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Equivalences between Pure Type Systems and
Systems of Illative Combinatory Logic

M. W. Bunder and W. J. M. Dekkers

Abstract Pure Type Systems, PTSs, were introduced as a generalization of

the type systems of Barendregt’s lambda cube and were designed to provide

a foundation for actual proof assistants which will verify proofs. Systems of

illative combinatory logic or lambda calculus, ICLs, were introduced by Curry

and Church as a foundation for logic and mathematics. In an earlier paper we

considered two changes to the rules of the PTSs which made these rules more

like ICL rules. This led to four kinds of PTSs. Most importantly PTSs are about

statements of the form M : A, where M is a term and A a type. In ICLs there

are no explicit types and the statements are terms. In this paper we show that for

each of the four forms of PTS there is an equivalent form of ICL, sometimes if

certain conditions hold.

1 Introduction

The similarity between rules of a generalized type theory (that of Martin-Löf [16])

and those of illative combinatory logic was first noted in Bunder [8]. When Pure

Type Systems (PTSs), which encompassed many generalized type systems, were

developed, the similarity of the PTS application, abstraction, and product rules, and

rules of illative systems of combinatory logic or lambda calculus (ICLs) such as

those of Bunder [3] and [11] and Aczel [1] was still apparent.

There were, however, many differences. The most important was that PTSs have

judgments of the form

x1 : A1, . . . , xn : An ⊢ M : B (1)

where in each statement N : C, C and N are “pseudoterms”. ICLs’ judgments take

the form

X1, . . . , Xn ⊢ Y (2)
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where X1, . . . , Xn and Y are combinatory or λ-terms.

In a paper preliminary to this one (Bunder and Dekkers [12]), we aimed to over-

come at least the minor differences that were part of the gap between PTSs and ICLs

by developing variants of PTSs with ICL-like properties. One difference is that in

PTSs the “context”, x1 : A1, . . . , xn : An , in (1) must be a sequence whose state-

ments are introduced by one of two rules. For ICLs, the context X1, . . . , Xn in (2) is

an arbitrary set of terms. Also in ICLs, terms can be replaced by terms that are β-

or βη-equal to them; for PTSs such substitutions are restricted. We introduced “set

based PTSs” (SPTSs) which allow sets of judgments as contexts and unrestricted

substitution of β-equality.

Also in PTSs, the abstraction rule has a stronger restriction than normally in ICLs.

In [12] we introduced “abstraction altered PTSs” (APTSs) with an ICL-like abstrac-

tion rule. Finally we introduced SAPTSs which encorporated both changes.

We then showed, under what conditions and for which PTSs, PTS judgments

were equivalent to SPTS, APTS, and SAPTS judgments. These new PTS-variants

have independent interest in that they show that for many PTSs many of the rules

can be relaxed. These more flexible PTS-variants are also closer to their formulas as

type interpretations.

In this paper we show that, for each PTS, APTS, SPTS, and SAPTS, there is a

corresponding ICL. That corresponding to a SAPTS is closest to the ICL used in the

foundations of mathematics by Church, Curry, and their followers. (For details see

Curry, Hindley, and Seldin [15], Bunder [13], or some of the series of papers in this

journal which included Bunder [3] and [4].)

In each case, we show under what conditions the PTSs, APTSs and so on are

equivalent to their ICL counterparts. Such equivalences hold for most standard PTSs,

for example, the Calculus of Constructions. It was surprising that it was possible to

extract from a large number of ICL-judgments of the form (2), variables x1, . . . , xn ,

types A1, . . . , An, B and a term M to give equivalent PTS-judgments of the form

(1).

The new ICL-systems are shown in the top face of the cube in Figure 1 on the next

page. The equivalences between the type and illative systems are shown by the lines

joining them. Restrictions to some equivalences, the PTS being normalizing (n), a

β-equal version of a judgment being provable only (β), the contexts being “legal”

(L) and the condition (∗), valid for many, but not all PTSs, are shown. The numbers

of the theorems proving the results are also indicated.

2 The Pure Type Systems

Given a class of variables V = {x, y, z, . . . , x1, x2, . . .} and a class of constants

C = {c1, c2, . . .} we have the following definition.

Definition 2.1 The class of pseudoterms T is given by

T = V |C|(5V : T .T )|(λV : T .T )|T T .

If x ∈ V and t1, t2 ∈ T , (λx : t1.t2) is interpreted as the λ-abstraction of t2 with

respect to the variable x of type t1 and (5x : t1.t2) is interpreted as the class (or

type) of all generalized functions from t1 to t2, where t2 may be dependent on the

argument x of the function. In (5x : t1.t2), x is bound just as in (λx : t1.t2). FV(t)

will denote the set of free variables of t .
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Figure 1

Definition 2.2

1. If M and A are pseudoterms, M : A is a statement.

2. Ŵ is a context if it is a sequence of statements 〈x1 : A1, . . . , xn : An〉 where

x1, . . . , xn ∈ V . We will let FV(Ŵ) be the set of free variables of the pseu-

doterms in Ŵ.

3. If Ŵ is a context and M and A are pseudoterms then Ŵ ⊢ M : A is a judgment.

Definition 2.3 (Pure Type Systems, PTSs)

1. The specification of a PTS consists of a triple S = (S,A,R) where S is a

subclass of C called the sorts, A is a class of statements of the form (c : s),

and R is a subclass of S × S × S.

2. A Pure Type System (PTS) λS = λ(S,A,R) determined by the specification

S = (S,A,R) is defined as follows. Statements and contexts are as in Def-

inition 2.2. The notion of type derivation, written as Ŵ ⊢λS M : A (or just

Ŵ ⊢ M : A) is defined by the following postulates.
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2.1 The PTS postulates

(axioms) 〈 〉 ⊢ c : s where c : s ∈ A

(start rule)
Ŵ ⊢ A : s

Ŵ, x : A ⊢ x : A
where s ∈ S and

x /∈ FV (Ŵ)

(weakening rule)
Ŵ ⊢ M : A Ŵ ⊢ B : s

Ŵ, x : B ⊢ M : A
where x /∈ FV (Ŵ)

(product rule)
Ŵ ⊢ A : s1 Ŵ, x : A ⊢ B : s2

Ŵ ⊢ (5x : A.B) : s3
where (s1,s2,s3)∈R

(abstraction rule)
Ŵ, x : A ⊢ M : B Ŵ ⊢ (5x : A.B) : s

Ŵ ⊢ (λx : A.M) : (5x : A.B)
s ∈ S

(application rule)
Ŵ ⊢ M : (5x : A.B) Ŵ ⊢ N : A

Ŵ ⊢ (M N) : B[x := N]

(conversion rule)
Ŵ ⊢ M : A Ŵ ⊢ B : s A =β B

Ŵ ⊢ M : B
s ∈ S

A pseudoterm A is legal in a PTS if, for some Ŵ and B , Ŵ ⊢ A : B or Ŵ ⊢ B : A in

that PTS.

2.2 The SPTS postulates For an SPTS the above axioms and the start, weakening,

and conversion rules are replaced by

(axioms) 1 ⊢S c : s if c : s ∈ A

(start) 1 ⊢S M : A if M : A ∈ 1

(conversion)
1 ⊢S M : A 1 =β 1′ M =β N A =β B

1′ ⊢S N : B

where 1 is an arbitrary set of statements P : C , rather than a sequence of statements

x : C formed using the start and weakening rules.

The remaining SPTS postulates are those of PTSs with ⊢S for ⊢ and with each

Ŵ (which we use for sequences) replaced by 1 (which we use for sets). The SPTS

product and abstraction rules also require the restriction x /∈ FV (1, A) which is

derivable for PTSs.

2.3 The APTS postulates These are as for the PTS postulates except that ⊢A is

used for ⊢ and the abstraction rule is replaced by

(abstraction)
Ŵ, x : A ⊢A M : B Ŵ ⊢A A : s

Ŵ ⊢A (λx : A.M) : (5x : A.B)

where s ∈ S and (+) ∃s2, s3

[

(s, s2, s3) ∈ R & ∀D(B =β D ∈ C ⇒ (D : s2) ∈ A)
]

.
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Note that this varies slightly from the (+) in [12] which is

(+)o ∃s2, s3 [(s, s2, s3) ∈ R & (B ∈ C ⇒ (B : s2) ∈ A] .

