Notre Dame Journal of Formal Logic
Volume 46, Number 1, 2005

Program Size Complexity for Possibly
Infinite Computations

Verdnica Becher, Santiago Figueira,
André Nies, and Silvana Picchi

Abstract We define a program size complexity function H° as a variant of
the prefix-free Kolmogorov complexity, based on Turing monotone machines
performing possibly unending computations. We consider definitions of ran-
domness and triviality for sequences in {0, 1}? relative to the H®° complexity.
We prove that the classes of Martin-Lof random sequences and H °°-random se-
quences coincide and that the H®°-trivial sequences are exactly the recursive
ones. We also study some properties of H°° and compare it with other complex-
ity functions. In particular, H is different from H A the prefix-free complexity
of monotone machines with oracle A.

1 Introduction

We consider monotone Turing machines (a one-way read-only input tape and a one-
way write-only output tape) performing possibly infinite computations, and we de-
fine a program size complexity function H*° : {0, 1}* — N as a variant of the
classical Kolmogorov complexity: given a universal monotone machine U, for any
string x € {0, 1}*, H®(x) is the length of a shortest string p € {0, 1}* read by U,
which produces x via a possibly infinite computation (either a halting or a nonhalting
computation), having read exactly p from the input.

The classical prefix-free complexity H (Chaitin [2], Levin [9]) is an upper bound
of the function H*° (up to an additive constant) since the definition of H > does not
require that the machine U halts. We prove that H*° differs from A in that it has no
monotone decreasing recursive approximation and it is not subadditive.

The complexity H is closely related with the monotone complexity Hm, inde-
pendently introduced by Zvonkin and Levin [15] and Schnorr [12] (see Uspensky
and Shen [14] and Li and Vitanyi [10] for historical details and differences among

Received July 23, 2003; accepted April 28, 2004; printed January 25, 2005

2000 Mathematics Subject Classification: Primary, 68Q30, 68Q05

Keywords: program size complexity, Kolmogorov complexity, infinite computations
©2005 University of Notre Dame

51

http://www.nd.edu/~ndjfl
http://www.nd.edu

52 Becher, Figueira, Nies, and Picchi

various monotone complexities, and see [3] for a closely related complexity of sets
introduced by Chaitin). Levin defines Hm(x) as the length of the shortest halting
program that provided with n (0 < n < |x|), outputs x [n. Equivalently Hm(x) can
be defined as the least number of bits read by a monotone machine U which via a
possibly infinite computation produces any finite or infinite extension of x.

Hm is a lower bound of H* (up to an additive constant) since the definition of
H > imposes that the machine U reads exactly the input p and produces exactly the
output x. Every recursive A € {0, 1}* is the output of some monotone machine with
no input, so there is some ¢ such that Vn Hm(A[n) < c. Moreover, there exists ng
such that Vn,m > nog, Hm(An) = Hm(A|m). We show this is not the case with
H®, since for every infinite B = {by, by, ...} € {0, 1}*, lim,—.oc H*(b,) = 0.
This is also a property of the classical prefix-free complexity H, and we consider it
as a decisive property that distinguishes H°° from Hm.

The prefix-free complexity of a universal machine with oracle @', the function
H?Z, is also a lower bound of H (up to an additive constant). We prove that for
infinitely many strings x, the complexities H (x), H*>(x), and H zl(x) separate as
much as we want. This already proves that these three complexities are different.
In addition we show that for every oracle A, H™ differs from H*, the prefix-free
complexity of a universal machine with oracle A.

For sequences in {0, 1} we consider definitions of randomness and triviality
based on the H* complexity. A sequence is H*°-random if its initial segments
have maximal H® complexity. Since Hm gives a lower bound of H*> and Hm-
randomness coincides with Martin-Lof randomness (Levin [8]), the classes of
Martin-L6f random, H *°-random, and Hm-random coincide.

We argue for a definition of H °°-trivial sequences as those whose initial segments
have minimal H*° complexity. While every recursive A € {0, 1}* is both H -trivial
and H *°-trivial, we show that the class of H *°-trivial sequences is strictly included
in the class of H -trivial sequences. Moreover, in Theorem 5.6, the main result of the
paper, we characterize the recursive sequences as those which are H *-trivial.

2 Definitions

N is the set of natural numbers, and we work with the binary alphabet {0, 1}. As
usual, a string is a finite sequence of elements of {0, 1}, A is the empty string, and
{0, 1}* is the set of all strings. {0, 1}* is the set of all infinite sequences of {0, 1}, that
is, the Cantor space, and {0, 1}= = {0, 1}* U {0, 1}® is the set of all finite or infinite
sequences of {0, 1}.

For s € {0, 1}*, |s| denotes the length of 5. If s € {0, 1}* and A € {0, 1}* we
denote by s[n the prefix of s with length min{rn, |s|} and by A [n the length n prefix
of the infinite sequence A. We consider the prefix ordering < over {0, 1}*, that is,
for s,t € {0, 1}* we write s < ¢ if s is a prefix of 1. We assume the recursive
bijection string : N — {0, 1}* such that string(i) is the ith string in the length and
lexicographic order over {0, 1}*.

