a Morley sequence over Bb in
tp(a/Bb) such that {p(a;, b, z) : i < w}is k-consistent, {p(a;, b,7) : i < w}
is consistent;

(iii) for any a, B, L-formula ¢(x,y,z) and Morley sequence (a; : i < )
in tp(a/B), there is k <  such that whenever a is independent from b
over B, and (¢; : i < ) is also a Morley sequence in tp(a/Bb) and
{p(ai, b, z) : i < w}is k-consistent, then it is consistent.
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Proof

(i) implies (i1): Given a, B and L-formula ¢(x, y, z) let w(y) be the £L(aB) for-
mula given by weak lowness. Now the condition “y is independent from a over B and
(x; i < w) is a Morley sequence in tp(a/By)” is given by a partial type X (y, x;);
over aB. By Kim’s lemma (that a formula y (z, ¢) does not fork over B if and only
if for some (any) Morley sequence (¢; : i < w) in tp(c/B), {y(x,¢;i) : i < w}is
consistent), we have the implication

2y, xi)i E“{oxi,y,z) i < w}isconsistent” < ().
By compactness we find the required k.
(ii) implies (iii) is immediate.

(iii) implies (i): Assume (iii). To prove weak lowness of 7, we may assume
in Definition 1.3 that ¢(x, y, z) is an J£-formula (as we can incorporate any pa-
rameters from B in b). Fix a Morley sequence (q; : i < w) in tp(a/B). Let
r(x))i<w = tp((ai)i<w/B). Let k be as given by (iii) (for the given choice of
@). Note that for any b which is independent from a over B there is a realization
(a] :i < w)of r such that (] : i < ) is a Morley sequence in 7p(a/Bb). By virtue
of Kim’s lemma again, we have that for any » which is independent from a over B,
the following are equivalent:

(a) ¢(a, b, z) does not fork over Bb;

(b) there is a realization (a : i < w) of r which is a Morley sequence in
tp(a/Bb) and such that {p(a;, b, z) : i < w} is consistent;

() itis not the case that there is a realization (a; : i < ) of r which is a Morley
sequence in tp(a/Bb) such that {¢(a;, b, z) : i < k} is consistent.

As the relevant expressions are type-definable over a B, it follows by compactness
that there is an J£(aB) formula y(y) such that for b independent of a over B,
o(a, b, 7) does not fork over bB if and only if &= y (). O

In Section 2 we will show that (for T simple) T is weakly low if and only if some
(any) lovely pair P < M eliminates the 3y € P quantifier. (This will be more or
less tautological.) We will show that in this case any theory T* (as described in
Remark 1.2) is simple. Namely, the P-part of a lovely pair P < M, when equipped
with traces of definable sets in M, has a simple theory. We also show that when T is
low then lovely pairs uniformly eliminate the 3y € P quantifier.

In Section 3 we recall an example due to Casanovas of a simple nonlow theory
and point out that this example is weakly low.

In Section 4, we give an example of a non-weakly-low simple theory. The exam-
ple will be a parametrized version of Casanovas’s example.

2 Quantifier Elimination, Weak Lowness, and Simplicity

We continue with the conventions and notation of Section I. So T is a complete
simple theory in language .£. Let P < M be a lovely pair of models of 7', and let
L*, P*, and T* be as in Remark 1.2.

Proposition 2.1 T is weakly low if and only if T* has quantifier-elimination.
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Proof First assume 7' to be weakly low. Let ¢(x, y,z) be an L-formula, and
a € M. We want to find an L(M)-formula y(y) such that for b € P, = w(b)
if and only if there is ¢ € P such that = ¢(a, b, c).

Let B C P be of cardinality < |£| such that zp(a/P) does not fork over B. Let
v (y) be the £L£(aB)-formula given (for tp(a/B) and ¢(x, y, z)) by weak lowness
of T. Suppose b € P. Then a is independent from b over B. Moreover, by the
second clause in the definition of lovely pairs (the “coheir property”) ¢ (a, b, z) does
not fork over Bb if and only if ¢ (a, b, 7) is realized in P. Hence |= y (b) if and only
if p(a, b, 7) is realized in P.