We will denote this “old” system, with (+)o, by AoPTS. Note also that Ŵ ⊢A A : s

is actually derivable whenever Ŵ, x : A ⊢A M : B is, but we will retain it here as it

is required for SAPTSs.

2.4 The SAPTS postulates These use ⊢SA and have the alterations of the SPTSs

and of the APTSs. We summarize below the results from [12] with minor variations

due to the change from (+)o to (+). We first need some definitions.

Definition 2.4 If Ŵ is the context 〈x1 : A1, . . . , xn : An〉, S(Ŵ) is the set

{x1 : A1, . . . , xn : An}.

Definition 2.5 A set 1 is S-legal in an SPTS if 1 =β {x1 : A1, . . . , xn : An} and

(i) (∀i, j)[1 ≤ i < j ≤ n ⇒ xi 6= x j ];

(ii) (∀i)
[

1 ≤ i ≤ n ⇒ (∃si ∈ S)[x1 : A1, . . . , xi−1 : Ai−1 ⊢S Ai : si ]
]

;

(iii) (∀i) [1 ≤ i ≤ n ⇒ xi , . . . , xn /∈ FV (Ai )].

Definition 2.6 A context Ŵ is A-legal if for some M and B , Ŵ ⊢A M : B .

Definition 2.7 A set 1 is SA-legal if (i), (ii), and (iii) of Definition 2.5 hold with

⊢SA for ⊢S.

Definition 2.8

(i) SI is the set generated by

(a) c : s ∈ A ⇒ s ∈ SI,

(b) s : s′ ∈ A ⇒ s ∈ SI,

(c) s1, s2 ∈ SI & (s1, s2, s) ∈ R ⇒ s ∈ SI;

(ii) S1 = {s1 ∈ SI|∃s2, s3[(s1, s2, s3) ∈ R]};

(iii) S3 = {s3|∃s1, s2 ∈ SI[(s1, s2, s3) ∈ R]}.

The definition of SI above varies from, but is equivalent to, that in [12]. This we

show in Theorem 4.27.

Condition 2.9 (∗) The condition (∗) is defined as

∀s1 ∈ S1∀s2 ∈ S [((∃s ∈ S)s2 : s ∈ A ∨ s2 ∈ S3) ⇒ ∃s3(s1, s2, s3) ∈ R] .

Theorem 2.10 For any PTS and SPTS with the same specification,

(i) Ŵ ⊢ M : A ⇒ S(Ŵ) is S-legal & S(Ŵ) ⊢S M : A;

(ii) 1 ⊢S M : A & 1 is S-legal ⇒ ∃Ŵ,

M ′, A′[1 =β S(Ŵ) & M =β M ′ & A =β A′ & Ŵ ⊢ M ′ : A′].

Theorem 2.11 For any PTS and APTS with the same specification,

(i) Ŵ ⊢ P : C ⇒ Ŵ ⊢A P : C;

(ii) if (∗) holds, then Ŵ ⊢A P : C ⇒ Ŵ ⊢ P : C.
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Theorem 2.12 For any APTS and SAPTS with the same specification,

(i) Ŵ ⊢A M : A ⇒ S(Ŵ) is SA-legal & S(Ŵ) ⊢SA M : A;

(ii) if (∗) holds, 1 is SA-legal & 1 ⊢SA M : A ⇒ ∃Ŵ,

M ′, A′
[

1 =β S(Ŵ) & M =β M ′ & A =β A′ & Ŵ ⊢A M ′ : A′
]

.

Theorem 2.13 For any SPTS and SAPTS with the same specification,

(i) 1 ⊢S M : A & 1 is S-legal ⇒ 1 ⊢SA M : A & 1 is SA-legal;

(ii) if (∗) holds, 1 ⊢SA M : A & 1 is SA-legal ⇒ 1 ⊢S M : A & 1 is S-legal.

2.5 Comments Theorems 2.10, 2.11, 2.12(ii), and 2.13(ii) and their proofs are the

same as, or only slight variations of, due to the change from (+◦) to (+), Theorems

5.4, 8.1, and 8.3, 9.6(ii), and 9.8(⇐) in [12]. The proof of Theorem 2.12(i) is by a

simple induction on the derivation of Ŵ ⊢A M : A. Theorem 2.13(i) follows from

Theorems 2.10(ii), 2.11(i), 2.12(i), and conversion.

In order to illustrate the kinds of proofs required we present, in Section 5 below,

the proofs of Theorems 2.11(ii) and 2.12(i). Note that in Theorems 2.12(i) and 2.13(i)

condition (∗) is not needed; this generalizes Theorems 9.6(i) and 9.8 (⇒) in [12].

To relate APTSs to AoPTSs we have the following theorem.

Theorem 2.14 For any APTS and AoPTS with the same specification,

(i) Ŵ ⊢A M : B ⇒ Ŵ ⊢Ao M : B;

(ii) if (∗) holds, Ŵ ⊢Ao M : B ⇒ Ŵ ⊢A M : B.

Proof (i) This is obvious as the systems are identical except that abstraction for

AoPTS has a weaker version of (+).

(ii) If Ŵ ⊢Ao M : B and (∗) hold, then by Theorem 8.5 of [12] (the AoPTS ver-

sion of Theorem 2.11(ii)) we have Ŵ ⊢ M : B and by Theorem 2.11(i) we have

Ŵ ⊢A M : B . �

3 Illative Systems

For each PTS, SPTS, APTS, and SAPTS that we will set up a system of illative

lambda calculus, combinatory logic could easily have been used instead. We will

refer to all of these illative systems as ICLs.

Definition 3.1 The class of pseudoterms T is given by

T = V | C | GT (λV .T ) | λV .T | T T

where V and C are as in Section 2. G is an illative constant that corresponds to 5; it

is related (see Notation 3.6) to the restricted generality used by Church and Curry.

Each ICL will have a specification (S, [A],R) where S ⊆ C is a set of sorts and

R a set of triples of sorts, as for PTSs. [A] is the set of axioms of the form sc, where

c : s is an axiom of the PTS specified by (S,A,R).
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3.1 The IS postulates

(axioms) ⊢I X where X ∈ [A]

(start rule)
Ŵ ⊢I s X

Ŵ, Xx ⊢I Xx
where s ∈ S and

x /∈ FV (Ŵ, X)

(weakening rule)
Ŵ ⊢I X Ŵ ⊢I sY

Ŵ, Y x ⊢I X
where s ∈ S and

x /∈ FV (Ŵ, Y )

(product rule)
Ŵ ⊢I s1 X Ŵ, Xx ⊢I s2Y

Ŵ ⊢I s3(G X (λx .Y ))
where (s1, s2, s3) ∈ R

(abstraction rule)
Ŵ, Xx ⊢I Y Z Ŵ ⊢I s(G X (λx .Y ))

Ŵ ⊢I G X (λx .Y )(λx .Z)
where s ∈ S

(application rule)
Ŵ ⊢I G X (λx .Y )Z Ŵ ⊢I XU

Ŵ ⊢I (Y [x := U ])(ZU)

(conversion rule)
Ŵ ⊢I XY Ŵ ⊢I s Z X =β Z

Ŵ ⊢I ZY
where s ∈ S

Notation 3.2 Systems such as these were called separated systems in Curry, Hind-

ley, and Seldin [15]. Most ICLs in the literature are not separated as they have the

SIS and SAIS (conversion) rule below (possibly with βη-equality).

3.2 The SIS postulates These are as above with ⊢SI for ⊢I and 1 for Ŵ, except

that (axioms) and the (start), (weakening), and (conversion) rules are replaced by

(axioms) 1 ⊢SI X if X ∈ [A]

(start) 1 ⊢SI X if X ∈ 1

(conversion)
1 ⊢SI X 1 =β 1′ X =β Y

1′ ⊢SI Y
.

