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Notes on Singular Cardinal Combinatorics

James Cummings

Abstract We present a survey of combinatorial set theory relevant to the study

of singular cardinals and their successors. The topics covered include diamonds,

squares, club guessing, forcing axioms, and PCF theory.

1 Introduction

In May 2004 I gave a series of three 45-minute survey talks at a workshop on Singular

Cardinal Combinatorics held at the Banff International Research Station, under the

blanket title “ZFC Combinatorics.” These notes were worked up from my slides for

those talks; they retain to some extent the telegraphic style of the originals.

Several related themes are prominent in these notes:

1. The universe of set theory V is surprisingly L-like in the sense that weak ver-

sions of Jensen’s combinatorial principles, diamond and square, are provable

outright as theorems of ZFC.

2. The extent to which L-like combinatorial principles hold in V can be mea-

sured by constructing certain “canonical invariants” which are typically ideals

or stationary sets; examples which are important in these notes include the

ideal I [λ] and the stationary set of good points (qv). Understanding these

invariants is the key to many combinatorial problems, especially those in-

volving singular cardinals and their successors.

3. PCF theory had its origins in questions involving the Singular Cardinals Hy-

pothesis. However, the theory has much broader applicability, in particular,

PCF is a fertile source of the sort of canonical invariants discussed above.

4. There is a tension in set theory between “compactness” and “incompactness”.

If the universe is sufficiently L-like then there are many examples of incom-

pactness, such as nonreflecting stationary sets or κ-Aronszajn trees. By con-

trast, in the presence of large cardinals or strong forcing axioms there are
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typically fewer examples of incompactness; moreover, for a regular uncount-

able cardinal κ compactness statements such as “there are no κ-Aronszajn

trees” can have a high consistency strength, for example, when κ is the suc-

cessor of a singular cardinal or we demand the statement be true for several

successive values of κ at once. The canonical invariants are especially useful

in exploring the tension between compactness and incompactness.

Here is a section by section guide to the results that are proved in this paper. Many of

the early sections can (hopefully) be read by anyone who has completed a beginning

course in set theory; some later sections presume some knowledge of large cardinals,

strong forcing axioms, and the basic facts about PCF.

Section 2 The principles♦κ(S) and♦′κ(S) are equivalent. Under GCH, ♦κ+(S)

holds for any stationary set S ⊆ {α ∈ κ+ : cf(α) 6= cf(κ)}. The

collection of sets which do not carry a diamond sequence forms a

normal ideal.

Section 3 If κ and λ are regular with κ+ < λ, any stationary subset of λ∩cof(κ)

carries a club guessing sequence.

Section 4 �µ implies that every stationary subset of µ+ contains a nonreflecting

stationary set. Under GCH, �µ implies the existence of a µ+-Souslin

tree.

Section 5 The weak square �∗µ is equivalent to the existence of a special µ+-

Aronszajn tree without any cardinal arithmetic assumptions.

Section 6 If κ is strongly compact then �µ fails for all cardinals µ ≥ κ , and �∗µ
fails for all cardinals µ such that cf(µ) < κ < µ.

Section 7 If λ < µ with λ and µ regular then µ+ ∩ cof(λ) is the union of µ sets

each carrying a partial square sequence.

Section 8 If λ is regular and uncountable then I [λ] is a normal ideal. If S ∈ I [λ]
is a stationary subset of λ ∩ cof(κ) then the stationarity of S is pre-

served by κ+-closed forcing. Under GCH, there is for each regular

κ < λ a stationary subset of λ ∩ cof(κ) which is the maximal subset

of λ ∩ cof(κ) lying in I [λ] and is also the maximal stationary subset

whose stationarity is preserved by any κ+-closed forcing.

Section 9 If S ∈ I [λ] then almost every point γ ∈ S has form sup(M ∩ λ)

for an IA structure of length and cardinality cf(γ ). The ideal I [λ] is

nontrivial on any cofinality κ such that κ+ < λ.

Section 10 If a <I -increasing sequence in a reduced product X On/I has station-

arily many good points of cofinality κ > |X |, then there is an exact

upper bound h for the sequence such that cf(h(x)) > κ for all x . The

converse is also true.

Section 11 There is a scale of length ℵω+1 in some reduced product∏
n∈A ℵn/finite. The set of approachable points is contained in the

set of good points.

Section 12 If NPT(µ, λ) and κ has a nonreflecting stationary set of cofinality µ

ordinals, then NPT(κ, λ). For every singular λ, NPT(λ,ℵ1).

Section 13 If cf(κ) = ω and there is a good scale of length κ+ then NPT(κ+,ℵ1).
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Section 14 If �ℵω,ℵn holds for some n < ω there is a very good scale of length

ℵω+1. The existence of such a scale implies that among any infinite

family of stationary subsets of ℵω+1, there are infinitely many which

do not reflect simultaneously.

Section 15 If �∗ℵω+1
holds then there is a better scale of length ℵω+1. The ex-

istence of such a scale limits the extent of stationary reflection in

[ℵω+1]
ℵ0 .

Section 16 If PFA holds then �κ,ℵ1
fails for every uncountable κ .

Section 17 If MM holds then in a scale of length ℵω+1 there are stationarily many

nongood points of cofinality ℵ1.

Section 18 If κ is supercompact then there are no good scales of length µ+ when

cf(µ) < κ < µ. By suitable Lévy collapses this can be used to

produce a model of GCH in which there is a scale of length ℵω+1 with

stationarily many nongood points of cofinality ℵ1.

Section 19 The Trichotomy Theorem. In a scale of length ℵω+1 points of cofinal-

ity greater than the continuum are good. The theorem of Section 13 is

true in ZFC for κ = ℵω. If SCH fails at ℵω there is a better scale of

length ℵω+1.

I have tried to give at least an impression of the various powerful methods which

are useful in singular cardinal combinatorics. Among the notable techniques are the

use of internally approaching chains of submodels, of determinacy results for infinite

games, and of various “goodness” properties for PCF-theoretic scales.

2 Diamonds

2.1 Basic facts We start by recalling Jensen’s classical diamond principle for a

regular uncountable κ and S ⊆ κ :

♦κ(S): There exists 〈Sα : α ∈ S〉 such that for all X ⊆ κ , {α ∈ S : X ∩ α = Sα} is

stationary.

Jensen [10] showed that the principle♦κ(S) holds in L for all κ and all stationary S.

It easily implies that κ<κ = κ . Diamond is typically used in inductive constructions

of objects of size κ , where an object is built up via a κ-sequence of approximations

with size less than κ ; the key idea is that all of the 2κ many subsets of the final object

are anticipated at many stages. For example, Jensen showed that ♦ω1
implies there

is an ω1-Souslin tree, where the diamond sequence is used to anticipate maximal

antichains of the final ω1-tree.

Diamond can be used to anticipate subsets of any set X with |X | = κ . If we

fix a decomposition X =
⋃

α<κ Xα where the sequence of Xα is increasing and

continuous with |Xα| < κ , and a bijection f : κ ←→ X , then f ↾ α : α←→ Xα for

a club set C of α < κ . If 〈Sα : α ∈ S〉 is a ♦κ(S)-sequence and we let Tα = fα“Sα

for α ∈ C ∩ S, then we can obtain a sequence 〈Tα : α ∈ S〉 such that Tα ⊆ Xα and

for every Y ⊆ X the set {α ∈ S : Xα ∩ Y = Tα} is stationary.

2.2 From GCH to diamond We noted above that instances of diamond imply

instances of the GCH. It is a surprising fact that there is a partial converse. More

precisely, let κ = λ+, µ = cf(λ), T = {α < κ : cf(α) 6= µ}. Suppose that GCH
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holds. Then ♦κ(S) holds for all stationary S ⊆ T ; this result is due to Gregory for

regular λ and was extended by Shelah to cover the case of λ singular.

We will sketch the proof, but before we do that we introduce some variants of

diamond.

Definition 2.1 Let 〈Sα : α ∈ T 〉 be a sequence such that Sα ⊆ P(α), |Sα| ≤ λ for

all α ∈ T ; we say that the sequence is a ♦′
λ+

(T )-sequence if {α ∈ T : X ∩ α ∈ Sα}

is stationary for all X ⊆ λ+. If the sequence has the stronger property that for every

X almost every α ∈ T (modulo the club filter) has X ∩ α ∈ Sα , we say that the

sequence is a ♦∗
λ+

(T )-sequence.

Clearly ♦∗
λ+

(T ) implies ♦′
λ+

(S) for every stationary S ⊆ T . We claim that for

every S, ♦′
λ+

(S) is equivalent to ♦λ+(S) where the nontrivial direction is to go from

♦′
λ+

(S) to ♦λ+(S).

As we pointed out above, we may alter a ♦′
λ+

(S)-sequence to guess subsets of

λ×λ+; so we assume that we are given 〈Si
α : α ∈ S〉 for i < λ such that Si

α ⊆ λ×α

and for every X ⊆ λ × λ+ {α ∈ S : ∃i X ∩ (λ × α) = Si
α} is stationary. We let

T i
α = {β < α : (i, β) ∈ Si

α} and claim that for some i , 〈T i
α : α ∈ S〉 is a ♦λ+(S)-

sequence. If not then we fix for every i a set X i ⊆ λ+ and a club set Ci ⊆ λ+ such

that T i
α 6= X i ∩ α for α ∈ Ci ∩ S, and define X = {(i, α) : α ∈ X i } and C =

⋂
i Ci .

Since C is club, there exists α ∈ C∩S and i < λ such that X∩(λ×α) = Si
α ; in partic-

ular, for β < α we have β ∈ T i
α ⇐⇒ (i, β) ∈ Si

α ⇐⇒ (i, β) ∈ X ⇐⇒ β ∈ X i ,

so that T i
α = X i ∩ α in contradiction to the choice of X i and Ci . So ♦λ+(S) holds as

claimed.

Theorem 2.2 (Gregory [7] for λ regular, Shelah [16] for λ singular) Let κ = λ+,

µ = cf(λ), T = {α < κ : cf(α) 6= µ}. Suppose that GCH holds. Then ♦∗κ(T ) holds,

and so ♦κ(S) holds for all stationary S ⊆ T .

Proof We fix for each α < λ+ a representation α =
⋃

j<µ aα
j where the aα

j increase

with j and |aα
j | < λ. We also fix an enumeration of the bounded subsets of λ+ as

〈xi : i < λ+〉.
Suppose we are given X ⊆ λ+. Clearly the set C = {δ : ∀γ < δ ∃i < δ X ∩ γ =

xi } is club in λ+. It follows that for any α ∈ C we may find a sequence

〈αi : i < cf(α)〉 in α such that X ∩ α =
⋃

i xαi .

Suppose now that α ∈ C ∩ T . We may choose 〈αi : i < cf(α)〉 in α such that

X ∩ α =
⋃

i xαi , and then since cf(α) 6= µ, we may thin out this sequence so that in

addition there is some j such that {αi : i < cf(α)} ⊆ aα
j .

If we now set

Sα = {x ∈ P(α) : ∃ j ∃y ⊆ aα
j x =

⋃

i∈y

xi },

then by GCH |Sα| ≤ λ and we have just argued that in fact 〈Sα : α ∈ T 〉 is a♦∗
λ+

(T )-

sequence. �

The only instances of GCH we have used are that 2<λ = λ and 2λ = λ+. There are

consistency results showing that in general GCH does not imply that some stationary

subset of λ+ ∩ cof(λ) carries a diamond sequence. This is the first example of a phe-

nomenon we shall encounter repeatedly, the special status of the “critical cofinality”

cf(λ) when we study the combinatorics of the successor cardinal λ+.
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2.3 The diamond ideal As was mentioned in the introduction, we can often define

an ideal which measures the extent to which some combinatorial principle holds in

V . As a first example we describe a natural ideal which measures the extent to which

diamond holds.

For κ regular and uncountable, let Idiamond be the set of S ⊆ κ such that ♦κ(S)

fails. Clearly Idiamond contains all the nonstationary sets and is downward closed. We

will show that Idiamond is a normal ideal by verifying that it is closed under diagonal

unions; the argument is similar to the one for the equivalence of ♦ and ♦′.
Let Si ∈ Idiamond for i < κ and let S = {α : ∃i < α α ∈ Si }. Suppose for a

contradiction that ♦κ(S) holds. We may assume that we have a diamond sequence

which guesses subsets of κ × κ ; to be more precise we have 〈Aα : α ∈ S〉 such that

Aα ⊆ α × α and for every X ⊆ κ × κ the set {α ∈ S : X ∩ (α × α) = Aα} is

stationary.

For each i let T i
α = {β < α : (i, β) ∈ Aα} for α ∈ Si . Since Si ∈ Idiamond we

may fix X i ⊆ κ and Ci a club subset of κ such that X i ∩ α 6= T i
α for all α ∈ Si ∩Ci .

Let X = {(i, β) : β ∈ X i }, let C be the diagonal intersection of the club sets Ci and

fix α ∈ C ∩ S such that X ∩ (α × α) = Aα ; find i < α with α ∈ Si , and note that

for β < α we have β ∈ T i
α ⇐⇒ (i, β) ∈ Aα ⇐⇒ (i, β) ∈ X ⇐⇒ β ∈ X i . So

T i
α = X i ∩ α, which is a contradiction to the choice of the Ci and X i since α ∈ Ci .

The extent of the diamond ideal can vary considerably. To fix ideas let κ = ℵ1.