If f is any partial map then, as usual, we write f(p)] when it is defined and
f(p)1 otherwise.

2.1 Possibly infinite computations on monotone machines A monotone machine
is a Turing machine with a one-way read-only input tape, some work tapes, and a

Complexity for Possibly Infinite Computations 53

one-way write-only output tape. The input tape contains a first dummy cell (rep-
resenting the empty input) and then a one-way infinite sequence of Os and 1s, and
initially the input head scans the leftmost dummy cell. The output tape is written
one symbol of {0, 1} at a time (the output grows with respect to the prefix ordering
in {0, 1}* as the computational time increases).

A possibly infinite computation is either a halting or a nonhalting computation.
If the machine halts, the output of the computation is the finite string written on the
output tape. Else, the output is either a finite string or an infinite sequence written
on the output tape as a result of a never ending process. This leads us to consider
{0, 1}=® as the output space.

In this work we restrict ourselves to possibly infinite computations on monotone
machines which read just finitely many symbols from the input tape.

Definition 2.1 Let M be a monotone machine. M (p)[t] is the current output of
M on input p at stage ¢ if it has not read beyond the end of p. Otherwise, M (p)[7]1.
Notice that M (p)[t] does not require that the computation on input p halts.

Remark 2.2

1. If M(p)[t]1 then M (g)[u]?t forallg < pandu > t.

2. If M(p)[t]] then M(g)[u]| for any g > p and u < r. Also, if at stage
t, M reaches a halting state without having read beyond the end of p, then
M(p)[ull = M(p)[t] forall u > ¢.

3. Since M is monotone, M (p)[t] < M(p)[t + 1],in case M (p)[t + 1]J.

4. M(p)[t] has recursive domain.

Definition 2.3 Let M be a monotone machine.

1. The input/output behavior of M for halting computations is the partial recur-
sive map M : {0, 1}* — {0, 1}* given by the usual computation of M, that is,
M (p)| if and only if M enters into a halting state on input p without reading
beyond p. If M(p)| then M(p) = M(p)[t] for some stage ¢t at which M
entered a halting state.

2. The input/output behavior of M for possibly infinite computations is the map
M : {0, 1}* — {0, 1}=% given by M>®(p) = lim; o M (p)[t].

Proposition 2.4

1. domain(M) is closed under extensions and its syntactical complexity is E(l);

2. domain(M®) is closed under extensions and its syntactical complexity is T19;
3. M extends M.

1. is trivial.

2. M®°(p){ if and only if V¢ M on input p does not read p0 and does not read
pl. Clearly, domain(M) is closed under extensions since if M°°(p)J then
M™>(q)| = M (p) for every g > p.

3. Since the machine M is not required to halt, M> extends M. O

Remark 2.5 An alternative definition of the functions M and M would be to
consider them with prefix-free domains (instead of closed under extensions):
- M(p)| if and only if at some stage ¢ M enters a halting state having read
exactly p. If M(p)| then its value is M (p)[¢] for such stage .

54 Becher, Figueira, Nies, and Picchi

- M®(p)] if and only if 3¢ at which M has read exactly p and for every 1’ M
does not read pO nor pl. If M*°(p)| then its value is lim,_, oc M (p)[?].

We fix an effective enumeration of all tables of instructions. This gives an effective
(M;i)ien. We also fix the usual monotone universal machine U, which defines the
functions U(0'1p) = M;(p) and U®(0'1p) = M®(p) for halting and possibly
infinite computations, respectively. As usual, i 4 1 is the coding constant of M.
Recall that U is an extension of U. We also fix U?" a monotone universal machine
with an oracle for @'.

By Shoenfield’s Limit Lemma every M* : {0, 1}* — {0, 1}* is recursive in
@'. However, possibly infinite computations on monotone machines cannot compute
all @’-recursive functions. For instance, the characteristic function of the halting
problem cannot be computed in the limit by a monotone machine. In contrast, the
Busy Beaver function in unary notation bb : N — 1*:
the maximum number of 1s produced by any Turing machine
bb(n) =

with n states which halts with no input
is just @’-recursive and bb(n) is the output of a nonhalting computation which on
input n, simulates every Turing machine with n states and for each one that halts
updates, if necessary, the output with more 1s.

2.2 Program size complexities on monotone machines Let M be a monotone
machine and M, M the respective maps for the input/output behavior of M for
halting computations and possibly infinite computations (Definition 2.3). We denote
the usual prefix-free complexity ([2], [9], Gacs [7]) for M by H ¢ : {0, 1}* — N:

Hoy(x) = min{|p| : M(p) = x} if x is in the range of M
M= = otherwise.

Definition 2.6 ~ H§; : {0, 1}=? — N is the program size complexity for functions
M.
minf|p| : M*°(p) = x} if x is in the range of M

00(y
Hyx) = { 00 otherwise.

