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Program Size Complexity for Possibly
Infinite Computations
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André Nies, and Silvana Picchi

Abstract We define a program size complexity function H° as a variant of
the prefix-free Kolmogorov complexity, based on Turing monotone machines
performing possibly unending computations. We consider definitions of ran-
domness and triviality for sequences in {0, 1}? relative to the H®° complexity.
We prove that the classes of Martin-Lof random sequences and H °°-random se-
quences coincide and that the H®°-trivial sequences are exactly the recursive
ones. We also study some properties of H°° and compare it with other complex-
ity functions. In particular, H is different from H A the prefix-free complexity
of monotone machines with oracle A.

1 Introduction

We consider monotone Turing machines (a one-way read-only input tape and a one-
way write-only output tape) performing possibly infinite computations, and we de-
fine a program size complexity function H*° : {0, 1}* — N as a variant of the
classical Kolmogorov complexity: given a universal monotone machine U, for any
string x € {0, 1}*, H®(x) is the length of a shortest string p € {0, 1}* read by U,
which produces x via a possibly infinite computation (either a halting or a nonhalting
computation), having read exactly p from the input.

The classical prefix-free complexity H (Chaitin [2], Levin [9]) is an upper bound
of the function H*° (up to an additive constant) since the definition of H > does not
require that the machine U halts. We prove that H*° differs from A in that it has no
monotone decreasing recursive approximation and it is not subadditive.

The complexity H is closely related with the monotone complexity Hm, inde-
pendently introduced by Zvonkin and Levin [15] and Schnorr [12] (see Uspensky
and Shen [14] and Li and Vitanyi [10] for historical details and differences among
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various monotone complexities, and see [3] for a closely related complexity of sets
introduced by Chaitin). Levin defines Hm(x) as the length of the shortest halting
program that provided with n (0 < n < |x|), outputs x [n. Equivalently Hm(x) can
be defined as the least number of bits read by a monotone machine U which via a
possibly infinite computation produces any finite or infinite extension of x.

Hm is a lower bound of H* (up to an additive constant) since the definition of
H > imposes that the machine U reads exactly the input p and produces exactly the
output x. Every recursive A € {0, 1}* is the output of some monotone machine with
no input, so there is some ¢ such that Vn Hm(A[n) < c. Moreover, there exists ng
such that Vn,m > nog, Hm(An) = Hm(A|m). We show this is not the case with
H®, since for every infinite B = {by, by, ...} € {0, 1}*, lim,—.oc H*(b,) = 0.
This is also a property of the classical prefix-free complexity H, and we consider it
as a decisive property that distinguishes H°° from Hm.

The prefix-free complexity of a universal machine with oracle @', the function
H?Z, is also a lower bound of H (up to an additive constant). We prove that for
infinitely many strings x, the complexities H (x), H*>(x), and H zl(x) separate as
much as we want. This already proves that these three complexities are different.
In addition we show that for every oracle A, H™ differs from H*, the prefix-free
complexity of a universal machine with oracle A.

For sequences in {0, 1} we consider definitions of randomness and triviality
based on the H* complexity. A sequence is H*°-random if its initial segments
have maximal H® complexity. Since Hm gives a lower bound of H*> and Hm-
randomness coincides with Martin-Lof randomness (Levin [8]), the classes of
Martin-L6f random, H *°-random, and Hm-random coincide.

We argue for a definition of H °°-trivial sequences as those whose initial segments
have minimal H*° complexity. While every recursive A € {0, 1}* is both H -trivial
and H *°-trivial, we show that the class of H *°-trivial sequences is strictly included
in the class of H -trivial sequences. Moreover, in Theorem 5.6, the main result of the
paper, we characterize the recursive sequences as those which are H *-trivial.

2 Definitions

N is the set of natural numbers, and we work with the binary alphabet {0, 1}. As
usual, a string is a finite sequence of elements of {0, 1}, A is the empty string, and
{0, 1}* is the set of all strings. {0, 1}* is the set of all infinite sequences of {0, 1}, that
is, the Cantor space, and {0, 1}= = {0, 1}* U {0, 1}® is the set of all finite or infinite
sequences of {0, 1}.

For s € {0, 1}*, |s| denotes the length of 5. If s € {0, 1}* and A € {0, 1}* we
denote by s[n the prefix of s with length min{rn, |s|} and by A [n the length n prefix
of the infinite sequence A. We consider the prefix ordering < over {0, 1}*, that is,
for s,t € {0, 1}* we write s < ¢ if s is a prefix of 1. We assume the recursive
bijection string : N — {0, 1}* such that string(i) is the ith string in the length and
lexicographic order over {0, 1}*.

If f is any partial map then, as usual, we write f(p)] when it is defined and
f(p)1 otherwise.