Even with CH there is a wide range of possibilities; at the extremes Idiamond = N Sℵ1

in L and Idiamond = P(ℵ1) in Jensen’s model of “CH + no ℵ1-Souslin tree”.

3 Club Guessing

Since instances of diamond imply instances of GCH which are consistently false, it is

hopeless to ask that any instance of the full diamond principle be provable in ZFC. In

this section we look at a weak version of diamond known as “club guessing”, which

is provable in ZFC. Club guessing differs from the full diamond in two respects: we

only guess club subsets C of κ , and we lower the bar further by only asking at α for

a club subset of C ∩ α. More precisely we have the following definition.

Definition 3.1 Club guessing holds for κ and S ⊆ κ if there exists 〈Cα : α ∈ S〉
such that Cα is club in α, and for all club subsets C ⊆ κ the set {α ∈ S : Cα ⊆ C∩α}
is stationary.

Shelah showed that many instances of club guessing are provable in ZFC.

Theorem 3.2 (Shelah [17]) Let λ and κ be regular with λ+ < κ , and let

S ⊆ κ ∩ cof(λ) with S stationary. Then club guessing holds for κ and S.

Proof The idea is to start with an “attempt” at a club guessing sequence and then

improve it repeatedly until it becomes a successful attempt. Given E and F club

subsets of α we define a club subset

pd(E, F) = {sup(γ ∩ F) : γ ∈ E and γ ∩ F 6= ∅}.

Think of this as the club obtained by pushing down E onto F.

We choose an arbitrary sequence 〈Cα : α ∈ S〉 with Cα club in α of order type

λ. We will define a decreasing sequence of club subsets Ei ⊆ κ , and for each i we

will define 〈C i
α : α ∈ lim(Ei ) ∩ S〉 by setting C i

α = pd(Cα, Ei ∩ α). To start the

construction we let Ei = κ .
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If 〈C i
α : α ∈ lim(Ei ) ∩ S〉 fails to have the club guessing property then we choose

Ei+1 ⊆ lim(Ei ) a club set so that for all α ∈ Ei+1 ∩ S, C i
α * Ei+1 ∩ α. For i limit

we let Ei =
⋂

j<i E j .

We claim this process terminates before stage λ+, so producing a sequence

〈C i
α : α ∈ lim(Ei ) ∩ S〉 which has the club guessing property. Otherwise let

E =
⋂

i<λ+ Ei and fix some α ∈ E ∩ S. Then α ∈ lim(Ei ) ∩ S and C i
α

= pd(Cα, Ei ∩ α) for all i < λ+. For each γ ∈ Cα the sequence of suprema

〈sup(γ ∩ Ei ) : i < λ+〉 is (nonstrictly) decreasing, so must stabilize. Since Cα has

size λ we may find i < λ+ so large that this stabilization has happened for every

γ ∈ Cα , so that C i
α = C i+1

α ⊆ Ei+1. Since α ∈ Ei+1∩ S, this contradicts our choice

of Ei+1. �

As in the discussion of diamond and GCH, we note that there is a “critical cofinality”

issue here. In this case when κ = µ+ for µ regular the theorem does not guarantee

the existence of club guessing on any stationary subset of κ ∩ cof(µ), and indeed

it is consistent that there is no stationary subset of κ ∩ cof(µ) which carries a club

guessing sequence.

There are many interesting variations: for example, we may add demands on the

order types of the Cα or insist that their successor points be of large cofinality. An

especially interesting variant is strong club guessing where we weaken the guessing

condition at each α by asking only that Cα \ C is bounded, but ask that this should

hold for almost every α ∈ S. Ishiu’s paper on the precipitousness of club-guessing

ideals [9] contains a wealth of information on these matters.

4 Squares

4.1 Basic facts We recall Jensen’s classical square principle for an uncountable

cardinal µ.

Principle 4.1 (�µ) There exists 〈Cα : α < µ+〉 such that Cα is club in α,

ot(Cα) ≤ µ, Cβ = Cα ∩ β for all α ∈ µ+, and all β ∈ lim(Cα).

The principle �µ is often used to get through limit stages of uncountable cofinality

in inductive constructions of length µ+. We see an example of this shortly. Jensen

[10] showed that in L the principle �µ holds for all µ.

We note that the property of being a �µ-sequence is upward absolute to any uni-

verse in which µ and µ+ are preserved. It is sometimes useful to know that �µ

implies a stronger version of itself in which we add the demand that ot(Cα) < µ for

all α such that cf(α) < µ. To see this fix C ⊆ µ a club set with ot(C) = cf(µ), and

then replace Cα by {β ∈ Cα : ot(Cα ∩ β) ∈ C} whenever ot(Cα) ∈ lim(C) ∪ {µ}.
The principle �µ is generally used to construct “incompact” or “nonreflecting”

objects. This is natural when we consider that there can be no club C ⊆ µ+ such

that C ∩ α = Cα for α ∈ lim(C), so that a square sequence is itself an incompact

object. A basic example is the construction of a nonreflecting stationary set.

Let S ⊆ µ+ be any stationary set and use Fodor’s Lemma to find T ⊆ S a station-

ary set such that ot(Cα) = β for all α ∈ T . If γ < µ+ has uncountable cofinality

lim(Cγ ) meets T at most once, since Cα = Cγ ∩ α for α ∈ lim(Cγ ). It follows

that T ∩ γ is nonstationary in γ . Note that if we set Dα = Cα when ot(Cα) ≤ β,

and Dα = {γ ∈ Cα : ot(Cα ∩ γ ) > β} when ot(Cα) > β we have produced a
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�µ-sequence 〈Dα : α < µ+〉 with the additional property that lim(Dα)∩T = ∅ for

all α ∈ T .

4.2 Square in action: Souslin trees To give more of a feeling for the principle

�µ, we sketch a proof of Jensen’s theorem that GCH and the principle �µ imply the

existence of a µ+-Souslin tree for µ uncountable. We choose a regular κ < µ with

κ 6= cf(µ), and by the considerations above we find a stationary U ⊆ µ+ ∩ cof(κ),

a ♦µ+(U)-sequence and a �µ-sequence such that U ∩ lim(Cα) = ∅ for all α".

We then build up a normal µ+-tree T in the standard way, using ordinals in

[µ.α,µ.(α + 1)) for points on level α. If at β ∈ U the diamond sequence guesses

a maximal antichain in T ↾ β we arrange that every point on level β is above some

point of this antichain. As usual this “seals off” the antichain, and diamond implies

that the final tree is a µ+-Souslin tree.

The key point is to maintain the hypotheses that every level has size at most µ

and that every point x in T ↾ β is below some point y ∈ Tβ . We do this as follows:

we build a branch c(x, β) starting at x and working up the levels in Cβ above x ,

choosing at each stage the least point above points so far. The construction will be

organized so this “canonical branch” is always cofinal in T ↾ β.

We define level β by completing every canonical branch unless β ∈ U and the

diamond sequence guessed a maximal antichain, in which case we only complete

canonical branches for those points which lie above some point of the maximal an-

tichain. The remaining issue is to see that every canonical branch is cofinal: the

point is that if γ is a limit stage in the construction of c(x, β) then Cγ = Cβ ∩ γ and

γ /∈ U , so that c(x, γ ) is an initial segment of c(x, β) and it gets completed at stage

γ .

5 Weak Squares

Jensen also introduced a principle “weak square” in which µ many club sets are

allowed at each α < µ+. We will consider a generalization due to Schimmerling.

Principle 5.1 (�µ,λ) There exists 〈Cα : α < µ+, α limit〉 such that Cα is a

nonempty set of club subsets of α, |Cα| ≤ λ, ot(C) ≤ µ, and C ∩ β ∈ Cβ for all

α < µ+, all C ∈ Cα, and all β ∈ lim(C).

We note that the “silly square” principle �µ,µ+ is always true, since we may just fix

Dα club in α for every α < µ+ and let

Cβ = {Dα ∩ β : β ∈ lim(Dα) ∪ {α}}.

Jensen showed that �µ,µ (the principle usually denoted by �∗µ) is equivalent to the

existence of a special µ+-Aronszajn tree. We give a version of this proof using ideas

of Todorčević [20] to construct the Aronszajn tree from the square sequence.

5.1 From weak square to a special tree Let η be an arbitrary ordinal and let

〈Cζ : ζ < η〉 be such that Cζ is club in ζ for all ζ . By convention we let Cα+1 = {α}
for α + 1 < η. We define for α < β < η a “minimal walk from β down to

α”. This is a decreasing sequence of ordinals given by the recursion β0 = β and

βn+1 = min(Cβn \ α), halting when we reach (as we must do in a finite number of

steps) an n such that βn = α.

We associate two sequences with the minimal walk from β down to α. If this walk

is the sequence β0 = β > · · · > βn = α, then the projection of the walk pr(α, β) is
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the sequence Cβ0
∩ α, . . . , Cβn ∩α and the trace of the walk tr(α, β) is the sequence

ot(Cβ0
∩ α), . . . , ot(Cβn ∩ α).

The key point: we suppose that α < α∗ < β and compare the walks

from β down to α and α∗. Suppose that these walks are given by sequences

β0 = β > · · · > βm = α and β∗0 = β > · · · > β∗n = α∗.

1. If βi = β∗i > α∗ and Cβi ∩ [α, α∗) = ∅ then clearly βi+1 = β∗i+1. It follows

that exactly one of the following possibilities must occur:

(i) there is i < min{m, n} such that Cβi ∩ [α, α∗) 6= ∅. If i is minimal with

this property then β j = β∗j for j ≤ i , and βi+1 < α∗ ≤ β∗i+1;

(ii) there is no such i ; in this case n < m, β j = β∗j for j ≤ n.

We note that in either case tr(α, β) is below tr(α∗, β) in the Kleene-Brouwer

linear ordering of all finite sequences of ordinals.

2. We claim that if we are given 〈Cζ : ζ < η〉 and pr(α∗, β) then we can com-

pute pr(α, β) (and hence tr(α, β)) for all α < α∗ without knowing the value of

β. Let pr(α∗, β) = D0, . . . , Dn and note that α∗ can be computed from Dn .

Let j ≤ n be least such that D j ∩ [α, α∗) 6= 0; we have βi = β∗i for i ≤ j so

that we can compute the first j + 1 terms of pr(α, β) as D0 ∩ α, . . . , D j ∩ α.

Also β j+1 = min(D j \ α) and so we can compute the rest of the walk from

β down to α, and hence the remaining terms of pr(α, β).

We are now almost ready to construct a special µ+-Aronszajn tree from a �∗µ-

sequence 〈Cα : α < µ+〉. We observe that for any γ < µ+ the set {C ∩ γ :
C ∈

⋃
α≥γ Cα} has size at most µ, because if δ ≤ γ is maximal with sup(C∩δ) = δ

then C ∩ δ ∈ Cδ and (C ∩ γ ) \ δ is a finite subset of γ ; since
⋃

δ≤γ Cδ and [γ ]<ω

both have size at most µ, this gives at most µ possibilities for C ∩ γ . Choose Cα as

above with Cα ∈ Cα for α limit.

We now define the tree: the elements are sequences of the form 〈tr(α, β) :α ≤ α∗〉
where α∗ < β < µ+, so that level α∗ consists of α∗ + 1-sequences. The tree

element 〈tr(α, β) : α ≤ α∗〉 is determined by pr(α∗, β) which is a finite sequence

from {C ∩ α∗ : C ∈
⋃

α∗≤β<µ+ Cα}, so every level of the tree has size at most µ.

The map which takes 〈tr(α, β) : α ≤ α∗〉 to tr(α∗, β) is a specializing function, in

fact the specializing function is an order-preserving map from the tree to [µ+ 1]<ω

ordered by the reverse lexicographic ordering.

5.2 From a special tree to weak square For the converse, suppose that we are

given a special µ+-tree T together with a specializing function f : T −→ µ. We

will show how to associate with each point x ∈ T of limit height an unbounded set

Ax ⊆ ht(x) such that ot(Ax) ≤ µ, and if sup(Ax ∩ δ) = δ for some δ < ht(x) then

Ax ∩ δ = Ay for y the unique point of height δ below x . It should then be clear that

if we set Cx = Ax ∪ {γ < ht(x) : sup(Ax ∩ γ ) = γ } and Cα = {Cx : ht(x) = α} we

have defined a �∗µ-sequence.

We fix x ∈ T with ht(x) = γ for some limit γ and define by induction an

increasing sequence of ordinals γ x
i < γ . We define γ x

j to be ht(y) for the unique

y <T x such that f (y) is the minimum element of the set

{ f (z) : z <T x and γ x
i < ht(z) for all i < j},

halting the induction when we reach jx such that {γ x
i : i < jx} is unbounded in γ ,

and set Ax = {γ
x
i : i < jx}.
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Let yi <T x be the unique point with ht(yi ) = γ x
i for each i < jx . If i0 < i1 < jx

then by definition f (yi0 ) is the minimal value of f attained at any point z <T x such

that ht(z) > γi for all i < i0; yi1 is such a point so f (yi0) < f (yi1). It follows easily

that ot(Ax) = jx ≤ µ.

Finally suppose that δ < ht(x) = γ , δ = sup(Ax ∩δ). Let Ax ∩δ = {γ x
i : i < j},

and let y <T x be the unique point below x with ht(y)=δ. We will show by induction

that γ x
i = γ

y
i for all i < j , so that Ax ∩ δ = Ay . Suppose that i∗ < j and γ x

i = γ
y

i

for i < i∗; the minimum value of f on {z : z <T x and γ x
i < ht(z) for all i < i∗}

is attained at the point of height γ x
i∗ . Since γ x

i = γ
y

i for all

i < i∗ and γ x
i∗ < δ = ht(y), this is the same point where f attains its minimum on

{z : z <T y and γ
y

i < ht(z) for all i < i∗}, so that γ x
i∗ = γ

y

i∗ as required.