For U we drop subindexes and we simply write H and H *°. The Invariance Theorem
holds for H®°:

¥ monotone machine M Jc Vs € {0, 1}=° H®(s) < HS(s) +c.

The complexity function H > was first introduced in Becher et al. [1] without a de-
tailed study of its properties. Notice that if we take monotone machines M according
to Remark 2.5 instead of Definition 2.3, we obtain the same complexity functions
H g and HSp.

In this work we only consider the H complexity of finite strings, that is, we
restrict our attention to H* : {0, 1}* — N. We will compare H*° with these other
complexity functions:

HA: {0, 1} — N is the program size complexity function for U4, a monotone
universal machine with oracle A. We pay special attention to A = &',

Hm : {0, 1}=° — N (see [15]), where Hm (x) = min{|p| : M>®(p) > x} is the
monotone complexity function for a monotone machine M and, as usual, for
U we simply write Hm.

We mention some known results that will be used later.

Complexity for Possibly Infinite Computations 55

Proposition 2.7 (For items 1 and 2 see [2], for item 3 see [1].)

1.
2.

3.

Vs € {0, 1}* H(s) < |s| + H(Is]) + O(1);

Vn 3s € {0, 1}* of length n such that

(a) H(s) = n,

(b) H? (s) = n;

Vs € {0, 1}* Hzl(s) < H®(s) + O(1) and H*®(s) < H(s) + O(1).

3 H® Is Different From H

The following properties of H* are in the spirit of those of H.

Proposition 3.1 For all strings s and t,

1.

Nk

Proof

H(s) < H®(s) + H(Is]) + O(1),

#{s € {0, 1} : H®(s) < n} < 2"t
H®(ts) < H*®(s) + H(t) + O(1),
H®(s) < H®(st) + H(|t]) + O(1),
H®(s) < H®(st) + H®(|s]) + O(1).

. Let p,g € {0, 1}* such that U*(p) = s and U(g) = |s|. Then there is

a machine that first simulates U(qg) to obtain |s|, then starts a simulation of
U®°(p) writing its output on the output tape, until it has written |s| symbols,
and then halts.

There are at most 2"+ — 1 strings of length < n.

Let p,g € {0, 1}* such that U*°(p) = s and U(g) = t. Then there is a
machine that first simulates U (¢) until it halts and prints U (g) on the output
tape. Then it starts a simulation of U (p) writing its output on the output
tape.

Let p,g € {0, 1}* such that U (p) = st and U(q) = |¢|. Then there is a
machine that first simulates U (g) until it halts to obtain |¢|. Then it starts a
simulation of U (p) such that at each stage n of the simulation it writes the
symbols needed to leave U (p)[n][(|U (p)[n]| — |t]) on the output tape.

. Consider the following monotone machine:

t:=Lvi=:Mw:=A

repeat
if U(v)[t] asks for reading then append to v the next bit in the input
if U(w)[t] asks for reading then append to w the next bit in the input
extend the actual output to U (w)[#][(U (v)[t])
t:i=t+1

If p and ¢ are shortest programs such that U (p) = |s| and U (¢q) = st,
respectively, then we can interleave p and ¢ in a way such that at each stage
t,v <X pand w < g (notice that eventually v = p and w = ¢). Thus, this
machine will compute s and will never read more than H°(st)+H°(|s|)
bits. O

H is recursively approximable from above, but H*° is not.

56 Becher, Figueira, Nies, and Picchi
Proposition 3.2 There is no effective decreasing approximation of H°.

Proof Suppose there is a recursive function 4 : {0, 1}* x N — N such that for every
string s, lim; 0 A (s, 1) = H*(s) and for all r € N, h(s, t) > h(s,t + 1). We write
h;(s) for h(s, t). Consider the monotone machine M with coding constant d given
by the Recursion Theorem, which on input p does the following:

t:=1;print0
repeat forever
n := number of bits read by U (p)[¢]
for each string s not yet printed, |s| <t and h;(s) <n+d
print s
t=t+1

Let p be a program such that U (p) = k and | p| = H*°(k). Notice that, as t — oo,
the number of bits read by U (p)[¢] goes to |p| = H®°(k). Let o be such that for
all t > 19, U(p)[t] reads no more from the input. Since there are only finitely
many strings s such that H>°(s) < H®(k) + d, there is a t; > fo such that for
all ¢t > t; and for all those strings s, h;(s) = H(s). Hence, every string s with
H*>(s) < H*®(k) + d will be printed.

Let z = M®(p). On one hand, we have H*(z) < |p| +d = H*®(k) + d.
On the other hand, by the construction of M, z cannot be the output of a pro-
gram of length < H*(k) + d (because z is different from each string s such that
H®®(s) < H®(k) + d). So it must be that H*°(z) > H®(k) + d, a contradic-
tion. O

The following lemma states a critical property that distinguishes H® from H. It
implies that H*° is not subadditive, that is, it is not the case that H*°(st) < H*>(s)+

H>()4+©(1). It also implies that H*° is not invariant under recursive permutations
{0, 1}* — {0, 1}*.