The product and abstraction rules require the condition x /∈ FV (1, X). In all the

postulates, 1 is an arbitrary set of terms.

3.3 The AIS postulates These are the IS-postulates with ⊢AI for ⊢I and (abstrac-

tion) replaced by

(abstraction)
Ŵ, Xx ⊢AI Y Z Ŵ ⊢AI s X

Ŵ ⊢AI G X (λx .Y )(λx .Z)

where

(+) ∃s2, s3

[

(s, s2, s3) ∈ R & ∀U(Y =β U ∈ C ⇒ s2U ∈ [A])
]

.

(Ŵ ⊢AI s X is actually derivable if Ŵ, Xx ⊢AI Y Z is, but we retain it in the rule as it

is required for SAISs.)
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3.4 The SAIS postulates These have ⊢SAI for ⊢ and include the changed postu-

lates from the SISs and AISs, where now in the abstraction rule Y is not β-equal to

an abstract. β-equality is, in general, not decidable unless the terms involved have

normal form. The normalization property, which says that all pseudoterms in a valid

judgment have normal form, is one of our conditions for the equivalence of SAISs

and PTSs (see Theorem 9.2).

Definition 3.3 A context Ŵ is (A)I-legal if for some X, Ŵ ⊢(A)I X .

Lemma 3.4 A context Ŵ is (A)I-legal ⇔ Ŵ ≡ 〈X1x1, . . . , Xn xn〉 for some terms

X1, . . . , Xn and variables x1, . . . , xn , where

(i) ∀i, j [1 ≤ i < j ≤ n ⇒ xi 6= x j ];

(ii) ∀i [1 ≤ i ≤ n ⇒ ∃si ∈ S[X1x1, . . . , X i−1xi−1 ⊢(A)I si X i ]];

(iii) ∀i [1 ≤ i ≤ n ⇒ xi , . . . , xn /∈ FV (X i )].

Proof (⇒) By induction on the derivation of Ŵ ⊢(A)I X in Definition 3.3.

(⇐) By the start rule from (i) and (ii) for i = n. �

Definition 3.5 A set of statements 1 is said to be S(A)I-legal, in an S(A)IS, if

1 =β {X1x1, . . . , Xn xn} and (i), (ii), and (iii) of Lemma 3.4 hold with ⊢S(A)I for

⊢(A)I.

Notation 3.6 Illative systems were first set up by Church and Curry using the

symbol Curry denoted by 4, instead of the G used above.

G = λxyz.4x(λu.(yu)(zu)).

The SAIS application rule follows, using this definition, from Curry’s (and Church’s)

4-elimination rule:

1 ⊢ 4XY 1 ⊢ XU

1 ⊢ Y U
.

Their 4 introduction rules,

Curry:
1, Xu ⊢ Y u u 6∈ FV(1, XY )

1 ⊢ 4XY

Church:
1, Xu ⊢ Y u 1 ⊢ XV u 6∈ FV(1, XY )

1 ⊢ 4XY

led to inconsistency.

The SAIS abstraction rule follows from the 4 introduction rule of Bunder [11]

and [3],
1, Xu ⊢ Y u 1 ⊢ LX u 6∈ FV(1, XY )

1 ⊢ 4XY
with L ≡ s.

Notation 3.7 ∃s ∈ S will often be abbreviated to ∃s and ∀s ∈ S to ∀s.

4 Lemmas and Definitions for PTSs, ISs, APTSs, and AISs

In Lemmas 4.1 – 4.11 we quote several well-known lemmas for PTSs from Baren-

dregt [2] and others from [12], all without proofs.

Lemma 4.1 (Free Variable Lemma) Let x1 : A1, . . . , xn : An ⊢ B : C. Then

(i) the x1, . . . , xn are all distinct;
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(ii) FV (B), FV (C) ⊆ {x1, . . . , xn};

(iii) FV (Ai ) ⊆ {x1, . . . , xi−1} for 1 ≤ i ≤ n.

Lemma 4.2 (Start Lemma) If Ŵ is a legal context then

(i) (c : s) ∈ A ⇒ Ŵ ⊢ c : s,

(ii) (x : A) ∈ Ŵ ⇒ Ŵ ⊢ x : A.

Lemma 4.3 (Substitution Lemma) Ŵ, x : A ⊢ B : C & Ŵ ⊢ D : A ⇒ Ŵ ⊢

B[x := D] : C[x := D].

Lemma 4.4 (Correctness of Contexts Lemma) If x1 : A1, . . . , xn : An ⊢ M : A

then for each i , 1 ≤ i ≤ n, there is an si ∈ S such that the derivation of

x1 : A1, . . . , xn : An ⊢ M : A contains a derivation of x1 : A1, . . . , xi−1 :

Ai−1 ⊢ Ai : si .

Lemma 4.5 (Thinning Lemma) If Ŵ and Ŵ′ are legal contexts and Ŵ ⊆ Ŵ′ then

Ŵ ⊢ M : A ⇒ Ŵ′ ⊢ M : A.

Lemma 4.6 (Combining Contexts Lemma) If Ŵ1 and Ŵ2 are legal contexts and

FV (Ŵ1) ∩ FV (Ŵ2) = ∅ then Ŵ1, Ŵ2 is a legal context.

Lemma 4.7 (Sharpened Generation Lemma) If Ŵ ⊢ P : B then

(i) P ≡ c ∈ C ⇒ (c : B) ∈ A∨∃B ′[B =β B ′ & (c : B ′) ∈ A & ∃s [Ŵ ⊢ B : s]];

(ii) P ≡ x ∈ V ⇒ (x : B) ∈ Ŵ∨∃B ′[B =β B ′ & (x : B ′) ∈ Ŵ & ∃s [Ŵ ⊢ B : s]];

(iii) P ≡ (5x : A.C) ⇒ ∃s1, s2, s3[Ŵ ⊢ A : s1 & Ŵ, x : A ⊢ C : s2

& (s1, s2, s3) ∈ R & (B ≡ s3∨(B =β s3 & (∃s[Ŵ ⊢ B : s])];

(iv) P ≡ (λx : A.M) ⇒ ∃C, s3[Ŵ ⊢ (5x : A.C) : s3 & Ŵ, x : A ⊢ M : C &

(B ≡ 5x : A.C ∨ (B =β 5x : A.C & ∃s[Ŵ ⊢ B : s]))];

(v) P ≡ M N ⇒ ∃A, C[Ŵ ⊢ M : (5x : A.C) & Ŵ ⊢ N : A &

(B ≡ C[x := N] ∨ (B =β C[x := N] & ∃s[Ŵ ⊢ B : s]))].

and in each case the deductions without an explicit x : A in the context are shorter

than that of Ŵ ⊢ P : B.

Lemma 4.8 (Correctness of Types Lemma)

Ŵ ⊢ M : A ⇒ ∃s[A ≡ s ∨ Ŵ ⊢ A : s].

Lemma 4.9 (Subject Reduction Lemma)

Ŵ ⊢ M : A, Ŵ→→βŴ′, M→→β M ′, A→→β A′ ⇒ Ŵ′ ⊢ M ′ : A′.

Lemma 4.10

Ŵ =β Ŵ′ & Ŵ′ is legal & Ŵ ⊢ M : A ⇒ Ŵ′ ⊢ M : A.

Lemma 4.11 If Ŵ ⊢ M : A then at least one of

(i) A ∈ C,

(ii) ∃s[Ŵ ⊢ A : s & (∃s′[s : s′ ∈ A] ∨ s ∈ S3)].
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In Lemmas 4.12 – 4.22 we have similar lemmas for ISs with similar proofs.

Lemma 4.12 (Free Variable Lemma for ISs) Let X1x1, . . . , Xn xn ⊢I Y . Then

(i) the x1, . . . , xn are all distinct;

(ii) FV(Y ) ⊆ {x1, . . . , xn};

(iii) FV(X i ) ⊆ {x1, . . . , xi−1} for i ≤ i ≤ n.