Conversely, suppose that 7* has quantifier-elimination. Let ¢ (x, y,z) € &£ and
let a, B be from some big model M of T. Clearly we may assume B to be of
cardinality < |£|. As P < M is a lovely pair we may also assume that B C P and a
is independent from P over B. Let y(y) be the L£(M)-formula which is equivalent,
on P,todz € P(p(a, y, z)). Write w(y) as y'(d, y) for v/ (w, y) an L-formula and
deM.

Claim 2.2 For b independent from ad over B, ¢(a, b, z) does not fork over Bb if
and only if = v’ (d, b).

Proof of Claim If b (in M) is independent from ad over B, then as P < M is a
lovely pair we may realize tp(b/ad B) in P and so may assume b € P. But then we
have, by loveliness of P < M, that ¢(a, b, z) does not fork over Bb if and only if it
is realized in P. By choice of y'(d, y), we get the claim. U

The only problem with deducing weak lowness of T is the additional parameter d in
Claim 2.2. But this is easily dealt with. As the condition “¢p(a, y, z) does not fork
over By” is type-definable over a B (for y independent of a over B) we only have to
show that for y independent of a over B, the condition “p(a, y, z) forks over yB” is
type-definable over a B. If not, there is some index set / and for each i € I some b;
which is independent from a over B such that ¢(a, b;, z) forks over Bb;, but there
is b’ realizing some ultraproduct of (tp(b; /aB)); such that ¢(a, b’, z) does not fork
over a B. Without loss of generality b; is independent from ad over B and b’ realizes
the corresponding ultraproduct of (tp(b; /ad B));. So b’ is also independent from ad
over B. But, by Claim 2.2, —y’(d, b;) for all i; hence —y’(d, b'); hence again by
the claim, ¢ (a, b’, 7) forks over b’ B, a contradiction. O

Proposition 2.3 If T is low, then T* has uniform QE.

Proof Let T be low, P < M be a lovely pair of models of 7, and let T* be
the corresponding L*-theory. Since T is low, then, as shown in [2], a saturated
(£ p-)elementary extension (N, P) of (M, P) has the “coheir property” (the second
clause in the definition of a lovely pair). Note that from the proof of Proposition 2.1
it follows that for a weakly low T and any pair of models of T satisfying the coheir
property (not necessarily lovely), the corresponding theory 7* has QE. Thus P(N)
with the structure induced by N has QE, that is, for any ¢ (x, y,z) in £L anda € N
there is an J£-formula y,(x, ¢, y) and a parameter d € N such that

Jz € P g(a, P(N),z) = wa(a,d, P(N)).
By (L p-)saturation of (N, P) and compactness, there are J£-formulas

l//l('xﬂtay)a‘-'a l//n('x7t5 y)



Lovely Pairs and (3y € P) Quantifier 495

such that for any a € N there is | < k < n such that
Jz € P p(a, P(N),2) = yi(a,d, P(N))

for some parameter d. Let z1, ..., zx+1 be new variables of the same sort, and let

n
l//(xa t; Zls -5 23ns Zn—i—l, )’) - /\(Zk =Zn+1 - Wk(-x’ t’ y))
k=1

Then for any a € N thereisd € N and ey, ..., ;41 € N such that

dze Pola, P(N),z) =wl(a,d,eq,...,ent1, P(N))

(simply choose distinct ey, ..., e,, and let e,+1 = e, for a suitable k).
But then it holds, in particular, for any a € M. Since (M, P) < (N, P), for any
a € M there are d, ey, ..., e,+1 € M such that

dz e Po(a, P(M),2) =yl(a,d,eq,...,ent1, P(M)).

Thus P (M) with the structure induced by M (and the corresponding theory 7*) has
uniform QE. U

Finally in this section, we look at the question of preservation of simplicity when
passing to the “externally induced” structure.

Theorem 2.4 Let T be a simple weakly low theory. Then the theory T* is simple.

Proof Let P < M be a lovely pair of models of T, and T* the corresponding £*-
theory. As shown in [2], we can embed (M, P) in a k-lovely pair (M, P) of models
of T, for a sufficiently large x, so that ML p(m) P (M1), and such an embedding is al-
ways oL p-elementary. Take a sufficiently saturated £ p-elementary extension (N, P)
of (M1, P). So also (M, P) < (N, P), and thus also MJ,P(M)P(N). Considering
the structure induced on P (N) by parameters from M, we can view P(N) as an £*-
structure. Then clearly P (M) is an L*-elementary substructure of P(N), and P(N)
is a saturated model of T*.