Lemma 3.3 For every total recursive function f there is a natural k such that
H>® (k1) > f(H>(0).

Proof Let f be any recursive function and M the following monotone machine
with coding constant d given by the Recursion Theorem:

t:=1
do forever
for each p such that |p| <max{f(@i):0 <i <d}
if U(p)[t] = 071 then
print enough Os to leave at least 0/*! on the output tape
t:=t+1

Let N = max{f(i) : 0 < i < d}. We claim there is a k such that M (1) = OF.
Since there are only finitely many programs of length less than or equal to N which
output a string of the form 0/1 for some j, then there is some stage at which M has
written 0%, with k greater than all such j’s, and then it prints nothing else. Therefore,
there is no program p with |p| < N such that U®(p) = 0F1.

Complexity for Possibly Infinite Computations 57

If M®(L) = 0% then H®(0X) < d. So, f(H*>(0X) < N. Also, for this k,
there is no program of length < N that outputs 01 and thus H>(0*1) > N. Hence,
H®0%1) > f(H>®(0"). O

Note that H (Ok) = H (Okl) = H °°(0k1) up to additive constants, so the above
lemma gives an example where H*° is much smaller than H.

Proposition 3.4
1. H® is not subadditive.
2. It is not the case that for every recursive one-one g : {0, 1}* — {0, 1}*
Jc Vs [H®(g(s)) — H™(s)| < c.
Proof

1. Let f be the recursive injection f(n) = n + c. By Lemma 3.3 there is k such
that H>®(0F1) > H>(0X) + ¢. Since the last inequality holds for every c, it
is not true that H>®(0¥1) < H>(0%) + 0 (1).

2. It is immediate from Lemma 3.3. O

It is known that the complexity H is smooth in the length and lexicographic order
over {0, 1}* in the sense that | H (string(n)) — H (string(n + 1))| = @ (1). However,
this is not the case for H*.

Proposition 3.5
1. H® is not smooth in the length and lexicographical order over {0, 1}*.
2. Vn |H®(string(n)) — H>®(string(n + 1))| < H (|string(n)|) + O (1).
Proof
1. Notice that Vn > 1, H>®(0"1) < H>®(0"" 1) 4+ 9(1), because if U®(p) =
0"~'1 then there is a machine that first writes a 0 on the output tape and
then simulates U*°(p). By Lemma 3.3, for each ¢ there is an n such
that H*°(0"1) > H®°(0") + c. Joining the two inequalities, we obtain
Yedn H®(0"'1) > H®(0")+c. Since string~ (0" ~'1) = string= 1 (0")+1,
H® is not smooth.
2. Consider the following monotone machine M with input pg:
obtain y = U(p)
simulate z = U (q¢) till it outputs y bits
write string(string='(z) + 1)
Let p,q € {0, 1}* such that U(p) = |string(n)| and U*°(q) = string(n).
Then, M*°(pq) = string(n 4+ 1) and
H>®(string(n 4+ 1)) < H*®(string(n)) + H (|string(n)|) + O(1).
Similarly, if M, instead of writing string(string ™' (z) + 1), writes
string(string~ ' (z) — 1), we conclude
H>(string(n)) < H®(string(n + 1)) + H (|string(n + 1)|) + O(1).
Since |H (|string(n)|) — H (|string(n + 1)])| = O(1), it follows that
|H > (string(n)) — H®(string(n + 1))| < H (|string(n)|) + O(1).
O

58 Becher, Figueira, Nies, and Picchi

4 H®™ is Different From H4 for Every Oracle A

Item 3 of Proposition 2.7 states that H> is between H and H 2’ The following
result shows that H is really strictly in between them.

Proposition 4.1 For every c there is a string s € {0, 1}* such that
HZ (s)4+c < H®(s) < H(s) — c.

Proof Let u, = min{s € {0,1}" : H(s) > n} and let A = {ap, aj, ...} be any
infinite r.e. set and consider a machine M which on input i does the following:

j=0
repeat
write a;
find a program p, |p| < 3i, such that U(p) = a;
ji=j+1
M (i) outputs the string v; = aoay ...ay, where H(ax;) > 3i and for all z,

0 < z < k; we have H(a;) < 3i. We define w; = u;v;. Let’s see that both
H(w;) — H? (w;) and H (w;) — H(w;) grow arbitrarily.

On one hand, we can construct a machine which on input i and p executes
U (p) till it outputs i bits and then halts. Since the first i bits of w; are u; and
H(@G) <2lil+0(1),wehavei < H(u;) < H®(w;) + 21i| + ©O(1). But with the
help of the @’-oracle we can compute w; from i, so HQ/(wi) <2li|4+ ©@(). Thus
we have H®(w;) — HZ (w;) > i —4i| — O(1).