5.3 Cosmetic improvements. It will be useful later to know that weak square

sequences can be “improved.” The value of this will be apparent when we introduce

the ideal I [λ] on a regular cardinal λ in Section 8; a suitably improved �∗µ-sequence

will there be used as a witness that µ+ ∈ I [µ+], so that we can see the assertion that

I [µ+] is trivial as a “weak weak square”.

We claim that if �∗µ holds then there is a �∗µ-sequence with the additional property

that for all α < µ+ there is C ∈ Cα with ot(C) = cf(α). To see this we fix

{D j : j < µ} with ot(D j ) = cf( j) and D j club in j . For all C ∈ Cα and all j with

ot(C) ∈ lim(D j ) ∪ { j} we will add the set {α ∈ C : ot(C ∩ α) ∈ D j } to Cα. It is

routine to check that this works.

By the same trick that we used above for �∗µ (Principle 4.1), we may also prove

that if µ is singular and �µ,λ (Principle 5.1) holds then this is witnessed by a se-

quence in which every club set which appears has order type less than µ. This is use-

ful later in Sections 14 and 15 where we want to use �λ,µ to produce PCF-theoretic

scales with various extra properties.

6 The Extent of Square

There are consistency results which place sharp limits on what we can hope for in

terms of square principles provable from ZFC or even ZFC + GCH. The cases of

singular and regular µ are quite different, and for µ singular there is a sharp dividing

line between �µ,λ for λ < cf(µ) and for λ ≥ cf(µ).

If µ is regular and µ<µ = µ then it is easy to see that �∗µ holds. On the other

hand if κ > µ is weakly compact and we force with the Lévy collapse Coll(µ,< κ)

then (by work of Baumgartner [2]) in the extension every stationary subset of

µ+ ∩ cof(< µ) reflects, and so �µ fails. Harrington and Shelah [8] showed that

with more work a Mahlo cardinal suffices.

Dropping GCH, models with µ regular where �∗µ fails can be obtained. For

example, Mitchell [14] showed how to collapse a Mahlo cardinal to ℵ2 in such a way

that in the extension 2ℵ0 = ℵ2 and �∗ℵ1
fails.

It is known that a Mahlo cardinal is the optimal hypothesis for the failure of �µ

(or even �∗µ) when µ is regular. For µ singular the picture is much different because

of core models and the covering lemma. As a simple example, if 0♯ does not exist

and µ is a singular cardinal in V , then µ+ = µ+L , so that a �µ-sequence in L is still

a �µ-sequence in V .
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Sufficiently large cardinals are incompatible with �µ and �∗µ for µ singular. To

be more precise if κ is a strongly compact cardinal then

(i) �µ fails for every cardinal µ ≥ κ (Solovay [18]);

(ii) �∗µ fails for every singular cardinal µ such that cf(µ) < κ < µ (Shelah [16]).

Before we give these arguments, we note that in Section 18 we will give an alternative

PCF-theoretic argument for the failure of weak square (and indeed of much weaker

principles) at singular cardinals above a supercompact cardinal. We will also give a

consistency proof for the failure of �∗ℵω
in that section.

Let κ < λ where λ is regular and κ is λ-strongly compact. We recall that this large

cardinal assumption can be formulated as follows: there is an elementary embedding

j : V −→ M such that crit( j) = κ and there is X ∈ M such that j“λ ⊆ X and

M |H |X | < j (κ). We fix such an embedding j , define γ = sup j“λ and note that

λ ≤ cfM (γ ) < j (κ) and γ < j (λ). It is easy to see that if S ⊆ λ ∩ cof(< κ) is

stationary in λ, then j (S)∩γ is stationary in γ , so that by elementarity the stationarity

of S reflects at some point in λ∩ cof(< κ). Accordingly �µ fails at every µ above a

strongly compact cardinal.

We now use an idea of Solovay. If ED = 〈Dα : α < λ〉 is any sequence such that

Dα is club in α and ot(Dα) = cf(α), then let EE = j ( ED) and E = Eγ . Since j is

continuous at points of cofinality less than κ , the set D = {α < λ : j (α) ∈ E} is

< κ-club in λ. So for every x ⊆ D of order type less than κ , j (x) = j“x ⊆ Eγ and

by reflection x ⊆ Dα for some α with cf(α) < κ .

This has some interesting consequences. First there are λ<κ possibilities for x ,

and each Dα for cf(α) < κ has size less than κ . So λ<κ = λ. In particular, if µ is

singular of cofinality less than κ and λ = µ+ then we can argue that µcf(µ) = µ+.

This is the heart of the argument that SCH holds above a strongly compact cardinal.

Now suppose for contradiction that cf(µ) < κ , λ = µ+, and �∗µ holds. We

may assume �∗µ is witnessed by 〈Cα : α < λ〉 such that each Cα contains some Dα

of order type cf(α) and then construct ED, EE and sets D, E as above. Let ζ be the

supremum of the first µ elements of D, and note that j (ζ ) is a limit point of E and

hence E ∩ j (ζ ) ∈ j (C) j (ζ ) = j (Cζ ). By a similar reflection argument to the one

above, if x ⊆ D ∩ ζ with ot(x) < κ , then x ⊆ F for some F ∈ Cζ with ot(F) < κ .

This is impossible as µ<κ > µ but there are only µ possibilities for F , each with

fewer than κ subsets.

7 Partial Squares

We now consider another weakening of �µ (Principle 4.1), in which we only assign

club sets to certain ordinals less than µ+. In the spirit of our discussion of diamonds

and club guessing, we focus on particular cofinalities.

Let S ⊆ {α ∈ µ+ : cf(α) = λ}. We say S carries a partial square if there exists

〈Cα : α ∈ S〉 such that Cα is club in α, ot(Cα) = λ, and Cα ∩ β = Cα∗ ∩ β for any

α and α∗ in S and any common limit point β of the club sets Cα and Cα∗ .

A straightforward induction argument shows that if �µ holds for all µ then

{α ∈ µ+ : cf(α) = λ} carries a partial square for all µ and all regular λ ≤ µ.

Theorem 7.1 (Shelah [17]) Let λ < µ with λ and µ both regular. Then

{α < µ+ : cf(α) = λ} is the union of µ sets each carrying a partial square.
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Before proving the theorem, we note that in general µ+ ∩ cof(µ) is not the union of

µ sets each carrying a partial square, and that in the conclusion of Theorem 7.1 at

least one set carrying a partial square will be stationary.

Proof The proposition is trivial for λ = ω so we assume λ > ω. We fix some

large regular θ and some well-ordering <θ of Hθ and work inside the structure

(Hθ ,∈,<θ ). For each α < µ+ of cofinality λ and each ζ < µ we let M(α, ζ )

be the Skolem hull of {α} ∪ ζ , where we note that for fixed α the model M(α, ζ ) is

increasing and continuous as a function of ζ .

For each α choose ζ(α) as the least ζ ≥ λ such that M(α, ζ ) ∩ µ ∈ µ and

cf(M(α, ζ ) ∩ µ) > ω. Let Nα = M(α, ζ(α)) and note that Nα is unbounded in α.

Let Eα = Nα ∩ α and let Dα be the closure of Eα.

Key point: Eα is closed under suprema of length ω. To see this let x ⊆ Eα have

order type ω, let β = sup(x) and γ = min(Eα − β), and suppose for a contradiction

that β < γ . Note that if f ∈ Nα is an increasing cofinal map from cf(γ ) to γ ,

then f ↾ Nα ∩ cf(γ ) is increasing and cofinal in Nα ∩ γ . If cf(γ ) < µ then since

Nα ∩ µ ∈ µ we have Nα unbounded in γ , so necessarily cf(γ ) = µ. Then we must

have cf(Nα ∩ γ ) = cf(Nα ∩ µ), which is impossible since cf(Nα ∩ µ) > ω while

cf(Nα ∩ γ ) = cf(Nα ∩ β) = ω.

Given ρ and σ in µ, let S(ρ, σ ) = {α : Nα ∩µ = ρ, ot(Dα) = σ }. We argue that

each of these sets carries a partial square.

Suppose that α and α∗ are in S(ρ, σ ) and γ is a common limit point of Dα and

Dα∗ ; we claim that Dα ∩ γ = Dα∗ ∩ γ . If γ has cofinality ω then γ ∈ Nα ∩ Nα∗ ;

since |γ | ≤ µ and Nα ∩ µ = ρ = Nα∗ ∩ µ we see easily that Nα ∩ γ = Nα∗ ∩ γ .

If γ has uncountable cofinality then there are unboundedly many η < γ such that

η has cofinality ω and η is a common limit point of Dα and Dα∗ ; as we just saw

Nα ∩ η = Nα∗ ∩ η for each such η, so Nα ∩ γ = Nα∗ ∩ γ .

To finish we fix C ⊆ σ a club set of order type λ and let Cα={γ ∈ Dα :ot(Dα∩γ )

∈ C}. It is routine to check that this thinning out of the Dα preserves coherence at

limit points and so yields a partial square sequence on S(ρ, σ ). �

The exact extent of partial squares at the successor of a singular cardinal is an in-

teresting open problem. By contrast with Theorem 7.1, there are consistency results

showing that for µ singular and regular λ < µ it may not be the case that µ+∩cof(λ)

is the union of µ sets with squares; such results are given in Sections 17 and 18.

8 Approachability and I[λ]

8.1 Basic facts We now discuss approachability, a squarelike principle weak

enough to be provable in ZFC (even at successors of singulars) yet strong enough

to do useful work.

Let κ be regular and 〈aα : α < κ〉 be some sequence of bounded subsets of

κ . We say that a limit ordinal γ < κ is approachable with respect to the se-

quence if and only if there is A ⊆ γ unbounded in γ with ot(A) = cf(γ ) and

{A∩β : β < γ } ⊆ {aβ : β < γ }. We note that modulo clubs the set of approachable

points depends only on the set {aα : α < κ}. Given κ regular and uncountable,

Shelah defined an ideal I [κ] on κ as follows.
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Definition 8.1 For S ⊆ κ , S ∈ I [κ] if and only if there exists a sequence

〈aα : α < κ〉 of bounded subsets of κ and a club subset C of κ such that every

γ ∈ S ∩ C is approachable with respect to the sequence.

A useful alternative view of I [κ] can be given using elementary submodels. As usual

θ denotes some very large regular cardinal. Given A some expansion of (Hθ ,∈,<θ )

by countably many constants, functions, and relations, γ is approachable with re-

spect to A if there is A ⊆ γ unbounded of order type cf(γ ) such that every initial

segment of A lies in SkA(γ ).

If 〈aα : α < κ〉 is an enumeration of the bounded subsets of κ lying in SkA(κ),

then it is easy to see that almost every γ which is approachable with respect to

A is approachable with respect to 〈aα : α < κ〉. Conversely, if 〈aα : α < κ〉 is any

sequence of bounded subsets of κ and we let A be (Hθ ,∈,<θ , Ea), then almost every

γ which is approachable with respect to 〈aα : α < κ〉 is approachable with respect

to A. So we could have defined I [κ] as the collection of S such that for some A,

almost every γ ∈ S is approachable with respect to A.

We will argue that I [κ] is a normal ideal. Downward closure is immediate, so we

need only to show that I [κ] is closed under diagonal unions. Let Si ∈ I [κ] for all

i < κ and fix for each i a club set Ci and a structure Ai such that every γ ∈ Ci ∩ Si

is approachable with respect to Ai .

We now fix for each i a function Fi :
<ωκ −→ Hθ such that for any X ⊆ κ ,

SkAi (X) = Fi “(
<ω X). We combine them into a single function F : <ωκ −→ Hθ

by defining F(i, Eα) = Fi (Eα) and then let A equal (Hθ ,∈,<θ , F).

Let S = {γ < κ : ∃i < γ γ ∈ Si } and let C = {γ < κ : ∀i < γ γ ∈ Ci }. Let

γ ∈ C ∩ S and find i < γ such that γ ∈ Si . Since γ ∈ C we have γ ∈ Ci ∩ Si , so

γ is approachable with respect to Ai and we may find A ⊆ γ unbounded such that

ot(A) = cf(γ ) and all proper initial segments of A lie in SkAi (γ ). It is immediate

from the definitions of Fi and A that SkAi (γ ) = Fi “(
<ωγ ) ⊆ F“(<ωγ ) ⊆ SkA(γ ),

so that γ is approachable with respect to A. Since C is club we have showed that

S ∈ I [κ].
We collect some easy facts about I [κ] with sketchy proofs.

(i) If �∗µ holds then µ+ ∈ I [µ+].

Let 〈Cα : α < µ+〉 be a �∗µ-sequence with the additional property that every

Cα contains a set of order type cf(α). If A has a predicate for this weak square

sequence then every limit ordinal α such that µ ≤ α < µ+ is approachable

with respect to A.

(ii) If S ⊆ {α < κ : cf(α) = λ} for any λ and κ , and S carries a partial square,

then S ∈ I [κ].