Since T is weakly low, T* has quantifier elimination. Therefore the L£*-type of
any a € P(N) is determined by the L£-type of a over M (and vice versa). We will
show that for A C B C P(N) anda € P(N), p*(x, B) = tpg+(a/B) does not
divide over A (in the sense of 7*) if and only if p(x, BM) = tps(a/BM) does not
divide over AM (in the sense of T'). Note that only the “if ” direction is needed to
show simplicity of T*. First note that for B; C P(N), By = B, (B; : i € w) is
L*-indiscernible over A if and only if (B; : i € w) is L-indiscernible over AM, and
fora’ € P(N),ad’ = | p*(x, B;) ifand only ifa’ = | p(x, BiM).

Now, assume p(x, BM) = tpg(a/BM) does not divide over AM. Let
(B; : i € w) be an JL*-indiscernible over A sequence in P(N), with By = B.
Since MLP(M)P(N), tpe((Bi : i € w)/M) does not fork over P(M), so by the
coheir property and the characterization of L£*-types in P(N), we may assume that
B; are all in P(My). Since p(x, BM) = tps(a/BM) does not divide over AM,
(B; : i € w)is AM-indiscernible, and M is sufficiently saturated as an L-structure,
we can find @’ € M, such that a’ = |J p(x, BiM) and a’ L 4,,M U |J B;. Since
a € P(N), B C P(N), and P(N) J/P(M)M, p(x, BM) does not divide over
BP(M). Thus a’LBp(M)M U J Bi. So, by the coheir property again, we may
assume that a’ € P(M;). But then, by the characterization of £L*-types in P(N),
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a E Up*, Bi). So p*(x, B) does not divide over A. Simplicity of T* now
follows from simplicity of 7T'.

For the converse, assume that p*(x, B) does not divide over A. Since B C P(N)
and P(N)L p(m)yM, we may assume (by the coheir property) that B C P(M)). Let
(B;i : i € ) C N be a Morley sequence in tp(B/AM), with By = B. Then
since B J/AP(M)AM, we have |J B; J/AP(M)AM. Again, by the coheir property,
we may assume that all the B; are in P(M;). In particular, B; C P(N) for all
i. Note that (B; : i € w) is £L*-indiscernible over A. So there is ' € P(N)
realizing | J p*(x, B;). But then, by characterization of L*-types in P (N), a’ realizes
U p(x, BiM). By Kim’s lemma, p(x, BM) does not divide over AM. O

3 Weak Lowness of the Casanovas Example

We will show that an example of a simple nonlow theory, due to Casanovas [3],
satisfies the weak lowness property.
First, we recall the construction. The structure consists of two sorts: P (points)
and / (indexes), unary predicates I,, 0 < n < w and a binary predicate R C I x P
such that 7, define disjoint infinite subsets of / such that
(1) Vpe P37 € I,R(, p);
(2) if A, B C I are disjoint and finite and |A N I,;|] < n for all n, then there is
p € P such that R(i, p) holds for all i € A and does not hold for all i € B
(in particular, this implies that P is infinite);

(3) if A, B C P are disjoint and finite, then there is i € I such that R(i, p) holds
for all p € A and does not hold for all p € B.

The theory T axiomatized by these statements is simple and nonlow. The algebraic
closure is given by acl(A) = AU J,{i € I, : Ja € AR(, a)}, so, in particu-
lar, is disintegrated. The independence relation is given by Al ;C <= acl(AB)
Nacl(CB) C acl(B). Any formula in one variable over an algebraically closed set
A is equivalent to a quantifier-free formula over A.

For a variable p of sort P and 1 < n < o, let (p},..., p;) be a tuple of new
variables. For a tuple of variables x, let x" be an extension of the tuple x obtained
by adding new variables (p}', ..., p;;), 1 < m < n, for each variable p in X of sort
P. Now, for any formula y (w, z) (where z is a single variable) and a tuple a there
is 1 < n < w and a quantifier-free formula 6 (", z) such that y(a, z) is equivalent
to (a", z). By compactness, we can choose one # and n which will work for all
choices of a.