On the other hand, given i and w;, we can effectively compute ay,. Hence, Vi we
have 3i < H(ay,) < H(w;)+2i|+ O(1). Also, given u;, we can compute w; in the
limit using the idea of machine M, and hence H*°(w;) < 2 |u;|+ O (1) =2i+0(1).
Then, for all i

H(w;) — H®(w;) >i —2i| — O(1). 0

Not only H is different from H 2 but it differs from H* (the prefix-free complex-
ity of a universal monotone machine with oracle A), for every A.

Theorem 4.2 There is no oracle A such that |H°O — HA| <0O().

Proof Immediate from Lemma 3.3 and from the standard result that for all A, H4
is subadditive so, in particular, for every k, H A0F1) < HAWO) + 0(1). O

5 H® and the Cantor Space

The advantage of H* over H can be seen along the initial segments of every recur-
sive sequence: if A € {0, 1}* is recursive then there are infinitely many »’s such that
H(A[n) — H>®(A[n) > c, for an arbitrary c.

Proposition 5.1 Let A € {0, 1}* be a recursive sequence. Then

1. limsup,_, H(Aln) — H®(A[n) = oo;
2. limsup,_, H*(A[n) — Hn(A[n) = oc.

Complexity for Possibly Infinite Computations 59

Proof

1. Let A(n) be the nth bit of A. Let’s consider the following monotone machine
M with input p:

obtainn := U(p)
write A[(string=1(0") — 1)
for s := 0" to 1" in lexicographic order
write A(string~'(s))
search for a program p such that [p| <nand U(p) = s

If U (p) =n, then M*°(p) outputs A [k,, for some k, such that 2" <k, < ontl
since for all n there is a string of length n with H-complexity greater than
or equal to n. Let us fix n. On one hand, H*°(A[k,) < H(n) 4+ @(1). On
the other, H(Ak,) > n 4+ O(1), because we can compute the first string in
the lexicographic order with H-complexity > n from a program for A[k,,.
Hence, for each n, H(Alk,) — H>®(Alk,) > n— H(n)+ O().

2. Trivial because for each recursive sequence A there is a constant ¢ such that
Hm(Aln) < c and lim,_, o H*(B[n) = oo forevery B € {0, 1}*. 0

5.1 H-triviality and H®°-triviality =~ There is a standard convention to use H with
arguments in N. That is, for any n € N, H (n) is written instead of H (f(n)) where
f is some particular representation of natural numbers on {0, 1}*. This convention
makes sense because H is invariant (up to a constant) for any recursive representation
of natural numbers.

H -triviality has been defined as follows (see Downey et al. [5]): A € {0, 1}* is
H -trivial if and only if there is a constant ¢ such that for all n, H(A[n) < H(n) +c.
The idea is that H-trivial sequences are exactly those whose initial segments have
minimal H-complexity. Considering the above convention, A is H-trivial if and only
ifdcVn H(An) < H0") + c.

In general H° is not invariant for recursive representations of N. We propose the
following definition that insures that recursive sequences are H *-trivial.

Definition 5.2 A € {0, 1}* is H®-trivial if and only if 3¢ Vn H*(A[n)
< H*®(0") +c.

Our choice of the right-hand side of the above definition is supported by the follow-
ing proposition (see Ferbus-Zanda and Grigorieff [6] for further discussion).

Proposition 5.3 Let f : N — {0, 1}* be recursive and strictly increasing with
respect to the length and lexicographical order over {0, 1}*. Then

Vn H*(0") < H*(f () + O (D).

Proof Notice that, since f is strictly increasing, f has recursive range. We con-
struct a monotone machine .M with input p:

t:=0

repeat
if U(p)[t]] isin the range of f thenn := f_l(U(p)[t])
print the needed 0’s to leave 0" on the output tape
t:=t+1

60 Becher, Figueira, Nies, and Picchi

Since f is increasing in the length and lexicographic order over {0, 1}*, if p is a
program for U such that U*°(p) = f(n), then M*°(p) = 0". 1

Chaitin observed that every recursive A € {0, 1} is H-trivial (Chaitin [4]) and that
H -trivial sequences are Ag. However, H-triviality does not characterize the class
A(l) of recursive sequences: Solovay [13] constructed a Ag sequence which is H-
trivial but not recursive (see also [5] for the construction of a strongly computably
enumerable real with the same properties). Our next result implies that H *°-trivial
sequences are A% and Theorem 5.6 characterizes A(l) as the class of H®°-trivial
sequences.

Theorem 5.4 Suppose that A is a sequence such that, for some b € N,
Vn H®(Aln) < H(n) + b. Then A is H-trivial.

Proof Anre.set W C N x 2<% is a Kraft-Chaitin set (KC-set) if

Z(r,y}EW 27 =1L

For any E C W, let the weight of E be wt(E) = > {277 : (r,n) € E}.
The pairs enumerated into such a set W are called axioms. Chaitin proved
that from a Kraft-Chaitin set W one may obtain a prefix machine M, such that
Vi{r,y) e W3aw (lw|=r N Mg(w) = y).