Lemma 4.13 (Start Lemma for ISs) If Ŵ is an I -legal context, then

(i) sc ∈ [A] ⇒ Ŵ ⊢I sc,

(ii) Xx ∈ Ŵ ⇒ Ŵ ⊢I Xx.

Lemma 4.14 (Substitution Lemma for ISs)

Ŵ, Xx ⊢I Y & Ŵ ⊢I X Z ⇒ Ŵ ⊢I Y [x := Z ].

Lemma 4.15 (Correctness of Contexts Lemma for ISs) If X1x1, . . . , Xn xn ⊢I Y

then for each i , 1 ≤ i ≤ n, there is an si ∈ S such that the derivation of

X1x1, . . . , Xn xn ⊢I Y contains a derivation of X1x1, . . . , X i−1xi−1 ⊢I si X i .

Lemma 4.16 (Thinning Lemma for ISs) If Ŵ and Ŵ′ are I -legal contexts and Ŵ ⊆ Ŵ′

then Ŵ ⊢I Y ⇒ Ŵ′ ⊢I Y .

Lemma 4.17 (Combining Contexts Lemma for ISs) If Ŵ1 and Ŵ2 are I -legal con-

texts and FV(Ŵ1)∩ FV(Ŵ2) = ∅ then Ŵ1, Ŵ2 is an I -legal context.

Lemma 4.18 (Sharpened Generation Lemma for ISs) If Ŵ ⊢I Y Z, then

(i) Z ≡ c ∈ C ⇒ Y Z ∈ [A] ∨ ∃T [Y =β T & T Z ∈ [A] & ∃s[Ŵ ⊢I sY ]];

(ii) Z ≡ x ∈ V ⇒ Y x ∈ Ŵ ∨ ∃T [Y =β T & T x ∈ Ŵ & ∃s[Ŵ ⊢I sY ]];

(iii) Z ≡ GU(λx .V ) ⇒ ∃s1, s2, s3[Ŵ ⊢I s1U & Ŵ, U x ⊢I s2V &

(s1, s2, s3) ∈ R & (Y ≡ s3 ∨ (Y =β s3 & ∃s[Ŵ ⊢I sY ]))];

(iv) Z ≡ λx .T ⇒ ∃U, V , s3[Ŵ ⊢I s3(GU(λx .V )) & Ŵ, U x ⊢I V T &

(Y ≡ GU(λx .V ) ∨ (Y =β GU(λx .V ) & ∃s[Ŵ ⊢I sY ]))];

(v) Z ≡ RT ⇒ ∃U, V [Ŵ ⊢I GU(λx .V )R & Ŵ ⊢I U T &

(Y ≡ V [x := T ] ∨ (Y =β V [x := T ] & ∃s(Ŵ ⊢I sY )))]

where the derivations without an explicit U x in the context are shorter than that of

Ŵ ⊢I Y Z.

Lemma 4.19 (Correctness of Types Lemma for ISs) Ŵ ⊢ U V ⇒ ∃s[U ≡ s∨Ŵ⊢sU ].

Lemma 4.20 (Subject Reduction Lemma for ISs) Ŵ ⊢I U V , Ŵ→→βŴ′, U→→βU ′,

V →→β V ′ ⇒ Ŵ′ ⊢I U ′V ′.

Lemma 4.21 Ŵ =β Ŵ′ & Ŵ′ is legal & Ŵ ⊢ X ⇒ Ŵ′ ⊢ X.

Lemma 4.22 If Ŵ ⊢ U V then at least one of

(i) U ∈ C,

(ii) ∃s
[

Ŵ ⊢ sU & (∃s′[s′s ∈ A] ] or s ∈ S3)].

We give three extra lemmas.

Lemma 4.23 If Ŵ ⊢I X, then X ≡ U V for some U and V , where U is not β-equal

to an abstract.
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Proof X ≡ U V follows by induction on the derivation of Ŵ ⊢I X . By the Correct-

ness of Types Lemma, the Generation Lemma, and Subject Reduction for ISs, U is

not β-equal to an abstract. �

Remark 4.24 By Lemma 4.23 we see that the Subject Reduction Lemma for ISs

can be strengthened to

Ŵ ⊢I X, Ŵ→→Ŵ′, X→→β X ′ ⇒ Ŵ′ ⊢I X ′.

Lemma 4.25 (Sharpened Generation Lemma for APTSs) If Ŵ ⊢A P : B, then (i),

(ii), (iii), and (v) of Lemma 4.7 hold with ⊢ replaced by ⊢A and also,

(iv) P ≡ (λx : A.M) ⇒ ∃C, s [Ŵ ⊢A C : s & Ŵ, x : A ⊢A M : C]

&
(

B ≡ 5x : A.C ∨ (B =β 5x : A.C & ∃s′[Ŵ ⊢A B : s′]
)

)].

Proof As for Lemma 4.7. �

Lemma 4.26 (Sharpened Generation Lemma for AISs) If Ŵ ⊢AI Y Z then (i), (ii),

(iii), and (v) of Lemma 4.18 hold with ⊢I replaced by ⊢AI and also,

(iv) Z ≡ λx .T ⇒ ∃U, V , s [Ŵ ⊢AI sU & Ŵ, U x ⊢AI V T &
(

Y ≡ GU(λx .V ) ∨ (Y =β GU(λx .V ) & ∃s′[Ŵ ⊢AI s′Y ])
)]

.

We now prove a theorem which is of importance for PTSs in general and which is

also useful in later proofs.

Theorem 4.27

(i) SI is the set of inhabited sorts, that is, those sorts s such that ∃Ŵ,M[Ŵ⊢ M :s].

(ii) For every PTS with specification (S,A,R) there is a PTS with specification

(SI,A,R ∩ S
3
I ) that is equivalent in the sense that it has the same valid

judgments.

Proof We prove

∃Ŵ, M, A[s appears in the statement Ŵ ⊢ M : A] (1)

⇒ s ∈ SI (2)

⇒ ∃Ŵ′, N[Ŵ′ ⊢ N : s] (3)

⇒ (1).

(1) ⇒ (2) By induction on the derivation of

Ŵ ⊢ M : A. (4)

If (4) is an axiom then M : A is c : s or s : s′, so (a) or (b) of Definition 2.8(i) holds.

If (4) comes by a product rule with A ≡ s, (c) holds. In all other cases the result

holds by the induction hypothesis.

(2) ⇒ (3) By induction on the derivation of (2). If this is by Definition 2.8(i)(a), the

result holds; if it is by (b) it holds by a start rule. If this is by (c) we have s1, s2 ∈ SI

and (s1, s2, s) ∈ R and by the induction hypothesis

Ŵ1 ⊢ N1 : s1

Ŵ2 ⊢ N2 : s2

where we can assume FV (Ŵ1) ∩ FV (Ŵ2) = ∅.
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By Lemmas 4.5 and 4.6 we have

Ŵ1, Ŵ2,⊢ N1 : s1

Ŵ1, Ŵ2 ⊢ N2 : s2,

and by weakening

Ŵ1, Ŵ2, x : N1 ⊢ N2 : s2

where x /∈ FV (Ŵ1, Ŵ2, N1, N2). A product rule now gives (3).

(3) ⇒ (1) is obvious.

(2) ⇔ (3) now establishes (i).

(1) ⇔ (2) shows that if s ∈ S − SI, it cannot appear in any valid judgment. Hence

only the sorts in SI and the triples in R∩S
3
I can be used to derive any valid judgment.

This establishes (ii). �

Theorem 4.28 Theorem 4.27 holds for ISs if Ŵ ⊢ M : s in (i) is replaced by

Ŵ ⊢I sM.

Proof Analogous to that of Theorem 4.27. �

5 Proof of Theorems 2.11(ii) and 2.12(i)

Proof of Theorem 2.11(ii) For a PTS and an APTS with the same specification and

such that (∗) holds, we prove

Ŵ ⊢A P : C ⇒ Ŵ ⊢ P : C

by induction on the derivation of Ŵ ⊢A P : C . The only nontrivial case is where

Ŵ ⊢A P : C is obtained by the abstraction rule from

Ŵ, x : A ⊢A M : B & Ŵ ⊢A A : s

where (+) holds for s and B, P ≡ λx : A.M and C ≡ 5x : A.B . By the induction

hypothesis we have

Ŵ, x : A ⊢ M : B & Ŵ ⊢ A : s.