We will show that T is weakly low. Note that for quantifier elimination in 7,
it is enough to show elimination of a single existential quantifier. Thus, since the
proof of Proposition 2.1 is done on a formula-by-formula basis, in the weak lowness
condition it is enough to consider formulas ¢ (X, y, z) where z is a single variable.
Let (M, R, P, I, I,)1<n<e be a saturated model of the theory T, ¢ (x, ¥, z) an L(T)-
formula where z is a single variable, B C M (ax : k < w) a Morley sequence over
B. We need to find n € w such that for any bl gao such that (@ : k < o) is a
Morley sequence over Bb, if the family (¢(a;, b, z) : i < w) is n-consistent, then it
is consistent.

Augmenting bs with a fixed tuple from B (if needed), we may assume that g are
disjoint from each other and from B. Let 1 < m < w and 8(x", y", z) be such
that @ is quantifier free, and for any a and b, ¢(a, b, z) is equivalent to 8 (a™, b™, z).
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Changing ay to @' and B to acl(B), and considering b™ instead of b, we may assume
that ¢ is quantifier free. Also note that if ¢ (x, ¥, z) and @2(X, y, z) both satisfy the
weak lowness condition relative to n; and nj, respectively, then so does @1 V ¢,
relative to n; + np. So we may assume that ¢(x, y, z) is a conjunction of atomic
formulas or their negations. We may also assume that we consider only such b that
= Jze(ao, b, 2).

Case 1: zisofsort P. If ¢(x, y, z) contains positively a formula of the form z = x;
or z = yj, then it is easy to see that the family (¢ (ax, b,z) : k € w) is either 2-
inconsistent or consistent. Assume if ¢ (x, y, z) contains positively a formula of the
form R(x;, z) where Ezo_ ; (the jth component of the tuple ap) is in I, for some n. Let
N be the maximal of such ns. Then (¢(a, b, z) : k € w) is N-inconsistent, and N
does not depend on the choice of b. If ¢ (&, ¥, z) does not contain (positively) formu-
las of the form R(x;, z) where Zzoj € I, for some n or of the form z = x;,z = y;,

then it is of the form
ARG A N R 2)
Jj€Jo JeJ

A /\ R(yj,z) A /\ =R(yj,2) A

JjeKyp jeK,

N z#xn N\ 2 #3i nEE ),

J€Lo JELy
where for any j € Jp, c_zoj isnotin I, forany n, Jy N J; = &, Ko N K| = 2,
and = 0(a, b) (since = Jze (ao, b, z), and (ay : k € w) is b-indiscernible). Then
(p(ax, b, z) : k € w) is consistent.

Case 2: 7 is of the sort /. Since there are only finitely many /,,s occurring in ¢,
and I,,s are disjoint, we may assume that

p(x,y,z2) =z€l, NO(X,y,2)

or
p(x,y,2)=z2¢ I, U---Ul, AO(X,¥,2),

where (X, y, z) is a conjunction of atomic formulas or their negations. Similarly to
Case 1, if 6 has positive occurrences of z = x j or z = yj, then in both cases, the
family (¢ (@x, b, z) : k € w) is either consistent or 2-inconsistent. If no such formulas
occur, then the only occurrences of z in 6(x, y, z) are of the form R(z, x;), R(z, y;),
—R(z,xj), 7R(z, y;), 7z = xj, =z = y;. Therefore, by disjointness of a;s and the
axioms of T', (z & I,, U---U I, A 0(a, b,7) : k € w) is consistent. Now, it is
easy to see that any definable subset of I,, is either finite or cofinite. So in the case
when ¢(X,y,z) =z € I, NO(X,y, z), there is N such that for any parameters a, b,
¢(a, b, z) is either cofinite, or of size < N. The existence of n now easily follows.

4 A Non-weakly-low Simple Theory

In this section we will give an example of a non-weakly-low simple theory, which
is, in some sense, a parametrized version of the Casanovas example. Our proofs are
similar to the ones in [3], with some modifications.

Our language £ has 3 sorts: P (points), K (classes), and [ (indices), unary func-
tion f : P — K, binary relations I, C I x K, 1 < n < o, and a binary relation
R C I x P. The axioms are as follows.
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First we define an £-theory Ty, axiomatized as follows.

(1) I, K, and P are infinite.

(2) Forany b € K, f~!(b) is infinite and f(P) = K (so P is divided into
infinitely many infinite classes by the relation f(x) = f(x’), and K is the set
of “names” of these classes).

(3) Forany b € K, I,(—, b) define infinite disjoint subsets of 7.