The idea is to define a Ag tree T such that A € [T'], and a KC-set W showing that
each path of T is H-trivial. For x € {0, 1}* and 7 € N, let

H>®()[t] = min{|p|: U(p)[t] = x} and

H(x)[t] min{|p| : U(p)[t] = x and U(p) halts in at most ¢ steps}

be effective approximations of H* and H. Notice that for all x € {0, 1}*,
lim; 00 H*(x)[t] = H*°(x) and lim;, oo H (x)[¢] = H (x).
Given s, let

Ty ={y:lyl <s A Vm < |y| H*(y[m)[s] < H(m)[s] + b},

then (7s)sen is an effective approximation of a A(Z) tree T, and [T] is the class of
sequences A satisfying Vn H*(A[n) < H(n) + b. Letr = H(|y|)[s]. We define a
KC-set W as follows: if y € T and either there is u < s greatest such that y € T,
andr < H(|y|)[ul,or y ¢ T, for all u < s, then put an axiom (r + b + 1, y) into
w.

Once we show that W is indeed a KC-set, we are done: by Chaitin’s result,
there is d such that (k, y) € W implies H(y) < k + d. Thus, if A € [T], then
H(y) < H(|yl) + b +d + 1 for each initial segment y of A.

To show that W is a KC-set, define strings Ds(y) as follows. When we put an
axiom (r + b+ 1, y) into W at stage s,

- let Dg(y) be a shortest p such that U(p)[s] = y (recall from Definition 2.1
that it is not required that U halts at stage s),

- if B < y, we haven’t defined D;(B8) yet and D;_1(B) is defined as a prefix of
p, then let Ds(B) be a shortest g such that U(g)[s] = B.

Complexity for Possibly Infinite Computations 61

In all other cases, if Ds_1(pB) is defined then we let Dy(8) = Ds—1(B8). We claim
that, for each s, all the strings Ds(fB) are pairwise incompatible (i.e., they form a
prefix-free set). For suppose that p < g, where p = Dy(B) was defined at stage
u < s,and g = D(y) was defined at stage t < s. Thus, B = U(p)[u] and
y = U(q)[t]. By the definition of monotone machines and the minimality of ¢,
u < t and f < y. But then, at stage t+ we would redefine D, (8), a contradiction.
This shows the claim.

If we put an axiom (r + b + 1, y) into W at stage ¢, then for all s > ¢, Ds(y)
is defined and has length at most H(|y|)[t] + b (by the definition of the trees
Ts).NThus, if WS is the set of axioms (k, y) in Wy where k is minimal for y, then
wt(Wy) < ZV 2-IDs(I=1 < 1/2 by the claim above. Hence wt(W;) < 1 as all
axioms weigh at most twice as much as the minimal ones, and Wj is a KC-set for
each s. Hence W is a KC-set. [l

Corollary 5.5 If A € {0, 1}* is H®-trivial then A is H-trivial, hence in Ag.

Theorem 5.6 Let A € {0, 1}*. A is H®-trivial if and only if A is recursive.

Proof From right to left, it is easy to see that if A is a recursive sequence then
A is H®°-trivial. For the converse, let A be H*-trivial via some constant b. By
Corollary 5.5, A is A9, hence, there is a recursive approximation (Ay)sen such that
limg_ 00 Ay = A. Recall that H*>(x)[t] = min{|p| : U(p)[t] = x}. Consider the
following program with coding constant ¢ given by the Recursion Theorem:

k:=1;50:=0;print 0

while 3s; > sx—1 such that H*> (A, [k)[sk] < c+ b do
print O
k=k+1

Let us see that the above program prints out infinitely many Os. Suppose it writes
0K for some k. Then, on one hand, H oo(Ok) < ¢, and on the other, Vs > s;_1, we
have H*®°(Ask)[s] > ¢ + b. Also, H® (A, [k)[s] = H*°(Ak) for s large enough.
Hence, H®(A k) > H>®(0%) + b, which contradicts that A is H *-trivial via b.

So, for each k, there is some ¢ € {0,1}* with |g| < ¢ + b such that
U(q)lsk] = Ay k. Since there are only 2¢+*+! — 1 strings of length at most
¢+ b, there must be at least one ¢ such that, for infinitely many k, U (q)[sx] = Ay, [k.
Let’s call I the set of all these k’s. We will show that such a ¢ necessarily computes
A. Suppose not. Then, there is a ¢ such that for all s > ¢, U(g)[s] is not an initial
segment of A. Thus, noticing that (sx)ken 1S increasing and [is infinite, there
are infinitely many sy > ¢ such that k € I and U(q)[sx] = Ak # Alk. This
contradicts that Ay, [k — A when k — oo. O

Corollary 5.7 The class of H*-trivial sequences is strictly included in the class of
H -trivial sequences.