We only need to show

∃s3 ∈ S [Ŵ ⊢ 5x : A.B : s3].

Lemma 4.11 applied to Ŵ, x : A ⊢ M : B yields that we have at least one of

(i) B ∈ C,

(ii) Ŵ, x : A ⊢ B : s2 & (∃s′[s2 : s′ ∈ A] or s2 ∈ S3).

In case (i) we get from (+)

(∃s2, s3)[(s, s2, s3) ∈ R & Ŵ, x : A ⊢ B : s2],

so Ŵ ⊢ 5x : A.B : s3.

In case (ii), we get from (∗), ∃s3(s, s2, s3) ∈ R (note that s ∈ S1 by (+)), so

Ŵ ⊢ 5x : A.B : s3. �
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Proof of Theorem 2.12(i) We want Ŵ ⊢A M : A ⇒ S(Ŵ) is SA-legal & S(Ŵ)

⊢SA M : A. We let Ŵ ≡ 〈x1 : A1, . . . , xn : An〉 and proceed by induction on the

derivation of

Ŵ ⊢A M : A.

Case axiom Now Ŵ ≡ 〈 〉, S(Ŵ) = ∅ and is SA-legal, and S(Ŵ) ⊢SA M : A.

Case start Ŵ ≡ Ŵ−, xn : An, M ≡ xn, A ≡ An , and Ŵ ⊢A M : A is obtained

from Ŵ− ⊢A An : s. By the induction hypothesis we have S(Ŵ−) is SA-legal and

S(Ŵ−) ⊢SA An : s. Also xn 6= xi and xn /∈ FV (Ai ) for 1 ≤ i < n, so S(Ŵ) is

SA-legal. M : A ∈ S(Ŵ), hence S(Ŵ) ⊢SA M : A.

Case weakening Ŵ ≡ Ŵ−, xn : An , and (1) is obtained from Ŵ− ⊢A M : A,

Ŵ ⊢A An : s. We have as above that S(Ŵ) is legal. By the induction hypothesis we

have S(Ŵ−) ⊢SA M : A. One easily proves the Thinning Lemma for SAPTSs:

1 ⊢SA N : B,1 ⊆ 1′ ⇒ 1′ ⊢SA N : B.

From this we get S(Ŵ) ⊢ M : A.

Other Cases If Ŵ ⊢A M : A is obtained by one of the other rules, we find by

the induction hypothesis applied to one of the premises from which Ŵ ⊢A M : A

is obtained that S(Ŵ) is S-legal. In each case S(Ŵ) ⊢SA M : A follows when the

induction hypothesis is applied to the premises. �

6 Relations between Illative Systems

In each theorem and lemma in this and later sections we assume that the systems

used have the same specification.

Theorem 6.1

Ŵ ⊢I X ⇒ S(Ŵ) is SI-legal and S(Ŵ) ⊢SI X.

Proof By an easy induction on the derivation of Ŵ ⊢I X , similar to the proof of

Theorem 2.10(i). �

We now will prove a sort of converse:

1 ⊢SI X, 1 SI-legal ⇒ ∃Ŵ, Y [1 =β S(Ŵ) & X =β Y & Ŵ ⊢I Y ].

The proof of this statement is very similar to the proof of Theorem 5.4(ii) in [12].

We first prove two lemmas, similar to Lemmas 5.2 and 5.3 in that paper, with similar

proofs.

Lemma 6.2 If

1 ⊢SI X, (1)

1 =β S(Ŵ) where Ŵ is I -legal, then there exists Y =β X such that

Ŵ ⊢I Y. (2)

Proof By induction on the derivation of (1).

Case axiom X ∈ [A]. Now (2) follows by the Start Lemma for ISs.

Case start X ∈ 1 =β S(Ŵ). Now X =β Y for some Y ∈ Ŵ and by the Start

Lemma for ISs we get Ŵ ⊢I Y .
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Case product X ≡ s3(GU(λx .V )), (s1, s2, s3) ∈ R, and (1) is obtained from

1 ⊢SI s1U, and (3)

1, U x ⊢SI s2V . (4)

By the induction hypothesis for (3), Lemma 4.23, and Subject Reduction for ISs, we

get for some U ′ =β U ,

Ŵ ⊢I s1U ′. (5)

So Ŵ, U ′x is I-legal. As 1, U x =β S(Ŵ, U ′x) we have by the induction hypothesis

for (4), Lemma 4.23, and Subject Reduction

Ŵ, U ′x ⊢I s2V ′ (6)

where V ′ =β V .

By the product rule we get from (5) and (6),

Ŵ ⊢ s3(GU ′(λx .V ′)).

This is (2) with Y ≡ s3(Gu′(λx .V ′)).

Case abstraction X ≡ GU(λx .V )(λx .W ) and (1) is obtained from

1, U x ⊢SI V W, and (7)

1 ⊢SI s(GU(λx .V )). (8)

By the induction hypothesis applied to (8) and Subject Reduction for ISs we get

Ŵ ⊢I s(GU ′(λx .V ′))

for some U ′ =β U, V ′ =β V , and hence by Lemma 4.18,

Ŵ ⊢I s1U ′ and Ŵ, U ′x ⊢ s2V ′.

Hence, also by Lemma 4.18, U ′ and V ′, so also U and V , are not β-equal to abstracts.

From Ŵ ⊢I s1U ′ we get that Ŵ, U ′x is I-legal. Hence we get by the induction

hypothesis applied to (7),

Ŵ, U ′x ⊢I V ′′W ′′ where V ′′ =β V , W ′′ =β W.

By Church-Rosser and Subject Reduction finally we get

Ŵ, U1x ⊢I V1W1, Ŵ ⊢I s(GU1(λx .V1))

where U1 =β U, V1 =β V and W1 =β W .

We conclude (2) by the abstraction rule for ISs.

Case application X ≡ (V [x := R])(W R) and (1) is obtained from

1 ⊢SI GU(λx .V )W, and (9)

1 ⊢SI U R. (10)

Similar to the previous case, now also using Lemma 4.19, we get that U is not β-

equal to an abstract. We get

Ŵ ⊢I GU ′(λx .V ′)W ′ & Ŵ ⊢I U ′ R′

for some U ′ =β U, V ′ =β V , W ′ =β W , and R′ =β R. Hence by application

Ŵ ⊢ (V ′[x := R′])(W ′ R′). �

Lemma 6.3 If 1 is SI-legal for a given SIS, then there is a context Ŵ, legal for the

IS, with the same specification, such that 1 =β S(Ŵ).
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Proof By induction on the number n in Definition 3.5. If n = 1 then 1 =β {Xx},

where ⊢SI s X and x /∈ FV (X).

By Lemma 6.2 and Subject Reduction for ISs there is an X ′ =β X such that

⊢I s X ′. Thus 1 =β

{

X ′x
}

and as by a start rule X ′x ⊢I X ′x , we have that X ′x is

legal.

If n > 1 we have 1 =β {X1x1, . . . , Xn xn} where (i), (ii), and (iii) of Lemma 3.4

hold. It follows that {X1x1, . . . , Xn−1xn−1} is also SI-legal and, by the induction hy-

pothesis, that there is a legal context Ŵ− such that {X1x1, . . . , Xn−1xn−1} =β S(Ŵ−).

Now by Lemma 6.2, Lemma 3.4(ii) with i = n, and Subject Reduction we have

Ŵ− ⊢I sn X ′
n where Xn =β X ′

n . So Ŵ−, X ′
n xn is legal. As 1 =β S(Ŵ−, X ′

n xn) we

have the required result. �

Theorem 6.4

1 ⊢SI X,1 SI-legal ⇒ ∃Ŵ, Y [1 =β S(Ŵ) & X =β Y & Ŵ ⊢I Y ].