Let 〈Cα : α ∈ S〉 be a partial square sequence. Let T be the set of

γ ∈ κ∩cof(< λ) such that γ is a limit point of some Cα , and let 〈Dγ : γ ∈ T 〉
be such that Cα ∩γ = Dγ for all α and all γ ∈ lim(Cα). If A has a predicate

for 〈Dγ : γ ∈ T 〉 then every ordinal α ∈ S is approachable with respect to

A.

(iii) If µ is regular then µ+ ∩ cof(< µ) ∈ I [µ+].

For each regular λ < µ, µ+ ∩ cof(λ) is the union of µ many sets with partial

squares. Each of these sets is in I [µ+] and the ideal I [µ+] is µ+-complete.
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8.2 Interlude on forcing It is well known that for any regular κ and any stationary

set S ⊆ κ ∩ cof(ω), the stationarity of S is preserved by countably closed forcing. In

general it is not the case that a stationary subset of S ⊆ κ ∩ cof(µ) is preserved by

µ+-closed forcing (see the discussion after Theorem 8.2).

Shelah studied this kind of question and in fact the ideal I [κ] was originally in-

troduced by him to clarify the question of which stationary sets are preserved.

Theorem 8.2 (Shelah [16]) If S ⊆ κ ∩ cof(µ) is stationary and S ∈ I [κ], then

µ+-closed forcing preserves the stationarity of S.

Proof Let S ⊆ κ ∩ cof(µ) be stationary with S ∈ I [κ], let Ea witness this, and let P

be µ+-closed. Let p ∈ P force Ċ is club in κ .

Expand Hθ by Ea, p, and Ċ to get a structure A. Find γ ∈ S such that

γ = SkA(γ ) ∩ κ , and fix A ⊆ γ of order type µ witnessing that γ is approach-

able. Build a decreasing chain 〈p j : j < µ〉 below p choosing p j to be least below

〈pi : i < j〉 forcing some ordinal βi greater than the i th point of A into Ċ . Easily

all pi are in SkA(γ ), all βi are less than γ , and any lower bound for 〈p j : j < µ〉

forces γ ∈ Ċ . �

There is also a kind of converse to the last result, showing that under the right hy-

potheses we may destroy stationarity with highly closed forcing. If µ = cf(µ) < κ

and κ<µ = κ , then the restriction of I [κ] to points of cofinality µ is generated by a

single stationary set. To see this, enumerate [κ]<µ as 〈aα : α < κ〉 and let S be the

set of points of cofinality µ approachable with respect to this enumeration. It should

be clear that S is (modulo clubs) the maximal subset of κ ∩ cof(µ) lying in I [κ], and

we will prove in Section 9 that S is stationary.

Assume now that µ<µ < κ . We may as well assume that each set in [κ]<µ

appears κ times in the enumeration Ea. With this understanding consider the poset

Q whose conditions are closed bounded c ⊆ κ of order type less than µ+, where

c∩cof(µ) ⊆ S and every bounded subset of c of size less than µ is enumerated as aα

for α < max(c). Q is µ+-closed and in V Q the set (κ ∩ cof(µ)) \ S is nonstationary.

Remark 8.3 Some kind of cardinal arithmetic assumption is needed here.

Mitchell’s model with no special ℵ2-Aronszajn trees has 2ℵ0 = 2ℵ1 = ℵ2. Since

ℵℵ1

2 = ℵ2 there is a maximal stationary set S ⊆ ℵ2 ∩ cof(ℵ1) with S ∈ I [ℵ2], and it

can be shown that (ℵ2 ∩ cof(ℵ1)) \ S is also stationary. However, κ-closed forcing

always preserves stationarity for subsets of κ , in particular, ℵ2-closed forcing pre-

serves the stationarity of (ℵ2 ∩ cof(ℵ1)) \ S. This does not contradict the conclusion

of the preceding paragraph, because now we are in a situation where ℵ1
<ℵ1 = ℵ2.

9 IA Chains and More On I[λ]

9.1 IA chains Let θ be a large regular cardinal, and let A be some expansion of

(Hθ ,∈,<θ ) by countably many functions, constants, and relations. Let γ be a limit

ordinal. Then an IA (internally approachable) chain of substructures of A of length γ

is a continuous and increasing sequence 〈Mi : i < γ 〉 of elementary substructures of

A such that 〈Mi : i ≤ j〉 ∈ M j+1 for all j < γ . It is worth noting that automatically

j ⊆ M j , and Mi ∈ M j . The following fact is key.

Theorem 9.1 (Foreman and Magidor [6]) Let S ∈ I [κ] and let A be as above.

Then there is a club subset C ⊆ κ such that for every γ ∈ C ∩ S, setting λ = cf(γ )
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there exists an IA chain 〈Ni : i < λ〉 of substructures of A such that |Ni | < λ for all

i < λ, and if N =
⋃

i Ni then sup(N ∩ κ) = γ .

Proof Expand A to B by adding a predicate for a sequence of bounded subsets of

κ witnessing that S ∈ I [κ]. Build 〈Mζ : ζ < κ〉 an IA chain of substructures of B

with |Mζ | < κ and Mζ ∩ κ ∈ κ . Let γ ∈ S with Mγ ∩ κ = γ , let λ = cf(γ ).

We fix 〈γ j : j < λ〉 an increasing continuous and cofinal sequence in γ such that

〈γi : i ≤ j〉 ∈ Mγ j+1
for j < λ. Let Pj = 〈Mγi : i ≤ j〉 and note that Pj ∈ Mγ j+1

;

define Ni to be the hull in Mγ (or equivalently in Mγi ) of the set of parameters

{Pj : j < i}. The main point is to verify that 〈Ni : i ≤ j〉 ∈ N j+1. This is true

because Pj ∈ N j+1, so that Mγ j ∈ N j+1 and also 〈Pi : i < j〉 ∈ N j+1.

We note for use later that N ⊆ Mγ and Mi ∈ N for unboundedly many i ∈ γ . �

If κ < λ with κ and λ both regular and λ<κ = λ, then there is a stationary subset

of λ ∩ cof(κ) which is in I [λ] and is (modulo clubs) the largest subset of λ ∩ cof(κ)

which lies in I [λ]. To see this fix an enumeration 〈aα : α < λ〉 of [λ]<κ and let S be

the set of γ ∈ λ ∩ cof(κ) which are approachable with respect to this enumeration.

It should be clear that S is the maximal element of I [λ] restricted to cofinality κ ; it

remains to see that S is stationary. If we build an IA chain 〈Mi : i < κ〉 of substruc-

tures of (Hθ ,∈,<θ , C, Ea) each with size less than κ , and let γi = sup(Mi ∩ λ) and

γ = supi γi , then it is routine to check that γ ∈ C and every proper initial segment of

〈γi : i < κ〉 is enumerated on Ea before stage γ . Abusing language slightly we refer

to S as the set of approachable points of cofinality κ in λ. The set S is well defined

modulo the club filter.

9.2 I[λ] is nontrivial We just saw that under some cardinal arithmetic assump-

tion I [λ] is nontrivial. Shelah proved that I [λ] is nontrivial for any regular λ > ℵ1

without any assumption on cardinal arithmetic. The following theorem states this

result more precisely.

Theorem 9.2 (Shelah [17]) Let κ , θ , and λ be regular with κ < κ+ < θ < λ. Then

there is a set A ∈ I [λ] which consists of cofinality κ points and is stationary; in fact,

it satisfies the stronger property that A ∩ δ is stationary for stationarily many δ < λ

of cofinality θ .

Proof Let 〈Cζ : ζ ∈ θ ∩ cof(κ)〉 be a club guessing sequence. Fix 〈Mi : i < λ〉 an

IA chain such that {Cζ : ζ ∈ θ ∩ cof(κ)} ⊆ M0 and |Mi | < λ for all i . Let A be the

set of γ < λ such that cf(γ ) = κ and there is c ⊆ γ a club set of order type κ , all of

whose proper initial segments lie in Mγ . If 〈ai : i < λ〉 enumerates all the bounded

subsets of λ lying in
⋃

i Mi then {ai : i < γ } enumerates the bounded subsets lying

in Mγ for a club set of γ < λ, so A ∈ I [λ].
Suppose for a contradiction that A ∩ δ is nonstationary in δ for almost all

δ ∈ λ∩cof(θ). We may then build an IA chain 〈N j : j < θ〉 such that 〈Mi : i < λ〉 ∈
N0, {Cζ : ζ ∈ θ ∩ cof(κ)} ⊆ N0, |N j | = θ for all j < θ , and setting

δ = sup(
⋃

j N j ∩ λ) we have A ∩ δ nonstationary in δ.

Let α j = sup(N j ∩ λ), so that 〈αi : i ≤ j〉 ∈ N j+1 for j < θ , and the αi are

increasing, continuous, and cofinal in δ. Choose 〈β j : j < θ〉 ∈ Mδ+1 increasing,

continuous, and cofinal in δ. Let e = { j < θ : α j = β j } and note that since e is

club in θ and 〈Cζ : ζ ∈ θ ∩ cof(κ)〉 is a club guessing sequence, Cζ ∪ {ζ } ⊆ e for

stationarily many ζ ∈ θ ∩ cof(κ).
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For such a ζ let c = {α j : j ∈ Cζ } = {β j : j ∈ Cζ }. Every proper initial segment

of c can be computed from Cζ and a proper initial segment of {α j : j < ζ } and so

lies in Nζ ; similarly every proper initial segment of c lies in Mδ+1.

If x is a proper initial segment of c, then Nζ sees that x ∈
⋃

i Mi , so x ∈ Mi

for i ∈ Nζ ∩ λ and hence x ∈ Mαζ
. So c witnesses that αζ ∈ A. Hence A ∩ δ is

stationary. Contradiction! �

10 Scales, Good Points, and Eubs

Now we begin to consider the interaction of the principles we have discussed with

PCF theory. PCF theory is a very large subject and we do not pretend to give anything

like a comprehensive account here. We refer the reader to Abraham and Magidor’s

survey paper [1] and Shelah’s book [17] for a detailed treatment.

10.1 Scales and eubs Here are some of the basic definitions. Given an index set

X and an ideal I on X , we can order X ON by a relation <I given by

f <I g ⇐⇒ {x : f (x) ≥ g(x)} ∈ I.

We will also define relations =I and ≤I in the obvious way. An important point is

that <I is not the strict part of the preordering ≤I unless I happens to be a prime

ideal.

A <I -increasing sequence 〈 fi : i < α〉 has an exact upper bound (eub) if there is

f such that fi <I f for all i , and every g <I f has g <I fi for large enough i .

Such a function f may not exist but is unique modulo I if it does exist.

Given a function f ∈ X ON, a scale of length α in
∏

x f (x)/I is a <I -increasing

sequence 〈 fi : i < α〉 in
∏

x f (x) which is cofinal in
∏

x f (x) under the relation

<I . It is clear that in this case f is an eub for 〈 fi : i < α〉, and that conversely if f

is an eub then we can alter the fi on I -small sets to produce a scale in
∏

x f (x).

It is easy to see that if 〈 fi : i < α〉 has f as an eub then f is also an lub for the

sequence in the partial ordering≤I . The converse is false in general. The function f

is an lub in the ordering≤I if and only if fi <I f for all i , and every function which

is below f on some I -positive set is also below some fi on an I -positive set.

Scales are central objects in PCF theory, and accordingly a central technical prob-

lem is to produce increasing sequences which have eubs. The key idea is that if we

can build a sequence such that along the way there are many stages where a “simple”

eub exists, then at the end we are guaranteed the existence of a (possibly “complex”)

eub.

We can sometimes simplify questions about eubs as follows: if 〈 fi : i < γ 〉 and

〈g j : j < δ〉 are two <I -increasing sequences of limit length, we say they are cofi-

nally interleaved if every function in one sequence is dominated modulo I by some

function from the other sequence, or equivalently,

{h : ∃i h <I fi } = {h : ∃ j h <I g j }.

It is easy to see that if two sequences are cofinally interleaved and one has an eub,

then the other one does too and the eubs are equal modulo I .

10.2 Good points Let I be an ideal on the index set X and let 〈 fi : i < γ 〉 be a

<I -increasing sequence. We say that a limit ordinal α ≤ γ is a good (or flat) point

for the sequence if and only if cf(α) > |X | and there exists an eub h for 〈 fi : i < α〉
such that cf(h(x)) = cf(α) for all x . This is equivalent to asserting that there is
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a pointwise increasing sequence 〈h j : j < cf(α)〉 cofinally interleaved mod I with

〈 fi : i < α〉.
Motivation: we show in the next theorem that if a sequence has enough good

points, it has an eub. We will then show how to use the nontriviality of I [λ] to

manufacture such sequences.

Theorem 10.1 (Shelah [17]) Let |X | < κ < λ with κ and λ regular. Suppose

that 〈 fi : i < λ〉 is a <I -increasing sequence with stationarily many good points of

cofinality κ . Then there exists an eub h such that cf(h(x)) > κ for all x .

Proof The proof breaks into two phases. We use the assumption that there are

stationarily many good points to construct an lub for the sequence in the ordering

≤I , then use it again to argue that the lub is in fact an eub.

Phase I : We will construct by induction a sequence of functions g j such that

fi <I g j for all i and j , and for j1 < j2 we have g j2 ≤I g j1, g j2 6=I g j1. We choose

g0 to be any bound, and for all j if g j fails to be an lub we choose g j+1 to witness

this failure. We will show that the construction halts for some j < |X |+.