Proof By Corollary 5.5, any H *°-trivial sequence is also H -trivial. Solovay [13]
built an H -trivial sequence in Ag which is not recursive. By Theorem 5.6 this se-
quence cannot be H *-trivial. O

62 Becher, Figueira, Nies, and Picchi

5.2 H®-randomness

Definition 5.8

1. (Chaitin [2]) A € {0, 1}* is H-random iff 3c Vn H(A|n) > n — c.
Chaitin and Schnorr [2] showed that H-randomness coincides with Martin-
Lof randomness [11].

2. (Levin [8]) A € {0, 1} is Hm-random iff 3c Vn Hm(A[n) > n — c.

3. A €0, 1}*is H>®-random iff 3c Yn H*°(A|n) > n — c.

Using Levin’s result [8] that Hm-randomness coincides with Martin-Lof random-
ness, and the fact that Hm gives a lower bound of H®°, it follows immediately that
the classes of H-random, H °°-random, and Hm-random sequences coincide. For the
sake of completeness we give an alternative proof.

Proposition 5.9 (with Hirschfeldt) There is a by such that for all b > by and z, if
Hm(z) < |z| — b, then there is y < z such that H(y) < |y| — b/2.

Proof Consider the following machine M with coding constant ¢. On input gp,
first it simulates U (g) until it halts. Let’s call b the output of this simulation. Then it
simulates U *°(p) till it outputs a string y of length b + [where [is the length of the
prefix of p read by U®°. Then it writes this string y on the output and stops.

Let bg be the first number such that 2 |bg| + ¢ < bo/2 and take b > bg. Suppose
Hm(z) < |z] — b. Let p be a shortest program such that U*°(p) > z and let ¢ be a
shortest program such that U (¢) = b. This means that |p| = Hm(z) and |g| = H(b).
On input ¢ p, the machine M will compute b and then it will start simulating U *°(p).
Since |z| > Hm(z) + b = |p| + b, the machine will eventually read / bits from p
in a way that the simulation of U (p[l) = y and |y| = [+ b. When this happens,
the machine M writes y and stops. Then for p’ = p|l, we have M(¢p’)] = y and
Iyl = |p’| + b. Hence

Hy) <lgl+|p'|+c<HDB) + |yl —b+c <2|b|—b+ |yl +c < |yl —b/2.
O

Corollary 5.10 A € {0, 1}* is Martin-Lif random if and only if A is Hm-random
if and only if A is H*-random.

Proof Since Hn < H + (1) it is clear that if a sequence is Hm-random then
it is Martin-Lof random. For the opposite, suppose A is Martin-Lof random but
not Hm-random. Let by be as in Proposition 5.9 and let 2¢ > bg be such that
Vn H(A[n) > n — c¢. Since A is not Hm-random, Vd In Hm(A[n) < n — d.
In particular for d = 2c there is an n such that Hm(A[n) < n — 2c¢. On one hand,
by Proposition 5.9, there is a y < A[n such that H(y) < |y| — c¢. On the other, since
y is a prefix of A and A is Martin-Lof random, we have H(y) > |y| — c. Thisis a
contradiction. Since Hm is a lower bound of H*°, the above equivalence implies A
is Martin-L6f random if and only if A is H°°-random. O

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Complexity for Possibly Infinite Computations 63
References

Becher, V., S. Daicz, and G. Chaitin, “A highly random number,” pp. 55-68 in Com-
binatorics, Computability and Logic: Proceedings of the Third Discrete Mathematics
and Theoretical Computer Science Conference (DMTCS’01), edited by C. S. Calude
and M. J. Dineen and S. Sburlan, Springer-Verlag, London, 2001. Zbl 0967.00065.
MR 2003d:00011. 54,55

Chaitin, G. J., “A theory of program size formally identical to information theory,”
Journal of the Association for Computing Machinery, vol. 22 (1975), pp. 329-40.
7Zbl 0309.68045. MR 53:15557. 51, 54, 55, 62

Chaitin, G. J., “Algorithmic entropy of sets,” Computers & Mathematics with Applica-
tions, vol. 2 (1976), pp. 233-45. Zbl 0367.68036. 52

Chaitin, G. J., “Information-theoretic characterizations of recursive infinite strings,”
Theoretical Computer Science, vol. 2 (1976), pp. 45-48. Zbl 0328.02029. MR 54:1709.
60

Downey, R. G., D. R. Hirschfeldt, A. Nies, and F. Stephan, “Trivial reals,” pp. 103-31
in Proceedings of the 7th and 8th Asian Logic Conferences, Singapore University Press,
Singapore, 2003. Zbl 02063218. MR 2051976. 59, 60

Ferbus-Zanda, M., and S. Grigorieff, “Church, cardinal and ordinal representations of
integers and kolmogorov complexity,” in preparation, 2003. 59

Gacs, P., “On the symmetry of algorithmic information,” Soviet Mathematics, Doklady
(Akademiia Nauk SSSR. Doklady), vol. 15 (1974), pp. 1477-80. Zbl 0314.94019. 54