(4) Foranyl <n <w,Vy e KVz € f~1(»)3™"x(I,,(x, y) A R(x, 2)).

Note that the theory Ty is inductive (Y3-axiomatizable).
Let (M, I, K, P, R, I,)1<n<w be an existentially closed model of 7.

Lemma 4.1 M satisfies the following axiom schemes.

(5) For any b € K, and any finite disjoint Ay, Ay C 1 such that
i € Ao : 1,(i,b)}| < n for all n, there is ¢ € f~'(b) such that R(a, c)
holds for all a € Ay, and =R (a, c) holds for all a € A|. Moreover; there are
infinitely many such c.

(6) Foranyny,...,ny, anddistinct ay, ..., ay € I there exists b € K such that
In, (a1, b), ..., I, (am, b). Moreover, there are infinitely many such b.
(7) Foranyl <ny,...,ny,n < o, distinctby, ..., by, byt+1,...,b € K, and

disjoint finite sets Co, C1 C P such that f’1 (b1, ..., bu}) NCo = O, there
exists a € I such that
n n
In (@, b1)..... I, (@, bw), \ ~Ii(@,bwin). ... N\ —~Ii(a, by),
k=1 k=1

R(a,c) for all ¢ € Cy and —=R(a,c) for all c € Cy. Moreover, there are
infinitely many such a.

Proof Easy. (|

Note that the axiom schemes (1 —7) are first-order. Let 7' be axiomatized by (1 —7).
So, any existentially closed model of T satisfies 7. We will show that 7 is complete.
Let M be a model of Ty. For A C M, letcl(A) =AU{i €I : 1,(i,b) A R(i, c)
forsomeb € ANK,ce f~'(b)and 1 < n < w}. Note that ¢/ is a disintegrated
closure operator and c/(A) C acl(A).
For convenience, by I,,(—, b) we denote the partial type {—1,,(—, b) : | <n < w}.

Lemma 4.2 Let M and N be wi-saturated models of T, A = cl(A) C M,
A" = cl(A") C N countable, and let g : A — A’ be a partial isomorphism. Let
a € M. Then there is a’ € N and a partial isomorphism g’ : cl(aA) — cl(a’A")
extending g U {(a, a)}.

Proof Ifa € A, there is nothing to prove. So assume a € A = cl(A).

Case1: aecl.letCo={ce ANP:R(a,c)},Ci={ce ANP :—=R(a,c)}.
Since a & cl(A) = A, for any ¢ € Cyp, we have I,(a, f(c)). So we need to find
a’ € N\A’ realizing R(x, g(c)) for all ¢ € Cy, =R (x, g(c)) for all ¢ € Cy, and
I,(x, g()) or =I,(x,g()) forb € ANK and 1 < n < w such that we have
I, (a, b) or =1, (a, b), respectively. Since for any ¢ € Cy, I,(a, f(c)) does not hold
for any n < o, it follows from axiom scheme (7) that such type is consistent. By
saturation, we can find such a’. Finally, note that Aa = cl(Aa) and A’a’ = cl(A'd’).
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Case 2: a € K. Foranyi €¢ ANlletl < n; < w+ 1 be such that we
have I, (i, a). By axiom scheme (6), we can find @’ € N\A’ such that we have
In;(g(0),a") foralli € AN (if n; = w, we use the fact that 1,4 (x, b) implies
=11 (x,b) A -+- A =1,(x, b) plus compactness). Then g U {(a, ')} is a partial iso-
morphism. Note again that c/(Aa) = Aa and cl(A'a’) = A'd’.

Case 3: a € P. By Cases 1 and 2, we may assume that c/(a)\{a} C A (so,
cl(Aa) = Aa. Let Ag ={i e ANI : R(GU,x)}, Ay ={i € ANI : —=R(,x)}.
Note that forany 1 < n < w, |{i € Ao : I, f(a))}| < n (and f(a) € A). So,
forany 1 <n < o, |{i € g(Ag) : I,G, g(f(a))} < n. Also, g(Ap) and g(A;)
are disjoint. So, by axiom scheme (5) and saturation, we can find a’ € N\ A such
that f(a’) = g(f(a)), R(d’,i) holds for i € g(Ag), and R(d’, i) does not hold
fori € g(A1). Then cl(A’a’) = A’a’, and g U {a, a’} is a partial isomorphism, as
needed. (]

Proposition 4.3
(1) T is complete.
(i1) The complete type of a single element a over a cl-closed set A in a model of
T is determined by the quantifier-free type of a over A.
(i) In T, acl = cl.