2.1 Possibly infinite computations on monotone machines A monotone machine
is a Turing machine with a one-way read-only input tape, some work tapes, and a
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one-way write-only output tape. The input tape contains a first dummy cell (rep-
resenting the empty input) and then a one-way infinite sequence of Os and 1s, and
initially the input head scans the leftmost dummy cell. The output tape is written
one symbol of {0, 1} at a time (the output grows with respect to the prefix ordering
in {0, 1}* as the computational time increases).

A possibly infinite computation is either a halting or a nonhalting computation.
If the machine halts, the output of the computation is the finite string written on the
output tape. Else, the output is either a finite string or an infinite sequence written
on the output tape as a result of a never ending process. This leads us to consider
{0, 1}=® as the output space.

In this work we restrict ourselves to possibly infinite computations on monotone
machines which read just finitely many symbols from the input tape.

Definition 2.1  Let M be a monotone machine. M (p)[t] is the current output of
M on input p at stage ¢ if it has not read beyond the end of p. Otherwise, M (p)[7]1.
Notice that M (p)[t] does not require that the computation on input p halts.

Remark 2.2

1. If M(p)[t]1 then M (g)[u]?t forallg < pandu > t.

2. If M(p)[t]] then M(g)[u]| for any g > p and u < r. Also, if at stage
t, M reaches a halting state without having read beyond the end of p, then
M(p)[ull = M(p)[t] forall u > ¢.

3. Since M is monotone, M (p)[t] < M(p)[t + 1],in case M (p)[t + 1]J.

4. M(p)[t] has recursive domain.

Definition 2.3 Let M be a monotone machine.

1. The input/output behavior of M for halting computations is the partial recur-
sive map M : {0, 1}* — {0, 1}* given by the usual computation of M, that is,
M (p)| if and only if M enters into a halting state on input p without reading
beyond p. If M(p)| then M(p) = M(p)[t] for some stage ¢t at which M
entered a halting state.

2. The input/output behavior of M for possibly infinite computations is the map
M : {0, 1}* — {0, 1}=% given by M>®(p) = lim; o M (p)[t].

Proposition 2.4

1. domain(M) is closed under extensions and its syntactical complexity is E(l);

2. domain(M®) is closed under extensions and its syntactical complexity is T19;
3. M extends M.

1. is trivial.

2. M®°(p){ if and only if V¢ M on input p does not read p0 and does not read
pl. Clearly, domain(M ) is closed under extensions since if M°°(p)J then
M™>(q)| = M (p) for every g > p.

3. Since the machine M is not required to halt, M> extends M. O

Remark 2.5 An alternative definition of the functions M and M would be to
consider them with prefix-free domains (instead of closed under extensions):
- M(p)| if and only if at some stage ¢ M enters a halting state having read
exactly p. If M(p)| then its value is M (p)[¢] for such stage .
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- M®(p)] if and only if 3¢ at which M has read exactly p and for every 1’ M
does not read pO nor pl. If M*°(p)| then its value is lim,_, oc M (p)[?].

We fix an effective enumeration of all tables of instructions. This gives an effective
(M;i)ien. We also fix the usual monotone universal machine U, which defines the
functions U(0'1p) = M;(p) and U®(0'1p) = M®(p) for halting and possibly
infinite computations, respectively. As usual, i 4 1 is the coding constant of M.
Recall that U is an extension of U. We also fix U?" a monotone universal machine
with an oracle for @'.

By Shoenfield’s Limit Lemma every M* : {0, 1}* — {0, 1}* is recursive in
@'. However, possibly infinite computations on monotone machines cannot compute
all @’-recursive functions. For instance, the characteristic function of the halting
problem cannot be computed in the limit by a monotone machine. In contrast, the
Busy Beaver function in unary notation bb : N — 1*:
the maximum number of 1s produced by any Turing machine
bb(n) = . . . .

with n states which halts with no input
is just @’-recursive and bb(n) is the output of a nonhalting computation which on
input n, simulates every Turing machine with n states and for each one that halts
updates, if necessary, the output with more 1s.

2.2 Program size complexities on monotone machines  Let M be a monotone
machine and M, M the respective maps for the input/output behavior of M for
halting computations and possibly infinite computations (Definition 2.3). We denote
the usual prefix-free complexity ([2], [9], Gacs [7]) for M by H ¢ : {0, 1}* — N:

Hoy(x) = min{|p| : M(p) = x} if x is in the range of M
M= = otherwise.

Definition 2.6 ~ H§; : {0, 1}=? — N is the program size complexity for functions
M.
minf|p| : M*°(p) = x} if x is in the range of M

00(y
Hyx) = { 00 otherwise.

For U we drop subindexes and we simply write H and H *°. The Invariance Theorem
holds for H®°:

¥ monotone machine M Jc Vs € {0, 1}=° H®(s) < HS(s) +c.