At limit stages µ we let Sµ(x) = {g j (x) : j < µ}, and define hi
µ(x) = min(Sµ(x)

\ fi (x)). We claim that for µ < |X |+, hi
µ is eventually constant modulo I . If not we

find γ good of cofinality κ such that hi
µ does not stabilize for large i < γ , and fix

〈Hζ : ζ < κ〉 pointwise increasing and cofinally interleaved with 〈 fi : i < γ 〉. The

function x 7→ min(Sµ(x) \ Hζ (x)) cannot stabilize for large ζ < κ , but this is

impossible because |Sµ(x)| ≤ |X | < κ . We now choose gµ so that gµ =I hi
µ for all

large i .

Now we suppose for a contradiction that the construction runs for |X |+ steps. For

each x and each i , the value of hi
µ(x) will stabilize for large limit µ < |X |+ since the

smallest value which will ever appear must turn up at some point. So for each i < λ,

the function hi
µ stabilizes for large limit µ. So there is an unbounded set B ⊆ λ and

a fixed ν such that for all i ∈ B , hi
µ is constant for limit µ ≥ ν. If ν ≤ µ1 < µ2 we

may choose i ∈ B so large that gµ1
=I hi

µ1
and gµ2

=I hi
µ2

, so that gµ1
=I gµ2

,

contradicting the choice of the function g j .

We conclude that the construction halts at some stage before |X |+ with the con-

struction of an lub g.

Phase II : Suppose for a contradiction that our lub g from Phase I is not an eub.

Then we may find h <I g such that the set Si = {x : fi (x) ≤ h(x)} is I -positive

for all i . We claim that this sequence of sets is eventually constant modulo I . If not

then we find γ a good point of cofinality κ such that Si does not stabilize modulo I

for large i < γ , and fix 〈Hζ : ζ < κ〉 pointwise increasing and cofinally interleaved

with 〈 fi : i < γ 〉. If Dζ = {x : Hζ (x) ≤ h(x)} then (by the cofinal interleaving of a

pointwise increasing sequence) Dζ cannot stabilize for large ζ , but this is impossible

because Dζ decreases with ζ and |X | < κ .

Let S be such that Si =I S for all large i , and define g∗ so that g∗ agrees with h

on S and with g on the complement of S. Then by construction g∗ is a bound the fi

and g∗ is below g on a positive set, which is impossible since g is an lub.

To finish we should check that cf(g(x)) > κ for almost all x . This follows from

an argument similar to that we gave in Phase I that hi
µ stabilizes for large i . �
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It is interesting to note that the converse of the last result is also true. To see this let

C be a club subset of λ and build an IA chain 〈M j : j < κ〉 of structures of size less

than κ such that if M =
⋃

j M j , then γ = sup(M ∩ λ) ∈ C . It is routine to check

that the function h̄ given by h̄ : x 7→ sup(M ∩ h(x)) is an eub for 〈 fi : i < γ 〉, with

cf(h̄(x)) = κ for all x .

11 Building Scales, Goodness, and Approachability

11.1 Building scales Now we show how to use the nontriviality of I [λ] to con-

struct increasing sequences with eubs. For the sake of simplicity we work in the

setting of
∏

n<ω ℵn/finite, and work toward a proof of the basic fact (Shelah [17])

that there is an infinite A ⊆ ω with a scale of length ℵω+1 in
∏

n∈A ℵn/finite.

It is easy to see that
∏

n<ω ℵn/finite is ℵω+1-directed, that is to say, any ℵω

functions can be dominated mod finite by a single function. We build an IA

chain in (Hθ ,∈,<θ )〈Mi : i < ℵω+1〉, consisting of structures of size ℵω with

Mi ∩ℵω+1 ∈ ℵω+1. We define gα to be the <θ -least function such that gα dominates

all functions in Mα mod finite. Note that if β < α then Mβ ∈ Mα , so that gβ ∈ Mα

and gβ is dominated by gα.

For each k < ω it follows from Theorem 9.2 there is a stationary subset of

ℵω+1 ∩ cof(ℵk) in I [ℵω+1]. So for stationarily many γ of cofinality ℵk we may

find N ⊆ Mγ such that N is the union of an IA chain 〈Ni : i < ℵk〉 with |Ni | < ℵk .

Also Mα ∈ N for unboundedly many α < γ . If we define hi : m 7→ sup(Ni ∩ ℵm)

and h : m 7→ sup(N ∩ ℵm), then easily for m > k the sequence 〈hi (m) : i < ℵk〉 is

increasing with limit h(m). So h is an eub for 〈hi : i < ℵk〉.
We claim that the sequences 〈hi : i < ℵk〉 and 〈gα : α < γ 〉 are cofinally inter-

leaved. Once we have seen this, it easily follows that h is an eub for 〈gα : α < γ 〉.
On the one hand each hi is defined from the corresponding Ni , so hi ∈ Mγ , so

hi ∈ Mβ for some β < γ and hence hi <∗ gβ by construction. On the other hand,

for cofinally many α < γ we have Mα ∈ N , so Mα ∈ Ni for some i < ℵk , so

gα ∈ Ni , and thus easily gα < hi .

Appealing to Theorem 10.1, we have produced a sequence 〈gα : α < ℵω+1〉
which is increasing mod finite and has an eub g. Moreover, we know that for each

k < ω the set {n : cf(g(n)) = ℵk} is finite. Let A = {k : ∃n cf(g(n)) = ℵk}. For

each k ∈ A and each n with cf(g(n)) = ℵk fix 〈βn
i : i < ℵk〉 increasing and cofinal

in g(n). If we now define fα(k) to be the least i such that gα(n) < βn
i for all n with

cf(g(n)) = ℵk , then it is routine to check that the sequence of fαs can be thinned

out to give a scale of length ℵω+1 in
∏

k∈A ℵk/finite.

Remark 11.1 It is routine to check that if X is the set of good points for the in-

creasing sequence 〈gα : α < ℵω+1〉, then the resulting scale is good at almost every

point in X .

11.2 Goodness and approachability From now on we will mostly focus on the

special case of the combinatorics of ℵω and ℵω+1. As we just saw, there is an infinite

A ⊆ ω such that
∏

n∈A ℵn/finite has a scale of length ℵω+1. In fact, Shelah showed

there is a maximal choice for A (a “PCF generator”) which is well defined modulo

finite. Let B be this maximal set, let 〈 fi : i < ℵω+1〉 be a scale in
∏

n∈B ℵn/finite,

and define G to be the set of good points for this scale.
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The set G seems to depend on the choice of the scale 〈 fi : i < ℵω+1〉. However,

it is easy to see that if 〈 f ′i : i < ℵω+1〉 is another scale then for a club set of α the

sequences 〈 fi : i < α〉 and 〈 f ′i : i < α〉 are cofinally interleaved, so that if we define

G′ to be the set of good points for 〈 f ′i : i < ℵω+1〉 the sets G and G′ are equal

modulo clubs. The set G is a kind of “canonical” or “invariant” object.

Suppose for simplicity that 2ℵω = ℵω+1. Then as we saw already there is a sta-

tionary set A ⊆ ℵω+1 which is maximal in I [ℵω+1]. This set is well defined modulo

the club filter and is another “canonical” or “invariant” object. We can compare this

set A with G as follows. For almost all γ ∈ A of uncountable cofinality ℵk , we

may find an IA chain of structures 〈Ni : i < ℵk〉 each of size less than ℵk such that if

hi : n 7→ sup(Ni ∩ℵn) then 〈hi : i < ℵk〉 is cofinally interleaved with 〈 fα : α < γ 〉.
So A ∩ cof(> ω) is contained in G modulo clubs.

11.3 From squares to scales We have already seen how to use a squarelike princi-

ple provable in ZFC (the nontriviality of I [λ]) to build scales which have stationarily

many good points and therefore have an eub. In the rest of these notes we show how

to derive nicer scales from stronger forms of square and then how to use these scales

in resolving various combinatorial problems involving reflection.

To be a bit more precise we have the three squarelike principles:

�µ −→ �∗µ −→ µ+ ∈ I [µ+].

In the following sections we will see how for µ singular we can use each of these

principles to produce scales of length µ+ with additional “goodness” properties,

which can then be used to solve certain kinds of combinatorial problems. The general

idea is to use the squarelike principles to generate examples of incompactness, using

the scales as a tool.

12 Transversals

We will illustrate the power of the PCF-theoretic ideas we have discussed by apply-

ing them to the classical transversal problem. In this section we collect some basic

facts about transversals, and in the next section we show how to apply PCF theory.

A transversal of a set of nonempty sets is a 1-1 choice function for that set. We

say that PT(κ, λ) holds if whenever |F | = κ , |X | < λ for all X ∈ F , and every subset

of F with size less than κ has a transversal, then F has a transversal. NPT(κ, λ) is

the negation of PT(κ, λ). PT(κ, ω) holds for all κ by the compactness theorem for

first-order logic.

Note 12.1 Motivated by his work on almost-free groups and the Whitehead prob-

lem, Shelah has given a very general axiomatic theory of “free and almost-free struc-

tures.” The theory of transversals and the properties PT and NPT is a very concrete

and approachable special case of this theory.

It is easy to see that NPT(ℵ1,ℵ1) holds. We assign to each limit δ < ω1 a cofinal

subset Sδ of order type ω. By Fodor’s lemma there is no transversal, but easily for any

nonstationary (in particular countable) set T the set {Sδ : δ ∈ T } has a transversal.

12.1 The Milner-Shelah theorem Milner and Shelah gave a rather general “step-

ping up” theorem for NPT. Recall that a stationary subset S of a regular uncountable

cardinal κ is nonreflecting if and only if S ∩ α is nonstationary for every ordinal
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α < κ of uncountable cofinality. The following fact is key: if S ⊆ κ is a nonreflect-

ing stationary set of cofinality µ ordinals and Sδ is cofinal in δ of order type µ for all

δ ∈ S, then for every γ < κ we can find 〈ηδ : δ ∈ S ∩ γ 〉 such that the sets Sδ \ ηδ

are disjoint.

The proof is by induction on γ : for limit γ we choose C club in γ with C∩S = ∅.

If α and β are successive points in C then we use induction to choose ηδ so that Sδ\ηδ

are disjoint for δ ∈ S∩ (α, β). Arranging that ηδ > α for all such δ we avoid overlap

between different intervals, so we can “glue together” to choose ηδ for all δ ∈ S ∩ γ .

If γ ∈ S we can also choose ηδ > sup(Sδ ∩ Sγ ) in order to proceed past γ .

Note 12.2 By the same argument, if S is a set such that no initial segment of S

(including S itself) is stationary then for any 〈Sδ : δ ∈ S〉 with Sδ cofinal in δ we can

choose disjoint tails as above. In particular, this is true for S any nonstationary subset

of ℵ1.

We are now ready for the Milner-Shelah theorem.

Theorem 12.3 (Milner and Shelah [13]) If NPT(µ, λ) holds and there is a nonre-

flecting stationary set of cofinality µ ordinals in κ then NPT(κ, λ) holds.

Proof Let Aσ for σ < µ be an example for NPT(µ, λ). Let S be a nonreflecting sta-

tionary set as above and fix for each δ ∈ S a cofinal µ-sequence 〈ρ(δ, σ ) : σ < µ〉.
Define B(δ, σ ) = ({δ} × Aσ ) ∪ {ρ(δ, σ )}.

Claim 1: There is no transversal. Suppose that T (δ, σ ) ∈ B(δ, σ ) and T is 1-1. For

every δ ∈ S there is σ such that T (δ, σ ) = ρ(δ, σ ), because {Aσ } has no transversal.

A contradiction is immediate by Fodor’s lemma.

Claim 2: Every subset of size less than κ has a transversal. It is enough to show

this for

{B(δ, σ ) : σ < µ, δ ∈ S ∩ γ }

where γ < κ . Choose ηδ < µ so that the sequences 〈ρ(δ, σ ) : ηδ < σ < µ〉 are

disjoint for δ ∈ S ∩ γ . Choose T (δ, σ ) so that T (δ, σ ) = ρ(δ, σ ) for ηδ < σ < µ,

and 〈T (δ, σ ) : σ ≤ ηδ〉 forms a transversal of {δ} × {Aσ : σ ≤ ηδ}. �

For every regular κ , κ+ ∩ cof(κ) is a nonreflecting stationary subset of κ . So by an

easy induction NPT(ℵn,ℵ1) for all n such that 1 ≤ n < ω. At this point things

become more complex. For example, it is consistent that every stationary subset of

ℵω+1 reflects.

12.2 Singular compactness In this section we digress to sketch a proof of She-

lah’s singular compactness theorem, in the special case of the transversal problem

for families of countable sets.

Theorem 12.4 (Shelah [15]) For every singular cardinal λ, PT(λ,ℵ1) holds.

Proof Let λ be a singular cardinal, with µ = cf(λ) < λ. We fix 〈λi : i < µ〉 an

increasing sequence of regular cardinals which is cofinal in λ, with µ < λ0. Let

F be a family of countable sets such that every subfamily of size less than λ has a

transversal; we show how to produce a transversal for F .

Some motivation for the proof: We will imagine that there are µ many workers,

where worker i is responsible for building a transversal of a subset of F with size

λi ; the subsets of F claimed by different workers may overlap, but every element



270 James Cummings

of F will be claimed by at least one worker. We aim to put together the various

workers’ transversals to get a transversal for F . There are two main problems: two

workers may both claim the same element A of F and their transversals may assign

distinct elements of A to it, or dually two workers’ transversals may assign the same

element to distinct elements of F . In each case we will resolve the issue using an

idea familiar from recursion theory, namely, if i < j then worker i will win out over

worker j ; in the jargon of recursion theory “worker i has higher priority than worker

j”.