Proof This immediately follows from Lemmas 6.2 and 6.3. �

Theorem 6.5

Ŵ ⊢I X ⇒ Ŵ ⊢AI X.

Proof By induction on the derivation of Ŵ ⊢I X (similar to the proof of Theorem

8.1 in [12]). All cases are obvious except where Ŵ ⊢I X comes by the abstraction

rule from

Ŵ, Y x ⊢ U V , and (11)

Ŵ ⊢I s3(GY (λx .U)), (12)

and X ≡ GY (λx .U)(λx .V ).

By (12) and the Sharpened Generation Lemma for ISs there is a triple (s1, s2, s3)

∈ R such that

Ŵ ⊢I s1Y, (13)

and Ŵ, Y x ⊢I s2U , where the derivation of (13) is shorter than that of Ŵ ⊢I X . If

U =β R ∈ C, then the Sharpened Generation Lemma for ISs gives s2 R ∈ [A].

Hence (+) holds for U and s1. By the induction hypothesis applied to (11) and (13)

we have

Ŵ, Y x ⊢AI U V & Ŵ ⊢AI s1Y

which, given (+), gives Ŵ ⊢AI GY (λx .U)(λx .V ). �

Theorem 6.6 If (∗) holds,

Ŵ ⊢AI X ⇒ Ŵ ⊢I X.

Proof Similar to the proof of Theorem 2.11(ii) in Section 5. We now use

Lemma 4.22 instead of Lemma 4.11. In the last lines of the proof of Theo-

rem 2.11(ii) we had that s ∈ SI because of Ŵ ⊢ A : s, hence by (+), s ∈ S1 =

{s ∈ SI|∃s2, s3[(s, s2, s3) ∈ R]}. Now Ŵ ⊢ sU for some U , hence s ∈ SI by

Theorem 4.28 and so again s ∈ S1.

Now we will prove that if (∗) holds then

1 ⊢SAI X,1 SAI-legal ⇒ ∃Ŵ, Y [1 =β S(Ŵ) & X =β Y & Ŵ ⊢AI Y ].

As in the proof of Theorem 6.4 this will follow from two lemmas. These are similar

to Lemmas 6.2 and 6.3. �
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Lemma 6.7 If

1 ⊢SAI X, (14)

1 =β S(Ŵ), where Ŵ is AI-legal and (∗) holds, then there exists a Y =β X such that

Ŵ ⊢AI Y.

Proof As (∗) holds, by Theorems 6.5 and 6.6,

Ŵ ⊢I Z ⇔ Ŵ ⊢AI Z .

Hence IS properties such as Subject Reduction also hold for AISs. Now the proof of

this lemma is the same as that of Lemma 6.2 except as follows.

Case abstraction X ≡ GU(λx .V )(λx .W ) and (14) is obtained from

1, U x ⊢SAI V W & 1 ⊢SAI sU

and

(+) ∃s2, s3

[

(s, s2, s3) ∈ R & ∀T (V =β T ∈ C ⇒ s2T ∈ [A])
]

where V is not β-equal to an abstract. The proof of the case is now similar to the

proof of the abstraction case in Lemma 6.2. �

Lemma 6.8 If (∗) holds, then

1 SAI-legal ⇒ 1 =β S(Ŵ) for some AI-legal Ŵ.

Proof As in Lemma 6.7, properties such as Subject Reduction hold for AISs.

Therefore the proof of this lemma is the same as the proof of Lemma 6.3. �

Theorem 6.9 If (∗) holds, then

1 ⊢SAI X,1 SAI-legal ⇒ ∃Ŵ, Y
[

1 =β S(Ŵ) & X =β Y & Ŵ ⊢AI Y
]

.

Proof Directly from Lemmas 6.7 and 6.8. �

Now we are going to prove

Ŵ ⊢AI X ⇒ S(Ŵ) is SAI-legal and S(Ŵ) ⊢SAI X.

In the SAIS postulates of 3.4 we have the condition that in the abstraction rule Y is

not β-equal to an abstract, we need to show this holds automatically for AISs.

Lemma 6.10 If Ŵ ⊢AI X then X ≡ Y Z where Y is not β-equal to an abstract.

Proof Consider the AIS, ω, with the same A and S as the one considered here, but

with R replaced by S
3. Then (∗) holds for ω and

Ŵ ⊢ω
AI X.

Now by Theorem 6.6,

Ŵ ⊢ω
I X,

and by Lemma 4.23 we have that X ≡ Y Z where Y is not β-equal to an abstract. �

Theorem 6.11

Ŵ ⊢AI X ⇒ S(Ŵ) is SAI-legal and S(Ŵ) ⊢SAI X.

Proof By induction on the derivation of Ŵ ⊢AI X . In the abstraction case we use

Lemma 6.10. �
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Theorem 6.12

1 ⊢SI X & 1 is SI-legal ⇒ 1 ⊢SAI X & 1 is SAI-legal.

Proof By Theorems 6.4, 6.5, and 6.11 and the conversion rule for SAISs. �

Theorem 6.13 If (∗) holds,

1 ⊢SAI X & 1 is SAI-legal ⇒ 1 ⊢SI X & 1 is SI-legal.

Proof By Theorems 6.9, 6.6, and 6.1 and the conversion rule for SISs. �

In Sections 7 and 8 we link PTS variants and our illative systems, and in Section 9 we

give a link between PTSs and SAISs, the systems closest to the ICLs in the literature.

7 From Type Systems to Illative Systems

We define a translation [ ] of pseudoterms of PTSs into ICL pseudoterms in the

following way.

Definition 7.1 ([ ])

[x] ≡ x

[c] ≡ c

[M N] ≡ [M][N]

[λx : A.M] ≡ λx .[M]

[5x : A.B] ≡ G[A](λx .[B])

[M : A] ≡ [A][M]

If B is a set or sequence of judgments Mi : Ai , for some values of i , then [B] is the

set or sequence of judgments [Ai ][Mi ], for the same values of i .

We need some lemmas about the translation [ ].

Lemma 7.2 If B and N are pseudoterms,

[B][x := [N]] ≡ [B[x := N]].

Proof By induction on B . �

Lemma 7.3

(i) If M→→β N, then [M]→→β [N].

(ii) If M =β N, then [M] =β [N].

Proof (i) It is sufficient to prove this for a single β-contraction. Let (λx : A.P)Q

be the part of M that reduces to P[x := Q] in N then

[(λx : A.P)Q] ≡ (λx .[P])([Q]) →β [P][x := [Q]]

≡ [P[x := Q]]

by Lemma 7.2.

Any remaining parts of M are identical to the remaining parts of N and so

any remaining parts of [M] are identical to the remaining parts of [N]. Hence

[M] →β [N].

(ii) If M =β N there is a P such that M→→β P and N→→β P . By (i), [M]→→β [P]

and [N]→→β [P] so [M] =β [N]. �
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Lemma 7.4 If A is a pseudoterm and [A]→→β X, then there is a pseudoterm B such

that X ≡ [B] and A→→β B.

Proof It is enough to prove this for a single β-contraction. We do this by induction

on A.

Case 1 A ≡ λx : C.M, [A] ≡ λx .[M] and X ≡ λx .Y where [M] →β Y . By the

induction hypothesis there is a pseudoterm N such that Y ≡ [N] and M →β N .

Then B ≡ λx : C.N .

Case 2 A ≡ 5x : D.C, [A] ≡ G[D](λx .[C]) and X ≡ GU(λx .V ) where

[D] →β U and V ≡ [C] or [D] ≡ U and [C] →β V . By the induction hypothesis

there is an E such that D →β E and U ≡ [E] or C →β E and V ≡ [E]. Thus the

lemma holds with B ≡ 5x : E .C or 5x : D.E .

Case 3 A ≡ C D and X ≡ U V where [C] →β U or [D] →β V . By the induction

hypothesis there is an E such that D →β E and [E] ≡ V or C →β E and [E] ≡ U .

Thus B ≡ C E or E D.

Case 4 A ≡ (λx : C.M)N where X ≡ [M] [x := [N]]. Then X ≡ [M[x := N]]

by Lemma 7.2, so B ≡ M[x := N]. �

Note that in this proof we use that G is primitive, hence not an abstract.