The complexity function H > was first introduced in Becher et al. [1] without a de-
tailed study of its properties. Notice that if we take monotone machines M according
to Remark 2.5 instead of Definition 2.3, we obtain the same complexity functions
H g and HSp.

In this work we only consider the H complexity of finite strings, that is, we
restrict our attention to H* : {0, 1}* — N. We will compare H*° with these other
complexity functions:

HA: {0, 1} — N is the program size complexity function for U4, a monotone
universal machine with oracle A. We pay special attention to A = &',

Hm : {0, 1}=° — N (see [15]), where Hm (x) = min{|p| : M>®(p) > x} is the
monotone complexity function for a monotone machine M and, as usual, for
U we simply write Hm.

We mention some known results that will be used later.
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Proposition 2.7  (For items 1 and 2 see [2], for item 3 see [1].)

1.
2.

3.

Vs € {0, 1}* H(s) < |s| + H(Is]) + O(1);

Vn 3s € {0, 1}* of length n such that

(a) H(s) = n,

(b) H? (s) = n;

Vs € {0, 1}* Hzl(s) < H®(s) + O(1) and H*®(s) < H(s) + O(1).

3 H® Is Different From H

The following properties of H* are in the spirit of those of H.

Proposition 3.1  For all strings s and t,

1.

Nk

Proof

H(s) < H®(s) + H(Is]) + O(1),

#{s € {0, 1} : H®(s) < n} < 2"t
H®(ts) < H*®(s) + H(t) + O(1),
H®(s) < H®(st) + H(|t]) + O(1),
H®(s) < H®(st) + H®(|s]) + O(1).

. Let p,g € {0, 1}* such that U*(p) = s and U(g) = |s|. Then there is

a machine that first simulates U(qg) to obtain |s|, then starts a simulation of
U®°(p) writing its output on the output tape, until it has written |s| symbols,
and then halts.

There are at most 2"+ — 1 strings of length < n.

Let p,g € {0, 1}* such that U*°(p) = s and U(g) = t. Then there is a
machine that first simulates U (¢) until it halts and prints U (g) on the output
tape. Then it starts a simulation of U (p) writing its output on the output
tape.

Let p,g € {0, 1}* such that U (p) = st and U(q) = |¢|. Then there is a
machine that first simulates U (g) until it halts to obtain |¢|. Then it starts a
simulation of U (p) such that at each stage n of the simulation it writes the
symbols needed to leave U (p)[n][(|U (p)[n]| — |t]) on the output tape.

. Consider the following monotone machine:

t:=Lvi=:Mw:=A

repeat
if U(v)[t] asks for reading then append to v the next bit in the input
if U(w)[t] asks for reading then append to w the next bit in the input
extend the actual output to U (w)[#][(U (v)[t])
t:i=t+1

If p and ¢ are shortest programs such that U (p) = |s| and U (¢q) = st,
respectively, then we can interleave p and ¢ in a way such that at each stage
t,v <X pand w < g (notice that eventually v = p and w = ¢). Thus, this
machine will compute s and will never read more than H°(st)+H°(|s|)
bits. O

H is recursively approximable from above, but H*° is not.
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Proposition 3.2 There is no effective decreasing approximation of H°.

Proof Suppose there is a recursive function 4 : {0, 1}* x N — N such that for every
string s, lim; 0 A (s, 1) = H*(s) and for all r € N, h(s, t) > h(s,t + 1). We write
h;(s) for h(s, t). Consider the monotone machine M with coding constant d given
by the Recursion Theorem, which on input p does the following:

t:=1;print0
repeat forever
n := number of bits read by U (p)[¢]
for each string s not yet printed, |s| <t and h;(s) <n+d
print s
t=t+1

Let p be a program such that U (p) = k and | p| = H*°(k). Notice that, as t — oo,
the number of bits read by U (p)[¢] goes to |p| = H®°(k). Let o be such that for
all t > 19, U(p)[t] reads no more from the input. Since there are only finitely
many strings s such that H>°(s) < H®(k) + d, there is a t; > fo such that for
all ¢t > t; and for all those strings s, h;(s) = H(s). Hence, every string s with
H*>(s) < H*®(k) + d will be printed.

Let z = M®(p). On one hand, we have H*(z) < |p| +d = H*®(k) + d.
On the other hand, by the construction of M, z cannot be the output of a pro-
gram of length < H*(k) + d (because z is different from each string s such that
H®®(s) < H®(k) + d). So it must be that H*°(z) > H®(k) + d, a contradic-
tion. O

The following lemma states a critical property that distinguishes H® from H. It
implies that H*° is not subadditive, that is, it is not the case that H*°(st) < H*>(s)+

H>()4+©(1). It also implies that H*° is not invariant under recursive permutations
{0, 1}* — {0, 1}*.