Worker i will build up her partial transversal in ω steps. In general when A ⊆ B

there is no guarantee that a transversal of A can be extended to a transversal of B;

we will leave until the end of the proof the argument that it is possible for worker i

to extend transversals as required.

More precisely we will construct for each i < µ an increasing ω-sequence of sets

〈F i
n : n < ω〉, together with functions f i

n , such that

(i) F i
n ⊆ F , |F i

n | = λi , F =
⋃

i<µ F i
0 ;

(ii) f i
n is a transversal of F i

n , f i
n ⊆ f i

n+1;

(iii) if i < j < µ, A ∈ F i
n , B ∈ F

j
n with A 6= B , and f i

n (A) = f
j

n (B) then

B ∈ F i
n+1.

For each A ∈ F i
n and j > i there is at most one B ∈ F

j
n with f i

n (A) = f
j

n (B),

since f
j

n is 1-1 on F
j

n ; so we are required to add at most λi ×µ = λi many elements

to F i
n . In terms of our story about the workers, worker i is attempting to assume

responsibility for all elements B ∈ F to which some worker of lower priority has

assigned an element which worker i had reserved for an element A in her domain.

Let F i
∞ =

⋃
n F i

n , and f i
∞ =

⋃
n f i

n . Clearly f i
∞ is a transversal of F i

∞. Since

F i
0 ⊆ F i

∞,
⋃

i F i
∞ = F . For each A ∈ F let i(A) be least such that A ∈ F

i(A)
∞

and define h(A) = f
i(A)
∞ (A). In terms of the story about the workers, this means

that the highest-priority worker among those who have claimed responsibility for A

is allowed to determine the value of the function h at A.

We claim that h is a transversal of F . To see this let A, B be distinct elements

of F . If i(A) = i(B) = i then h(A) = f i
∞(A) 6= f i

∞(B) = h(B) because f i
∞

is a transversal of F i
∞. Suppose for a contradiction that i(A) = i < i(B) = j ,

and h(A) = h(B). Find an n so large that A ∈ F i
n and B ∈ F

j
n . Then by defini-

tion f i
n (A) = f i

∞(A) = h(A) = h(B) = f
j
∞(B) = f

j
n (B). So by construction

B ∈ F i
n+1 ⊆ F i

∞ and thus i(B) ≤ i , contradiction! So h is a transversal as required.

To finish the proof we need to show that we can do the construction in such a way

that worker i can always extend f i
n to a transversal of F i

n+1. We use the following

key idea: if A ⊆ B we say that B is free over A if there is a transversal of B − A

which does not use any elements of
⋃

A. If B is free over A then trivially any

transversal of A can be extended to a transversal of B .

Consider the following game G(κ) where κ < λ is a cardinal. Two players I and

II collaborate to build a chain of sets E0 ⊆ F0 ⊆ E1 · · · with Ei , Fi subsets of F of

cardinality κ . At round n player I plays En and II responds with Fn . II wins if and

only Fn+1 is free over Fn for all n.

We claim that II has a winning strategy for κ for every κ < λ. Once we establish

this we are done with the proof of the theorem, because in the main construction
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worker i can build the chain of sets F i
0 ⊆ F i

1 · · · using a strategy for II in G(λi ), so

that F i
n+1 is free over F i

n and there is no problem in extending f i
n to get f i

n+1.

The game G(κ) is open for player I, so by the Gale-Stewart theorem it is deter-

mined. Suppose for a contradiction that player I has a winning strategy σ and build

an increasing and continuous chain 〈Fα : α < κ+〉 of subsets of F with the following

properties:

(i) |Fα| = κ ;

(ii) for any α0 < α1 < · · ·αn−1 < κ+, if E is the move by player I at round n

which σ dictates when player II plays Fαi at round i for every i < n then

E ⊆ Fα for some α < κ+.

Since |
⋃

α<κ+ Fα| = κ+ < λ, there is some transversal h of
⋃

α<κ+ Fα . We fix

C ⊆ κ+ a club set such that if α ∈ C then

(i) for any α0 < α1 < · · ·αn−1 < α, if E is the move by player I at round n

which σ dictates when player II plays Fαi at round i for every i < n then

E ⊆ Fα ;

(ii) for all x ∈
⋃

Fα , if x ∈ rge(h) then x = h(A) for some A ∈ Fα .

Let αi for i < ω be the first ω elements of C and consider a run of the game

E0 ⊆ Fα0
⊆ E1 ⊆ Fα1

· · · in which player I plays according to σ . It is easy to

see that Fαn+1
is witnessed by h to be free over Fαn , so that player II wins this run

contradicting the assumption that σ is winning for player I. �

13 Good Scales and Transversals

13.1 Good scales Let 〈 fi : i < ℵω+1〉 be a scale in
∏

n∈A ℵn/finite for some

A ⊆ ω (A is not necessarily the maximal set B discussed above). It is helpful to

characterize the good points of this scale in an alternative way. The following condi-

tions are equivalent for γ in ℵω+1 ∩ cof(> ω):

1. γ is good;

2. there is Y ⊆ γ unbounded and m < ω such that 〈 fα(n) : α ∈ Y 〉 is strictly

increasing for all n > m;

3. for every unbounded Z ⊆ γ there exist Y ⊆ Z and m as in (2).

Clearly (3) implies (2). If (2) holds and we form the pointwise supremum of the fα
for α ∈ Y we get an eub which has cofinality cf(γ ) past m, so (2) implies (1). To see

(1) implies (3) we fix 〈hi : i < cf(γ )〉 pointwise increasing and cofinally interleaved

with 〈 f j : j < γ 〉. Find Z0 ⊆ Y and α j , β j for j ∈ Z0 such that hα j <∗ g j <∗ hβ j .

Thinning out we get Z ⊆ Z0 such that hα j (n) < g j (n) < hβ j (n) for n past some

fixed m and j ∈ Z and also β j < αk when j, k ∈ Z with j < k. We are done since

the hi are pointwise increasing.

We say that the scale 〈 fi : i < ℵω+1〉 is good if it is good at every point in

ℵω+1 ∩ cof(> ω). The existence of a good scale is a rather weak consequence

of square, but is still useful as a construction principle.

We claim that if ℵω+1 ∈ I [ℵω+1] there is a good scale. The construction of

Section 11.1 gives a scale 〈 fα : α < ℵω+1〉 which is good at almost every point. Fix

a club set C such that every uncountable limit point of C is good, enumerate C as

〈αi : i < ℵω+1〉, and consider a new scale 〈gi : i < ℵω+1〉 given by gi = fαi . If i has

uncountable cofinality then αi is good and we may fix an eub h for 〈 fα : α < αi 〉 such
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that cf(h(n)) = cf(i) for all n; the sequence 〈g j : j < i〉 is cofinal in 〈 fα : α < αi 〉
so h is also an eub for 〈g j : j < i〉, and thus i is a good point for 〈g j : j < ℵω+1〉.

We illustrate the utility of good scales with an extended example.

13.2 Transversals We show how ideas from PCF theory can be relevant to the

transversal problem by proving the following result of Magidor and Shelah.

Theorem 13.1 (Magidor and Shelah [12]) If cf(κ) = ω and there exist a sequence

〈κi : i < κ〉 cofinal in κ and a good scale 〈 fα : α < κ+〉 in the reduced product∏
i κi/finite, then NPT(κ+,ℵ1).

Proof Start by noting the trivial fact that A × B is disjoint from C × D if and only

if either A is disjoint from C or B is disjoint from D. Let S = κ+ ∩ cof(ω1) and for

each α ∈ S let Aα = {(m, fα(m)) : m < ω}. Clearly Aα meets Aβ if and only if fα
and fβ agree at some n. Intuitively, the goodness of the scale implies that the Aα are

quite “well spread out,” which is helpful in building transversals.

The main point is to establish the following slightly technical result.

Claim 13.2 (Main Claim) For every γ < κ+ there exist

〈Bα, Dα : α ∈ S ∩ γ 〉

such that Bα is a cofinite subset of Aα, Dα is club in α, and the sets

{Bα × Dα : α ∈ S ∩ γ } are pairwise disjoint.

The idea here is that while we are not in a position to choose disjoint tails of the sets

Aα , we may use the extra “slack” provided by the club sets Dα to get a satisfactory

substitute.

Suppose for the moment that we have established the Claim 13.2. We choose

Eα ⊆ α club of order type ω1 for each α ∈ S. It is routine to check that

〈Aα × Eα : α ∈ S〉 witnesses NPT(κ+,ℵ2). Before proving the theorem, we

show how to improve this to NPT(κ,+ ,ℵ1) by an argument reminiscent of the

Milner-Shelah theorem (Theorem 12.3).

Fix for each limit γ < ℵ1 a set Sγ cofinal in γ with order type ω. Enumerate Eα

as 〈eα,γ : γ < ω1〉. Define

Bα,γ = (Sγ × {α}) ∪ (Aα × {eα,γ }).

Claim 1: There is no transversal. Suppose for a contradiction that F is one. Then

for all α there is γ such that F chooses from the second component, but this is

impossible by Fodor’s theorem.

Claim 2: For η < κ+, {Bα,γ : α < η, γ < ℵ1} has a transversal. To see this use

Claim 13.2 to choose Bα ⊆ α and Dα ⊆ Eα so that the sets Bα × Dα are disjoint. If

eα,γ ∈ Dα then we associate to (α, γ ) a point in Bα × {eα,γ }. The set of γ such that

eα,γ /∈ Dα is nonstationary, so the corresponding set of Sγ has a transversal and we

can associate to (α, γ ) a point of Sγ × {α}.

To prove Claim 13.2 we show by induction on γ that for all δ < γ we may

choose suitable Dα and Bα for α ∈ S ∩ (δ, γ ], with the additional property that

Dα ∩ (δ + 1) = ∅.

If γ is a successor ordinal there is nothing to do. If γ is limit of cofinality ω or ω1

then we may choose C club in γ and disjoint from S, use C to break up S ∩ γ into

intervals, appeal to induction on each interval and combine the results. This gives a

suitable choice of Dα and Bα for S∩(δ, γ ); if cf(γ ) = ℵ1 we may simply choose Dγ
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to be some club set in γ , and then throw away initial segments of Dα for α ∈ S ∩ γ

to arrange that Dα ∩ Dγ = ∅.

Now suppose that cf(γ ) > ω1 and appeal to the goodness of the scale to find

A ⊆ γ unbounded and n < ω such that 〈 fα(m) : α ∈ A〉 is strictly increasing for

all m > n. Let C be the set of α with sup(C ∩ α) = α, and note that γ can be

decomposed into limit points of C and points which lie in some interval (δ, γ ] where

δ and γ are successive points in C .

We appeal to the induction hypothesis to choose suitable Dα and Bα for α in each

such interval (δ, γ ], making sure that Dα ∩ (δ+1) = ∅. Clearly there is no problem

between αs from different intervals.

For α ∈ S which is also a limit point of C we choose Dα = C ∩ α. Note that

automatically Dα ∩ Dβ = ∅ for β 6= α unless β is also a limit of C; the point is

that for β not limit in C we have arranged that Dβ starts past the largest point of C

below.

The key point is the choice of Bα for α ∈ S which is limit in C . Let η(α) be the

least point of A above α. Appealing to the choice of A and n and the fact that we

have a scale, we will choose n∗(α) > n such that fβ (m) < fα(m) < fη(m) for all

β ∈ A ∩ α and all m > n∗(α). We then let Bα = {(m, fα(m)) : n∗(α) < m < ω}.
To finish let β < α where β is also a limit point of C lying in S. For

m > max{n∗(α), n∗(β)} we have

fβ(m) < fη(β)(m) < fα(m)

so that Bα and Bβ are disjoint. �

Actually NPT(ℵω+1,ℵ1) can be proved without recourse to a good scale. This re-

quires a heavier dose of PCF than the rest of these notes, so we defer the proof until

Section 19.

However, Magidor and Shelah [12] also showed that NPT(ℵω2+1,ℵ1) is indepen-

dent of ZFC. What is the difference? Essentially this: in a scale of length ℵω2+1 it

is possible that for unboundedly many n, there are many points of cofinality ℵω.n+1

where an eub of nonconstant cofinality exists.

14 Very Good Scales

We now consider some stronger properties of scales which follow from stronger

versions of square. By analogy with the version of goodness we just discussed, let

us say that a scale 〈 fα : α < ℵω+1〉 is very good if for every limit α < ℵω+1 of

uncountable cofinality there is C ⊆ α club in α such that 〈 fα(m) : α ∈ C〉 is strictly

increasing for all large m.

It is fairly routine to construct such a scale given a square sequence. Let

〈Cα : α < ℵω+1〉 be a square and let 〈gα : α < ℵω+1〉 be an arbitrary scale. We may

assume that ot(Cα) < ℵω for all α. Now we construct fα so that it dominates gα

pointwise, and arrange that for α limit fα(m) > fβ (m) for all β ∈ lim(Cα) and all

m with ot(Cα) < ℵm .

Remark 14.1 A very similar construction works from the assumption that �ℵω,ℵn

holds for some n < ω.

Very good scales encapsulate some of the power of square sequences to construct

noncompact objects. To illustrate this we relate very good scales to stationary reflec-

tion. We start by noting that typically in models where stationary reflection holds,
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it holds in a form which asserts that several stationary sets reflect simultaneously:

for example, when a weakly compact cardinal is collapsed to become ℵ2, any ℵ1

stationary subsets of ℵ2 ∩ cof(ω) reflect simultaneously to a point of cofinality ℵ1.