We can now prove that [ ] translations of valid (S)(A)PTS judgments are valid in

the corresponding ICL.

Theorem 7.5 Let X denote ∅, S, or A, then

Ŵ ⊢X M : A ⇒ [Ŵ] ⊢X I [A][M].

Proof By straightforward induction on the derivation of Ŵ ⊢X M : A. �

Theorem 7.6 If (∗) holds,

1 ⊢SA M : A & 1 is SA-legal ⇒ [1] ⊢SAI [A][M] & [1] is SAI-legal.

Proof By Theorems 2.12(ii), 7.5, 6.11, and SAI conversion applied to the legality

of 1 and to 1 ⊢SA M : A. �

8 From Illative Systems to Type Systems

Definition 8.1 (of ∼) If A1 and A2 are pseudoterms,

A1 =β A2 ⇒ A1 ∼ A2,

Ai =β 5x1 : B1 . . .5xn : Bn.si (i = 1, 2) ⇒ A1 ∼ A2.

Lemma 8.2

Ŵ ⊢ P1 : B1, Ŵ ⊢ P2 : B2

B1 ∼ B2, [P1] ≡ [P2], P1, P2 in normal form

}

⇒ P1 ≡ P2.

Proof By induction on the structure of P1.

Cases 1 and 2 P1 ≡ x and P1 ≡ c are trivially okay.

Case 3 P1 ≡ λx : A1.M1.

[P1] ≡ [P2] so P2 ≡ λx : A2.M2. By the Generation Lemma for PTSs we get

Bi =β 5x : Ai .Ci , 1, x : Ai ⊢ Mi : Ci (i = 1, 2).
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B1 ∼ B2 so A1 =β A2, hence A1 ≡ A2 because P1 and P2 are in normal form. We

have

1, x : A1 ⊢ M1 : C1,1, x : A1 ⊢ M2 : C2, [M1] ≡ [M2], C1 ∼ C2,

so M1 ≡ M2 by the induction hypothesis; hence P1 ≡ P2.

Case 4 P1 ≡ 5x : A1.C1. [P1] ≡ [P2] so P2 ≡ 5x : A2.C2, [A1] ≡ [A2],

[C1] ≡ [C2]. We get

1 ⊢ A1 : s1,1 ⊢ A2 : s2, [A1] ≡ [A2] ⇒ A1 ≡ A2,

hence

1, x : A1 ⊢ C1 : s′
1, 1, x : A1 ⊢ C2 : s′

2, [C1] ≡ [C2] ⇒ C1 ≡ C2.

So P1 ≡ P2.

Case 5 P1 ≡ M1 N1. [P1] ≡ [P2] so P2 ≡ M2 N2, [M1] ≡ [M2], [N1] ≡ [N2].

We distinguish five cases:

M1 ≡ c, M1 ≡ 5x : D1.E1, M1 ≡ λx : D1.E1, M1 ≡ y, M1 ≡ D1 E1.

The first two cases cannot occur by the Generation Lemma for PTSs. Also the third

case is not applicable because P1 is in normal form. In the last case there are again

two possibilities: D1 ≡ y, D1 ≡ F1G1. It turns out that the last two cases reduce to

the one case

P1 ≡ y N1 . . . Nn , P2 ≡ yL1 . . . Ln, [Ni ] ≡ [L i ], n > 0.

As n > 0 we have

1 ⊢ y : 5x1 : F1.F2,1 ⊢ N1 : F1,1 ⊢ y N1 : F2[x1 := N1],

1 ⊢ y : 5x1 : H1.H2, 1 ⊢ L1 : H1, 1 ⊢ yL1 : H2[x1 := L1].

The Generation Lemma for PTSs yields 5x1 : F1.F2 =β 5x1 : H1.H2 and so

F1 =β H1 and 1 ⊢ L1 : F1; hence we have by the induction hypothesis N1 ≡ L1.

So F2[x1 := N1] =β H2[x1 := L1]. Now suppose n > 1. Then

1⊢ y N1 : 5x2 : F3.F4 =β F2[x1 := N1],1⊢ N2 : F3,1⊢ y N1 N2 : F4[x2 := N2],

1⊢ y N1 : 5x2 : H3.H4 =β H2[x1 := L1],1⊢ L2 : H3,1⊢ y N1 L2 : H4[x2 := L2].

Now 5x2 : F3.F4 =β 5x2 : H3.H4. So N2 ≡ L2 and hence F4[x2 := N2] =β

H4[x2 := L2]. Continuing in this way we get finally Ni ≡ L i for all i . �

We need a version of Lemma 8.2 with ≡ replaced by =β . We can only prove that for

PTSs where each legal term has a normal form.

From now on we restrict ourselves to normalizing PTSs , that is, PTSs such that

each legal term has a normal form.

Lemma 8.3 If P1 and P2 are pseudo SA-terms in normal form then

[P1] =β [P2] ⇒ [P1] ≡ [P2].

Proof By Church-Rosser and Lemma 7.4. �

Lemma 8.4
Ŵ ⊢ P1 : B1, Ŵ ⊢ P2 : B2

B1 ∼ B2, [P1] =β [P2]

}

⇒ P1 =β P2.
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Proof Let Qi be the normal form of Pi . Then [Q1] =β [Q2] and by Lemmas 8.2

and 8.3, we get Q1 ≡ Q2 and so P1 =β P2. �

Lemma 8.5 If Ŵ1 ⊢ M : A, Ŵ2 ⊢ N : B and [Ŵ1] =β [Ŵ2], then Ŵ1 =β Ŵ2.

Proof By induction on the length of Ŵ1. Let

Ŵ1 ≡ x1 : A1, . . . , xn : An, and

Ŵ2 ≡ x1 : B1, . . . , xn : Bn.

By Lemma 4.4, we have s1, s2 ∈ S such that

x1 : A1, . . . , xn−1 : An−1 ⊢ An : s1

and

x1 : B1, . . . , xn−1 : Bn−1 ⊢ Bn : s2.

So by the induction hypothesis, if [Ŵ1] =β [Ŵ2],

x1 : A1, . . . , xn−1 : An−1 =β x1 : B1, . . . , xn−1 : Bn−1.

By Lemma 4.10,

x1 : A1 . . . xn−1 : An−1 ⊢ Bn : s2,

and by Lemma 8.4, An =β Bn , that is, Ŵ1 =β Ŵ2. �

Theorem 8.6 If in the IS corresponding to a normalizing PTS,

Ŵ ⊢I U V , (1)

then there exist Ŵ1, A, M such that Ŵ ≡ [Ŵ1], U ≡ [A], V ≡ [M], and

Ŵ1 ⊢ M : A. (2)

Proof By induction on the derivation of (1).

Case 1 (Axiom) ⊢I sc. This case is trivially okay.

Case 2 (Start)
Ŵ− ⊢I sU

Ŵ−, U x ⊢I U x

where Ŵ ≡ Ŵ−, U x and V ≡ x . By the induction hypothesis

Ŵ−
1 ⊢ A : B

where

Ŵ− ≡ [Ŵ−
1 ], s ≡ [B] and U ≡ [A], hence B ≡ s, so Ŵ−

1 ⊢ A : s.

Now by start Ŵ−
1 , x : A ⊢ x : A which is (2).

Case 3 (Weakening)
Ŵ− ⊢I U V Ŵ− ⊢I sY

Ŵ−, Y x ⊢I U V

where Ŵ ≡ Ŵ−, Y x . By the induction hypothesis we have

Ŵ2 ⊢ M : A, Ŵ3 ⊢ C : B

where

Ŵ− ≡ [Ŵ2] ≡ [Ŵ3], V ≡ [M], U ≡ [A], Y ≡ [C] and, as above, B ≡ s.

By Lemmas 8.5 and 4.10, Ŵ2 ⊢ C : s and by a weakening rule we have (2) with

Ŵ1 ≡ Ŵ2, x : C .
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Case 4 (Conversion)
Ŵ ⊢I U V Ŵ ⊢I sY Y =β U

Ŵ ⊢I Y V
.