Proof (i) and (ii) follow easily from Lemma 4.2. For (iii), note thatifa ¢ A = c/(A),
then by the axiom schemes, there are infinitely many realizations of the quantifier
free type of a over A. U

Our next goal is to show simplicity of 7. We are working inside a saturated model
of T. As in [3], we define an independence relation

ALcB < acl(AC) Nacl(BC) C acl(C),

and note that it is easy to check that L is invariant under automorphisms and sat-
isfies local and finite character, monotonicity, transitivity, symmetry, and extension,
and it suffices to show the independence theorem over an algebraically closed set.
Exactly as in Lemma 5.4 of [3], we can see that in our case it suffices to check the
independence theorem for types of single elements. So let C = acl(C) C A, B,
A\LCB, a\LcA, b\LcB, a =c b. Weneedto find c suchthat c =4 a, c =g b
and ¢l AB. Since acl is disintegrated, the latter will follow from a.l A, bl B,
so it suffice to find ¢ such that ¢ =4 a, ¢ =p b. We may assume that A, B are
algebraically closed, anda ¢ A, b ¢ B. Note that AN B = C. We need to show that
qftp(a/A) U qftp(b/B) is consistent. Let AKX, AP Al denote AN K, AN P, and
A N I, respectively, and similarly for C and B.

Case1: a,bel.Thenqftp(a/A)Uqftp(b/B) is of the form

{In (. k) 1k € ASYU | Lo(x, kU
keAK

{In,(x. k) :k e B YU | ) To(x, U
keBK

{R(x,p):peAgyU{=R(x,p): peAl}
U{R(x,p):peBéD}U{—'R(x,p):peB{)}Ux ¢ AUB,
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where AX is a disjoint union of AX and AKX, BX is a disjoint union of Bf
and BIK, and Ag NncC = Bé( N C (so also Af nc = BlK N C). Clearly
fAFUBHN (AKX UBL) = o (since a & acl(A) = Aand b ¢ acl(B) = B), by
axiom scheme (7) (and its “moreover” part), this type is consistent.

Case2: a,be K.Thengftp(a/A)Uqftp(b/B) is of the form
{In; (i, x) i € AGYU | To(i, x)U

ieA]

{In,(i,x) i € B}U | LG, x) Ux ¢ AUB
ieB!

where A’ is a disjoint union of A} and A{, B/ is a disjoint union of B} and B, and
AlNC =Bl NnC (soalso Al N C = B{ NC). Similarly to Case 2 in the proof of
Lemma 4.2, consistency follows from the axiom scheme (6).
Case 3: a,b € P. Note that in this case, f(a) = f(b) = ko € CK. Also, if we
have I,,(i, ko) and R(i, a) or R(i, b),theni € C!. Then qftp(a/A) U qftp(b/B) is
of the form

{f(x) = ko) U{R(i,x):i € ALY U(=R(@i,x):i € A}

{RGi,x):i € B{}U{=R(i,x):i € Bj}Ux ¢ AUB
where A’ is a disjoint union of A] and A, B’ is a disjoint union of B} and B/,
andA(I)ﬂC = BéﬁC(soalsoA{ﬂC = B{OC), and forany 1 < n < o,
{i € A(’) L ko) =i € Bé : I,(i, ko)} is a subset of C! of size < n. Consistency
now follows from the axiom scheme (5).

Thus we have proved the following proposition.

Proposition 4.4 T is simple, with independence given by AL B <= acl(AC)
Nacl(BC) C acl(C).

Note that T is not supersimple, since for any point p € P, acl(P)\{p} is infinite but
not finite generated in the sense of acl.

Proposition 4.5 T is not weakly low.

Proof Let (¢; : [ € w) be a sequence of distinct elements of I, and let 1 < n < w.
Note that (¢; : [ € w) is a Morley sequence in the unique 1-type of sort / over &.
Letp(x,y,z) = R(x,z) Ay = f(z). Wecan find b € K such that I,,(¢;, b) holds
for any /. Then (¢; : | € w) is still a Morley sequence over b, and bl zag. But
(p(a1, b,z) : i € w)is clearly n-inconsistent. Since n was arbitrary, this shows that
T is not weakly low. (]
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