Magidor’s model in which every stationary subset of ℵω+1 reflects exhibits a similar

phenomenon.

Remark 14.2 The point is that the reflection phenomena in these models arise from

a single “generic elementary embedding.”

In our joint work with Foreman and Magidor [5] we showed that very good scales

impose a barrier to simultaneous reflection. Let 〈 fα : α < ℵω+1〉 be a very good

scale and let S ⊆ ℵω+1 be stationary. For each n let Tn ⊆ S be a stationary set such

that there is βn < ℵn with fα(n) = βn for all α ∈ Tn . Suppose for a contradiction

that all the Tn reflect simultaneously at some γ . Since the scale is very good there

is C ⊆ γ and m such that 〈 fα(m) : α ∈ C〉 is strictly increasing, and so C can meet

Tm at most once.

We actually showed that no infinite subfamily of the Tn can reflect simultaneously.

15 Better Scales

From weak square we cannot do quite as well, but can still derive a useful scale

principle.

Definition 15.1 Aiming for a concept between “good” and “very good” we define

a scale 〈 fα : α < ℵω+1〉 as better if for every limit α < ℵω+1 there is a club subset

C ⊆ α, such that for every β ∈ C there is m < ω such that fγ (n) < fβ (n) for all

γ ∈ C ∩ β and n > m.

Note 15.2 Such a club set C always exists when cf(α) = ω, so that a very good

scale is better. Also when cf(α) > ω there is a single m which works for unbound-

edly many β ∈ C , so that a better scale is good.

To construct a better scale, we start with a weak square sequence 〈Cα : α < ℵω+1〉
such that ot(C) < ℵω for every club in Cα. At stage α we form fC for each C ∈ Cα

by defining fC (m) = sup{ fβ(m) : β ∈ C} for ℵm > ot(C), and then choose fα so

that fα >∗ fC for all C ∈ Cα .

It is interesting to note that if ℵω is strong limit and 2ℵω > ℵω+1 there is a better

scale. This is proved in Section 19.

15.1 From a better scale to an ADS sequence As an example of the use of better

scales, we construct a special kind of almost disjoint family and use it to show that

stationary reflection fails for stationary sets of countable sets of ordinals.

Definition 15.3 Let κ be a cardinal. A sequence 〈Aα : α < κ+〉 is an ADS-

sequence if each Aα is an unbounded subset of κ , and for every β < κ+ it is possible

to find a function F : β → κ such that the sets 〈Aα \ F(α) : α < β〉 are pairwise

disjoint.

Such sequences always exist for κ regular, but may or may not for κ singular. They

were introduced by Shelah, who showed that if there is an ADS-sequence then

cf(κ) = cf(|κ |) in any extension of the universe in which κ+ remains a cardinal.

Theorem 15.4 (Cummings, Foreman, and Magidor [5]) If 〈 fα : α < ℵω+1〉 is a

better scale, there is an ADS-sequence for ℵω.
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Proof This follows immediately from the assertion that for every β < ℵω+1 there

is a function F : β → ω such that for γ < δ < β, fγ (n) < fδ(n) for all

n > max{F(γ ), F(δ)}. We will establish this by induction on β.

The successor case is easy, so assume that β is limit and fix C ⊆ β as in the

definition of better scale. Let us enumerate C in increasing order as {βi : i < γ } and

suppose that fβi (n) > fβ j (n) for j < i and n > ni . Choose by induction functions

Fi from [βi , βi+1) to ω which work for the functions with indices in this interval.

Increasing the values of the Fi if necessary we may assume that for all γ in

[βi , βi+1) the following properties hold: Fi (γ ) ≥ ni , and also fβi (n) ≤ fγ (n)

< fβi+1
(n) for n > Fi (γ ). We claim taking the union of the Fi gives us a function

which works for β. This is clear when γ and δ are in the same half-open interval, so

suppose that γ < βi+1 ≤ β j ≤ δ. If n > max{F(γ ), F(δ)} then by construction

Fγ (n) < Fβi+1
(n) ≤ Fβ j (n) ≤ Fδ(n), so we are done. �

15.2 ADS and reflection Returning to our theme of comparing scales and squares

with reflection, we showed in our joint work with Foreman and Magidor [5] that

ADS-sequences are inconsistent with a standard stationary reflection hypothesis. To

be more precise consider the reflection principle which states that for every stationary

S ⊆ [κ]ℵ0 there is X ∈ [κ+]ℵ1 such that ℵ1 ⊆ X , cf(X ∩ κ+) = ℵ1 and S ∩ [X]ℵ0

is stationary. This holds if a supercompact cardinal is collapsed to ℵ2 or under the

assumption of MM.

Suppose for a contradiction that this reflection principle holds and 〈Aα : α < κ+〉
is an ADS-sequence for κ some cardinal of cofinality ω; without loss of generality

ot(Aα) = ω. Consider the stationary set of countable x ⊆ κ+ such that Asup(x) ⊆ x ,

and suppose that the stationarity of S reflects to X as above.

Let F : sup(X) → κ be such that the Ai \ F(i) are disjoint, and use

Fodor’s theorem to find T ⊆ S ∩ [X]ℵ0 stationary and a ∈ X such that

min(Asup(x) \ F(sup(x))) = a for all x ∈ T . This is impossible because since

cf(X ∩ κ+) = ℵ1 we may find x and y in T with distinct suprema.

Remark 15.5 It follows from some of our joint work with Foreman and Magidor [5]

that the various results we have shown comparing square principles with reflection

are sharp. To be more precise from large enough cardinals it is consistent that

(i) ℵω+1 ∈ I [ℵω+1] and every stationary subset of [ℵω+1]
ℵ0 reflects to some

X ∈ [ℵω+1]
ℵ1 with cf(X) = ℵ1;

(ii) �∗ℵω
holds and for every m and n with m < n < ω, any ℵn many stationary

subsets of ℵω+1 ∩ cof(ℵm) reflect simultaneously at some point of cofinality

ℵn;

(iii) �ℵω,ω holds and any finite family of stationary subsets of ℵω+1 reflects si-

multaneously.

16 PFA Versus Square

Todorčević [19] showed that PFA is incompatible with square and Magidor observed

that by the same argument PFA is incompatible with some weaker squarelike princi-

ples.

Theorem 16.1 (Magidor [11]) Let PFA hold. Then �κ,ℵ1
fails for every uncount-

able κ .
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Proof Suppose that 〈Cα : α < κ+〉 is a �κ,ℵ1
-sequence. If D is club in κ+ and

D ∩ α ∈ Cα for all α ∈ lim(D) we will say that D threads the square sequence. Of

course, no such club set D can exist in V , but such sets may exist in extensions of V .

Let P be the poset whose conditions are countable closed bounded subsets of κ+.

This is equivalent to a countably closed Lévy collapse making |κ | = ℵ1. In the

extension by P there is no club set D which threads the square sequence. To see

this suppose that Ḋ names a suitable club set. Since Ḋ is forced not to lie in V we

may build a downward branching tree of conditions in P, {ps : s ∈ <ω2} and an

increasing sequence of ordinals 〈αn : n < ω〉 such that max(ps) = αlh(s), pt forces

Ḋ ∩ [αn, αn+1) 6= ∅ for t ∈ n+12, and for t1 6= t2 in n2 the conditions pt1 and pt2

force inconsistent information about Ḋ.

Now choose for each x ∈ ω2 a lower bound px for 〈px↾i : i < ω〉. Each px forces

that α ∈ lim(Ḋ), where α = supn αn . So each px forces that Ḋ ∩ α ∈ Cα , and

extending px if necessary we may assume that px forces Ḋ ∩ α = Dx for some

Dx ∈ Cα . The Dx must all be distinct, but by PFA 2ℵ0 = ℵ2 while |Cα| ≤ ℵ1.

Let C be the club set in κ+ introduced by P, say C = {γi : i < ℵ1}. Working

in the extension by P we define a tree T of cardinality ℵ1. The elements are pairs

(γ j , E) where E ∈ Cγ j and (γ j , E) <T (γk, F) if and only if γ j ∈ lim(F) and

F ∩ γ j = E . We have just seen that T has no branch of length ℵ1.

Let Q be Baumgartner’s forcing [3] to specialize T using finite partial specializing

functions. Q is c.c.c. and so P∗Q is proper. Meeting a suitable collection of ℵ1 many

dense sets we may produce in V a continuous increasing sequence 〈γi : i < ℵ1〉 and

a specializing function N from {(γi , E) : i < ω1, E ∈ Cγi } to ω, that is, a function

N such that (γ j , E) <T (γk, F)⇒ N(γ j , E) 6= N(γk , F).

If we now let γ = supi γi and choose C ∈ Cγ , then γi ∈ lim(C) and hence

C ∩ γi ∈ Cγi for a club set A of i < ℵ1. The sequence 〈(γi , C ∩ γi ) : i ∈ A〉 is

increasing in the <T -ordering, but this is impossible since N is 1-1 on this sequence.

�

Magidor [11] showed that PFA is consistent with the assertion that �κ,ℵ2
holds for all

uncountable cardinals κ . As we see in the next section, this is in very sharp contrast

to the situation for MM.

17 MM Versus Good Scales

In contrast with PFA, Magidor showed that MM is inconsistent with even an ex-

tremely weak form of square principle.

Theorem 17.1 (Magidor [11]) If MM holds, there is no good scale (in fact no scale

which is good at every point of cofinality ℵ1).

Proof We consider a forcing poset P which resembles Namba forcing and adds a

new function in
∏

n ℵn . A condition is a tree T such that each t ∈ T is a finite

sequence with t (n) ∈ ℵn+2 ∩ cof(ω) for n < lh(t). A condition is required to

have a stem s such that every t ∈ T is comparable with s, and if t extends s then

{α : t ⌢ α ∈ T } is stationary in ℵlh(t)+2. The ordering on P is inclusion.

If T1 and T2 are conditions we say that T1 is a direct extension of T2 and write

T1 ≤
∗ T2 if T1 ≤ T2 and the conditions have the same stem. A key fact is that if

S ≤ T then S ≤∗ Ts , where s is the stem of S and Ts is the subtree of T consisting

of elements comparable with s.
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Claim 1: If τ̇ is a name for an element of ℵ1 and S ∈ P, there is T ≤∗ S which

decides τ̇ .

Proof Let s be the stem of S, lh(s) = n. If the claim fails, then for stationarily

many α ∈ ℵn+2 we will have s ⌢ α ∈ S and no direct extension of Ss⌢α decides

τ̇ . Otherwise by ℵ2-completeness we may build a direct extension of S deciding τ̇ .

Repeating this argument, we may work up the tree and build U ≤∗ S such that for

every t ∈ U , there is no direct extension of Ut deciding τ̇ ; but this is impossible

because some extension of U decides τ̇ .

Similarly if S has a stem of length n and τ̇ is a name for an element of ℵn+1 there

is a direct extension of S deciding τ̇ . �

Let f ∈
∏

n ℵn+2 be the generic function added by P.

Claim 2: If S 
 ġ < ḟ then there exist T ≤∗ S and h ∈ V such that T 
 ġ < ȟ.

Proof For simplicity assume that S has empty stem. For each α such that 〈α〉 ∈ S,

we may find a direct extension of S〈α〉 deciding g(0). Appealing to Fodor’s lemma

we may build a direct extension of S deciding g(0). Now working up S level by level

we build T ≤∗ S such that for every t ∈ T , Tt decides g(lh(t)). Easily T bounds

g. �

To apply MM we need to see that P is stationary preserving. For this we use a

game-theoretic argument.

Claim 3: P is stationary preserving.

Proof Fix A a stationary subset of ω1, Ċ a name for a club subset, and S a condition

in P. We show how to find U ≤ S and δ ∈ A with U 
 δ ∈ Ċ . For simplicity we

assume that S is the trivial condition.

We assign to each 〈α〉 ∈ S an ordinal γ〈α〉 in such a way that for every i < ω1

there are stationarily many α ∈ ℵ2 ∩ cof(ω) such that γ〈α〉 = i . Using Claim 1 we

find S1 ≤∗ S with the same first level such that S1
〈α〉 decides min(Ċ \ γ〈α〉) as some

δ〈α〉.

Repeating we thin out level by level to find T ≤∗ S together with an assignment

of γt and δt to t ∈ T such that Tt 
 min(Ċ \ γt ) = δt , and for every t and i there are

stationarily many α with γt⌢α = i .

We consider for each δ < ℵ1 a game Gδ in which the players collaborate to build

a branch through T ; at round n player I chooses a nonstationary set An ⊆ ℵn+2

and a countable ordinal βn < δ. Player II responds with αn /∈ An . Player II loses

immediately if 〈α0, . . . , αn〉 /∈ T or γα0,...,αn ≤ βn or δα0,...,αn ≥ δ.

Clearly Gδ is open, so it is determined by the Gale-Stewart theorem. Let S be the

set of δ where I wins and fix Eτ = 〈τδ : δ ∈ S〉 winning strategies for each such δ.

We claim that S is nonstationary. If not we choose a countable elementary

N ≺ Hθ such that N contains everything relevant, and δ = N ∩ ω1 ∈ S. We will

build a run in which I plays according to τδ while II plays ordinals from N and never

loses. The only problem is that τδ /∈ N .