By the induction hypothesis we get similarly to above,

Ŵ1 ⊢ M : B, Ŵ1 ⊢ A : s where Ŵ ≡ [Ŵ1], U ≡ [B], V ≡ [M], and Y ≡ [A].

By Lemmas 4.8, 7.4, and 8.4, we get A =β B . Hence by conversion Ŵ1 ⊢ M : A

which is (2).

Case 5 (Application)
Ŵ ⊢I GU(λx .V )T Ŵ ⊢I U R

Ŵ ⊢I (V [x := R]) (T R)
.

We get similarly to above

Ŵ1 ⊢ N : B, Ŵ1 ⊢ P : C

where

Ŵ ≡ [Ŵ1], T ≡ [N], GU(λx .V ) ≡ [B], U ≡ [C], and R ≡ [P],

[B] ≡ GU(λx .V ) so B ≡ 5x : E .F where U ≡ [E] and V ≡ [F].

By Lemmas 4.8 and 4.7(iii), Ŵ1 ⊢ E : s, for some s, so we have Ŵ1 ⊢ P : C, C =β E

(by 4.8 and 8.4), Ŵ1 ⊢ E : s.

Hence by conversion

Ŵ1 ⊢ P : E .

Hence Ŵ1 ⊢ N P : F[x := P] which is (2).

Case 6 (Abstraction)

Ŵ, Y x ⊢I U V Ŵ ⊢I s(GY (λx .U))

Ŵ ⊢I GY (λx .U)(λx .V )
.

By the induction hypothesis we get, similarly to above,

Ŵ1, x : B ⊢ N : C, Ŵ1 ⊢ 5x : D.E : s

where

Ŵ ≡ [Ŵ1], Y ≡ [B], U ≡ [C], V ≡ [N], Y ≡ [D], and U ≡ [E].

By Lemmas 4.8 and 8.4 we get B =β D and C =β E .

By Lemma 4.10 and the Generation Lemma we get

Ŵ1, x : D ⊢ N : C.

Now C =β E and Ŵ1, x : D ⊢ E : s′ for some s′. So by conversion

Ŵ1, x : D ⊢ N : E .

Hence by abstraction

Ŵ1 ⊢ λx : D.N : 5x : D.E

which is (2).

Case 7 (Product)
Ŵ, Y x ⊢I s2 Z Ŵ ⊢I s1Y

Ŵ ⊢I s3(GY (λx .Z))

where (s1, s2, s3) ∈ R. We get

Ŵ1, x : B ⊢ C : s2 Ŵ1 ⊢ D : s1
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where

Ŵ ≡ [Ŵ1], Y ≡ [B], Z ≡ [C], and Y ≡ [D].

By Lemma 8.4 we get B =β D, hence Ŵ1, x : D ⊢ C : s2 by Lemma 4.10.

So by product,

Ŵ1 ⊢ 5x : D.C : s3,

which is (2). �

Theorem 8.7 For SISs and SPTSs such that the corresponding PTS is normalizing,

if 1 is SI-legal and

1 ⊢SI X,

then there exist 11, A, and M such that

1 =β [11], X =β [A][M],11 S-legal, and 11 ⊢S M : A.

Proof From Theorems 6.4, 8.6, and 2.10(i). �

Theorem 8.8 For AISs and APTSs such that the corresponding PTS is normalizing

and satisfies (∗), if

Ŵ ⊢AI X,

then there exist Ŵ1, A, and M such that

Ŵ ≡ [Ŵ1], X ≡ [A][M], and Ŵ1 ⊢A M : A.

Proof From Theorems 6.6, 8.6, and 2.11(i). �

Theorem 8.9 For SAISs and SAPTSs such that the corresponding PTS is normal-

izing and satisfies (∗), if 1 is SAI-legal and

1 ⊢SAI X,

then there exist 11, A, and M such that

1 =β [11], X =β [A][M],11 SA-legal, and 11 ⊢SA M : A.

Proof From Theorems 6.9, 8.8, and 2.12(i). �

9 Linking PTSs and SAISs

We are now able to link PTSs to SAISs, the systems closest to the illative systems in

the literature.

Theorem 9.1

Ŵ ⊢ M : A ⇒ [Ŵ] ⊢SAI [A][M].

Proof By Theorems 7.5, 6.5, and 6.11. �

Theorem 9.2

1 ⊢SAI X ⇒ ∃Ŵ, M, A [S(Ŵ) =β 1, [A][M] =β X & Ŵ ⊢ M : A],

provided 1 is SAI-legal, the PTS is normalizing, and (∗) holds.

Proof By Theorems 6.9, 6.6, and 8.6. �
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10 PTSs and ICLs in the Literature

Illative systems of combinatory logic such as these of Bunder [11], [3], [4], and [7],

the later “Frege Structures” of Aczel [1], and the version of the Calculus of Con-

structions in Coquand [14] and Seldin [17] are slightly more general than the SAIs

that we have developed here in that in

1, Xx ⊢ Y Z

in the abstraction rule, Y may be an abstract and in that (+) need not hold. Some

have additional definitions and postulates such as conversion with βη-equality. Still

by Theorem 9.1, the translation of any valid PTS judgment is valid in these illative

systems. By Theorem 9.2, a subclass of the theorems of these illative systems can be

translated back into PTSs.

It was thought that setting up the above two links between PTSs and SAISs would

allow a transfer of properties from one to the other. We will examine the most im-

portant such property, that of consistency.

10.1 SAIS consistency The original illative systems of Church and Curry were

inconsistent in the strong sense that every term (including an arbitrary variable or

λ-term) was provable. Some later systems that included a class of propositions H

were inconsistent in the weaker sense (see Bunder [5], [6], and [9] and Bunder and

Meyer [10]) that all propositions were provable. This was expressed as ⊢ 4HI,

which can be translated into ⊢ GH(λxy.y)(λx .x) and, by Definition 7.1, with ∗ for

H, into ⊢ (λx : ∗.x) : (5x : ∗.λy.y).

By the Sharpened Generation Lemma (4.7) this is not a valid judgment of a PTS,

so by Theorem 9.2, SAISs are consistent in the strong sense that not all propositions

are provable, if the corresponding PTS is normalizing and satisfies (∗).

In fact (5x : ∗.λy.y) is, by the Correctness of Types Lemma (4.8), not even a pos-

sible type, so it seems that 4HI cannot be represented in a SAIS given normalization

and (∗).

In many ICLs in the literature, however, it is important to have 4HI as a propo-

sition so that negation can be defined by ∼ X ≡ X ⊃ 4HI. Also, in these, the

properties of intuitionistic implication and negation are derived from the postulates

for 4 (or G) using either the definition H ≡ λx .L(λy.x) or L ≡ FUH for some U

and the axiom ⊢ LH. ⊢ LH is the counterpart to ⊢ ∗ : , a standard PTS axiom, but

to have sorts defined in terms of other sorts and having types that are abstracts is not

possible in PTSs or in SAISs. Hence a gap remains between SAISs and the illative

systems in the literature.

10.2 PTS consistency A PTS is inconsistent if, for some M ,

⊢ M : (5x : ∗.x),

that is, if M is a proof that every proposition (element of ∗) is a theorem.

If this were valid we would have, in the corresponding SAIS,

⊢ G ∗ (λx .x)[M]

or

∗x ⊢ x([M]x).

If ∗ is interpreted as H, the class of propositions, this is unprovable (and in fact ill

formed as was the translation of SAIS inconsistency into PTSs). However, if ∗ is
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interpreted instead as a class of sets and the term [M] as a choice function, the result

is in fact true!

10.3 Why the mismatch? The reason for the mismatch is, of course, that in a

PTS only the type is considered as a proposition of predicate calculus, whereas in

illative systems the translation of the term and the type, that is, a whole statement is

considered as a proposition. Despite this we have seen that the postulates of PTSs and

(S)(A)ISs are remarkably similar and in fact equivalent, modulo legality, β-equality,

and (∗).
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