Levin, L. A., “The concept of a random sequence,” Doklady Akademii Nauk SSSR,
vol. 212 (1973), pp. 548-50. Zbl 0312.94006. MR 51:2346. 52, 62

Levin, L. A., “Laws on the conservation (zero increase) of information, and questions
on the foundations of probability theory,” Problemy Peredaci Informacii, vol. 10 (1974),
pp- 30-35. Zbl 0312.94007. MR 57:9298. 51, 54

Li, M., and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications,
2d edition, Graduate Texts in Computer Science. Springer-Verlag, New York, 1997.
Zbl 0866.68051. MR 97k:68086. 51

Martin-Lof, P., “The definition of random sequences,” Information and Control, vol. 9
(1966), pp. 602-19. Zbl 0244.62008. MR 36:6228. 62

Schnorr, C.-P., “Process complexity and effective random tests,” Journal of Computer
and System Sciences, vol. 7 (1973), pp. 376-88. Fourth Annual ACM Symposium on the
Theory of Computing (Denver, Colo., 1972). Zbl 0273.68036. MR 48:3713. 51

Solovay, R. M., “Draft of a paper (or series of papers) on Chaitin’s work done for the
most part during the period Sept. to Dec. 1974, 1974. 60, 61

Uspensky, V. A, and A. Shen, “Relations between varieties of Kolmogorov complex-
ities,” Mathematical Systems Theory, vol. 29 (1996), pp. 271-92. Zbl 0849.68059.
MR 97¢:68074. 51

Zvonkin, A. K., and L. A. Levin, “The complexity of finite objects and the basing of the
concepts of information and randomness on the theory of algorithms,” Uspekhi Mate-
maticheskikh Nauk, vol. 25 (1970), pp. 85-127. Zbl 0222.02027. MR 46:7004. 51, 54

http://www.emis.de/cgi-bin/MATH-item?0967.00065
http://www.ams.org/mathscinet-getitem?mr=2003d:00011
http://www.emis.de/cgi-bin/MATH-item?0309.68045
http://www.ams.org/mathscinet-getitem?mr=53:15557
http://www.emis.de/cgi-bin/MATH-item?0367.68036
http://www.emis.de/cgi-bin/MATH-item?0328.02029
http://www.ams.org/mathscinet-getitem?mr=54:1709
http://www.emis.de/cgi-bin/MATH-item?02063218
http://www.ams.org/mathscinet-getitem?mr=2051976
http://www.emis.de/cgi-bin/MATH-item?0314.94019
http://www.emis.de/cgi-bin/MATH-item?0312.94006
http://www.ams.org/mathscinet-getitem?mr=51:2346
http://www.emis.de/cgi-bin/MATH-item?0312.94007
http://www.ams.org/mathscinet-getitem?mr=57:9298
http://www.emis.de/cgi-bin/MATH-item?0866.68051
http://www.ams.org/mathscinet-getitem?mr=97k:68086
http://www.emis.de/cgi-bin/MATH-item?0244.62008
http://www.ams.org/mathscinet-getitem?mr=36:6228
http://www.emis.de/cgi-bin/MATH-item?0273.68036
http://www.ams.org/mathscinet-getitem?mr=48:3713
http://www.emis.de/cgi-bin/MATH-item?0849.68059
http://www.ams.org/mathscinet-getitem?mr=97c:68074
http://www.emis.de/cgi-bin/MATH-item?0222.02027
http://www.ams.org/mathscinet-getitem?mr=46:7004

64 Becher, Figueira, Nies, and Picchi

Acknowledgments

Becher is supported by Agencia Nacional de Promocién Cientifica y Tecnoldgica,
Figueira by a grant of Fundacién Antorchas, and Nies by the Marsden grant of New
Zealand.

Depto. Computacién

Facultad Cs. Exactas y Naturales
Universidad de Buenos Aires
Buenos Aires

ARGENTINA
vbecher@dc.uba.ar

Depto. Computacién

Facultad Cs. Exactas y Naturales
Universidad de Buenos Aires
Buenos Aires

ARGENTINA
sfigueir@dc.uba.ar

Department of Computer Science
University of Auckland

NEW ZEALAND
andre@cs.auckland.ac.nz

Depto. Computacién

Facultad Cs. Exactas y Naturales
Universidad de Buenos Aires
Buenos Aires

ARGENTINA
spicchi@dc.uba.ar

mailto:vbecher@dc.uba.ar
mailto:sfigueir@dc.uba.ar
mailto:andre@cs.auckland.ac.nz
mailto:spicchi@dc.uba.ar

	1. Introduction
	2. Definitions
	2.1. Possibly infinite computations on monotone machines
	2.2. Program size complexities on monotone machines

	3. H Is Different From H
	4. H is Different From HA for Every Oracle A
	5. H and the Cantor Space
	5.1. H-triviality and H-triviality
	5.2. H-randomness

	References
	Acknowledgments