To build the run we work as follows. If II has played α0, . . . , αi−1 then let βi < δ

be the ordinal part of τδ’s response. We compute the union over all γ ∈ S of the

nonstationary sets dictated by the various τγ s in response to α0, . . . , αi−1; this union

is a nonstationary subset of ℵi+2 lying in N , and βi ∈ N so we may choose a
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suitable αi ∈ N . Key point: the map s 7→ δs is in N so the condition δα0,...,αn < δ is

automatic.

Now we choose δ ∈ A such that II wins Gδ . Fixing a winning strategy ρ and a

sequence 〈δn : n < ω〉 increasing and cofinal in δ, we use ρ to thin out T to U ≤∗ T

such that for all u ∈ U of length n we have δn < γu ≤ δu < δ. Clearly U forces that

δ is a limit point of Ċ . �

Claim 4: If MM holds then there is no good scale of length ℵω+1 in
∏

n∈A /finite

for any A ⊆ ω.

Proof Suppose that 〈 fα : α < ℵω+1〉 is such a scale. By a standard application of

MM to the stationary preserving poset P we may produce an ordinal δ of cofinality

ℵ1 and a function f ∈
∏

n∈A ℵn ∩ cof(ω) such that f is an eub for 〈 fα : α < δ〉.
This is impossible because MM implies that there is no cofinal increasing sequence

of length ω1 in ωω/finite. Contradiction. �

�

18 Another Model with No Good Scales

We give another (slightly simpler) proof that it is consistent for no good scale of

length ℵω+1 to exist. This proof comes from our joint work with Foreman and Magi-

dor [4]. In the course of the proof we will give another argument that �∗µ fails when

cf(µ) < κ < µ and κ is µ+-supercompact.

We start by showing that large cardinals put limits on the existence of good scales.

Theorem 18.1 (Shelah [17]) Let κ and µ be cardinals such that cf(µ) < κ < µ

and κ is µ+-supercompact. Let 〈µi : i < cf(µ)〉 be a sequence of regular cardinals

which is increasing and cofinal in µ with µ0 > κ , and let 〈 fα : α < µ+〉 be a scale

in
∏

i µi . Then this scale fails to be good at stationarily many points in µ+.

Proof Let j : V −→ M witness that κ is µ+-supercompact. That is to say

crit( j) = κ , j (κ) > µ+ and µ+M ⊆ M .

Let γ = sup j“µ+, and consider the image of the scale under j , where we

note that since cf(µ) < κ = crit( j) this image consists of a j (µ+)-sequence

〈 j ( f )α : α < j (µ+)〉 in
∏

i<cf(µ) j (µi). We claim that if we define a function h

with domain cf(µ) by h : i 7→ sup j“µi , then h ∈
∏

i<cf(κ) j (µi), and in M the

function h is an eub for 〈 j ( f )α : α < γ 〉. The first point is immediate because in

M the cofinality of sup j“µi is µi , while cf( j (µi)) > j (κ) > µi . If g < h then

g < j ◦h0 for some h0 ∈
∏

i µi , h0 <∗ fα for some α and so g < j ◦h0 <∗ j ( f ) j (α)

where j (α) < γ . The point γ cannot be good because in M we have cf(h(i)) = µi ,

whereas if γ were good cf(h(i)) would be constant for large i . �

Now we specialize to the case where µ = κ+ω. The same argument shows that there

are stationarily many δ < κ such that the set Sδ = {α ∈ κ+ω+1 ∩ cof(δ+ω+1) :

α is not good for Ef } is stationary.

Let us fix such a δ and force with Coll(ω, δ+ω)×Coll(δ+ω+2,< κ). Since this is

small forcing, the stationarity of Sδ is preserved and Ef is still a scale. We claim that

every point of Sδ is now a nongood point of cofinality ℵ1.

To see this let γ ∈ Sδ and suppose for a contradiction that γ is good in the generic

extension. We may therefore fix X ⊆ γ unbounded of order type δ+ω+1
V such that
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〈 fα(i) : α ∈ X〉 is increasing for all large i . However, it is easy to see that there is

Y ∈ V with Y ⊆ X unbounded. This is impossible since γ is not good in V .

19 More PCF

In this final section of these notes we collect some results which require a little more

sophistication in PCF theory than those of the preceding sections. All the results in

this section are due to Shelah [17].

19.1 Analysis of eubs in a scale of length ℵω+1 Let 〈 fα : α < ℵω+1〉 be a scale

of length ℵω+1 in
∏

n∈A ℵn/finite. Let β < ℵω+1 be such that cf(β) is uncountable

and there is an eub g for 〈 fα : α < β〉 such that cf(g(n)) > ω for all n. Then we

claim that cf(g(n)) = cf(β) for all large n, so, in particular, β is good. To see that

cf(g(n)) = cf(β) for all large n, suppose for a contradiction that cf(g(n)) 6= cf(β)

for an unbounded set of n.

Case 1: cf(g(n)) > cf(β) for n ∈ C with C unbounded. Fix 〈βi : i < cf(β)〉
increasing and cofinal in β; thinning out this sequence if necessary we may find a

fixed M such that fβi (n) < g(n) for all i and all n ∈ A with n > M . Define a

function h by setting h(n) = sup{ fβi (n) : i < cf(β)} if n ∈ C and n > M , and

h(n) = 0 otherwise. Clearly h < g and so since g is an eub h <∗ fβi for some i ,

which is impossible as h(n) ≥ fβi (n) for cofinally many n.

Case 2: ω < cf(g(n)) < cf(β) for n ∈ D with D unbounded. Since there are

only finitely many regular cardinals below cf(β), we may thin out D to arrange

that cf(g(n))) = γ for all n ∈ D, where γ is a regular uncountable cardinal with

γ < cf(β). Choose functions 〈g j : j < γ 〉 with g j ∈
∏

n∈C ℵn and 〈g j (n) : j < γ 〉
increasing and cofinal in g(n). It is routine to check that 〈g j : j < γ 〉 is cofinally

interleaved with 〈 fα ↾ D : α < β〉, but this is impossible as γ 6= cf(β).

Remark 19.1 The stipulation that cf(g(n)) > ω for all n is necessary here. The

point is that consistently ωω/finite can have a well-ordered cofinal subset of length

some uncountable regular cardinal, giving rise to a situation where an eub exists at a

nongood point.

19.2 The trichotomy theorem The idea of Theorem 10.1 gives us a more general

statement of the same sort, Shelah’s Trichotomy Theorem.

Theorem 19.2 (Trichotomy) Let |X |+ < λ = cf(λ) and let 〈 fi : i < λ〉 be a <I -

increasing sequence. Then one of the following possibilities holds:

1. there is an eub h such that cf(h(x)) > |X | for all x;

2. there is an ultrafilter U on X disjoint from I and a sequence 〈Sx : x ∈ X〉
such that |Sx | ≤ |X | for all x , and some subfamily of

∏
x Sx is cofinally

interleaved with 〈 fi : i < λ〉 modulo U;

3. there is a function h such that the sequence 〈{x : fα(x) < h(x)} : α < λ〉
does not stabilize modulo I for large α.

The proof is very similar to that of Theorem 10.1, using failure of alternative 2 in

Phase I and failure of alternative 3 in Phase II.

Notice that if cf(λ) > 2|X | then alternatives 2 and 3 must fail, so that an eub

as in alternative 1 exists. In particular, in a scale of length ℵω+1 on some product∏
n∈A ℵn/finite, an eub exists at every point of cofinality greater than the continuum:

by the analysis we did in the first part of this section, every such point is good!
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It is also easy to see that if alternatives 2 or 3 hold at λ then they hold at almost

every λ∗ ∈ λ ∩ cof(> |X |). In particular, if we are given a scale of length ℵω+1

on some product
∏

n∈A ℵn/finite, and λ is an nongood point of cofinality greater

than ℵ1, then there is a club subset C of λ such that all points in C ∩ cof(> ω) are

nongood.

We can use this last remark to prove NPT(ℵω+1,ℵ1) outright in ZFC; we let S

be the set of good points in ℵω1
∩ cof(ω1) and then establish the Claim 13.2 as in

Section 13. The difference is that not all limit stages of cofinality greater than ω1 are

good; however, at the nongood limit stages λ we can choose a club set C such that

C ∩ cof(ω1) avoids S, and there is no problem, while at the good limit stages we use

exactly the same argument as we did in Section 13.

Finally we use the Trichotomy Theorem 19.2 to establish a connection between

the classical Singular Cardinal Problem and the combinatorial principles we have

discussed here.

Theorem 19.3 If ℵω is strong limit and 2ℵω > ℵω+1 there is a better scale of

length ℵω+1 on some product
∏

n∈D ℵn/finite.

Proof Let A = {ℵn : n < ω}. We appeal to the theory of PCF generators for A.

Easily J<ℵω = J<ℵω+1 = [A]
<ω. Let B generate J<ℵω+2

over J<ℵω+1
, and let C

generate J<ℵω+3
over J<ℵω+2

.

Since C /∈ J<ℵω+2
, and B generates J<ℵω+2

over J<ℵω+1
, we see that

C \ B /∈ J<ℵω+1
, that is to say, C \ B is infinite. Of course C ∩ B ∈ J<ℵω+1

,

so we may as well replace C by C \ B and assume that the generators C and B are

disjoint.

We know on general grounds that
∏

C/J<ℵω+2
is ℵω+2-directed, that is, any sub-

set of
∏

C with size at most ℵω+1 is bounded modulo J<ℵω+2
. For any X ⊆ C we

have X = X \ B , so X ∈ J<ℵω+2
if and only if X is finite. It follows that

∏
C/finite

is ℵω+2-directed.

We now fix a “silly square” sequence, that is, a �ℵω,ℵω+1
-sequence. We may

assume that every club set which appears has order type less than ℵω. Imitating the

construction of a better scale from a �ℵω,ℵω -sequence in Section 15, we build an

increasing sequence 〈 fα : α < ℵω+1〉 such that for every C ∈ Cα the function fα
eventually dominates the pointwise supremum supβ∈Cα

fβ ; this is possible by the

directedness of
∏

C/finite.

It is routine to check, using Trichotomy, that there is an eub h for 〈 fα : α < ℵω+1〉
with the property that for every n < ω the set

An = {m : cf( fα(ℵm)) = ℵn}

is finite. If we let D = {ℵn : An 6= ∅} then we can “collapse” the sequence

〈 fα : α < ℵω+1〉 as in Section 11.1 to get a scale of length ℵω+1 in
∏

D/finite. It is

routine to check that this scale is better. �
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Vol III, North Holland, Amsterdam, 1975. Zbl 0322.05004. MR 51:12534. 269

[14] Mitchell, W., “Aronszajn trees and the independence of the transfer property,” Annals of

Mathematical Logic, vol. 5 (1972/73), pp. 21–46. Zbl 0255.02069. MR 47:1612. 259

[15] Shelah, S., “A compactness theorem for singular cardinals, free algebras, Whitehead

problem and transversals,” Israel Journal of Mathematics, vol. 21 (1975), pp. 319–49.

Zbl 0369.02034. MR 52:10410. 269

[16] Shelah, S., “On successors of singular cardinals,” pp. 357–80 in Logic Colloquium ’78

(Mons, 1978), vol. 97 of Studies in the Logic and Foundations of Mathematics, North-

Holland, Amsterdam, 1979. Zbl 0449.03045. MR 82d:03079. 254, 260, 263

[17] Shelah, S., Cardinal Arithmetic, vol. 29 of Oxford Logic Guides, The Clarendon Press,

New York, 1994. Zbl 0848.03025. MR MR1318912 (96e:03001). 255, 260, 264, 265,
266, 267, 278, 279

http://www.emis.de/cgi-bin/MATH-item?0339.04002
http://www.ams.org/mathscinet-getitem?mr=54:4988
http://www.ams.org/mathscinet-getitem?mr=87c:03099
http://www.emis.de/cgi-bin/MATH-item?0988.03075
http://www.ams.org/mathscinet-getitem?mr=2003a:03068
http://www.emis.de/cgi-bin/MATH-item?0880.03022
http://www.ams.org/mathscinet-getitem?mr=98i:03062
http://www.emis.de/cgi-bin/MATH-item?0347.02044
http://www.ams.org/mathscinet-getitem?mr=58:5208
http://www.emis.de/cgi-bin/MATH-item?0579.03039
http://www.ams.org/mathscinet-getitem?mr=86g:03079
http://www.emis.de/cgi-bin/MATH-item?0819.20059
http://www.ams.org/mathscinet-getitem?mr=94m:03081
http://www.emis.de/cgi-bin/MATH-item?0322.05004
http://www.ams.org/mathscinet-getitem?mr=51:12534
http://www.emis.de/cgi-bin/MATH-item?0255.02069
http://www.ams.org/mathscinet-getitem?mr=47:1612
http://www.emis.de/cgi-bin/MATH-item?0369.02034
http://www.ams.org/mathscinet-getitem?mr=52:10410
http://www.emis.de/cgi-bin/MATH-item?0449.03045
http://www.ams.org/mathscinet-getitem?mr=82d:03079
http://www.emis.de/cgi-bin/MATH-item?0848.03025
http://www.ams.org/mathscinet-getitem?mr=MR1318912 (96e:03001)


282 James Cummings

[18] Solovay, R. M., W. N. Reinhardt, and A. Kanamori, “Strong axioms of infinity and

elementary embeddings,” Annals of Mathematical Logic, vol. 13 (1978), pp. 73–116.

Zbl 0376.02055. MR 80h:03072. 260
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