Lemma 3.3  For every total recursive function f there is a natural k such that
H>® (k1) > f(H>(0).

Proof Let f be any recursive function and M the following monotone machine
with coding constant d given by the Recursion Theorem:

t:=1
do forever
for each p such that |p| <max{f(@i):0 <i <d}
if U(p)[t] = 071 then
print enough Os to leave at least 0/*! on the output tape
t:=t+1

Let N = max{f(i) : 0 < i < d}. We claim there is a k such that M (1) = OF.
Since there are only finitely many programs of length less than or equal to N which
output a string of the form 0/1 for some j, then there is some stage at which M has
written 0%, with k greater than all such j’s, and then it prints nothing else. Therefore,
there is no program p with |p| < N such that U®(p) = 0F1.
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If M®(L) = 0% then H®(0X) < d. So, f(H*>(0X) < N. Also, for this k,
there is no program of length < N that outputs 01 and thus H>(0*1) > N. Hence,
H®0%1) > f(H>®(0"). O

Note that H (Ok) = H (Okl) = H °°(0k1) up to additive constants, so the above
lemma gives an example where H*° is much smaller than H.

Proposition 3.4
1. H® is not subadditive.
2. It is not the case that for every recursive one-one g : {0, 1}* — {0, 1}*
Jc Vs [H®(g(s)) — H™(s)| < c.
Proof

1. Let f be the recursive injection f(n) = n + c. By Lemma 3.3 there is k such
that H>®(0F1) > H>(0X) + ¢. Since the last inequality holds for every c, it
is not true that H>®(0¥1) < H>(0%) + 0 (1).

2. It is immediate from Lemma 3.3. O

It is known that the complexity H is smooth in the length and lexicographic order
over {0, 1}* in the sense that | H (string(n)) — H (string(n + 1))| = @ (1). However,
this is not the case for H*.

Proposition 3.5
1. H® is not smooth in the length and lexicographical order over {0, 1}*.
2. Vn |H®(string(n)) — H>®(string(n + 1))| < H (|string(n)|) + O (1).
Proof
1. Notice that Vn > 1, H>®(0"1) < H>®(0"" 1) 4+ 9(1), because if U®(p) =
0"~'1 then there is a machine that first writes a 0 on the output tape and
then simulates U*°(p). By Lemma 3.3, for each ¢ there is an n such
that H*°(0"1) > H®°(0") + c. Joining the two inequalities, we obtain
Yedn H®(0"'1) > H®(0")+c. Since string~ (0" ~'1) = string= 1 (0")+1,
H® is not smooth.
2. Consider the following monotone machine M with input pg:
obtain y = U(p)
simulate z = U (q¢) till it outputs y bits
write string(string='(z) + 1)
Let p,q € {0, 1}* such that U(p) = |string(n)| and U*°(q) = string(n).
Then, M*°(pq) = string(n 4+ 1) and
H>®(string(n 4+ 1)) < H*®(string(n)) + H (|string(n)|) + O(1).
Similarly, if M, instead of writing string(string ™' (z) + 1), writes
string(string~ ' (z) — 1), we conclude
H>(string(n)) < H®(string(n + 1)) + H (|string(n + 1)|) + O(1).
Since |H (|string(n)|) — H (|string(n + 1)])| = O(1), it follows that
|H > (string(n)) — H®(string(n + 1))| < H (|string(n)|) + O(1).
O
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4 H®™ is Different From H4 for Every Oracle A

Item 3 of Proposition 2.7 states that H> is between H and H 2’ The following
result shows that H is really strictly in between them.

Proposition 4.1  For every c there is a string s € {0, 1}* such that
HZ (s)4+c < H®(s) < H(s) — c.

Proof Let u, = min{s € {0,1}" : H(s) > n} and let A = {ap, aj, ...} be any
infinite r.e. set and consider a machine M which on input i does the following:

j=0
repeat
write a;
find a program p, |p| < 3i, such that U(p) = a;
ji=j+1
M (i) outputs the string v; = aoay ...ay, where H(ax;) > 3i and for all z,

0 < z < k; we have H(a;) < 3i. We define w; = u;v;. Let’s see that both
H(w;) — H? (w;) and H (w;) — H(w;) grow arbitrarily.

On one hand, we can construct a machine which on input i and p executes
U (p) till it outputs i bits and then halts. Since the first i bits of w; are u; and
H(@G) <2lil+0(1),wehavei < H(u;) < H®(w;) + 21i| + ©O(1). But with the
help of the @’-oracle we can compute w; from i, so HQ/(wi) <2li|4+ ©@(). Thus
we have H®(w;) — HZ (w;) > i —4i| — O(1).

On the other hand, given i and w;, we can effectively compute ay,. Hence, Vi we
have 3i < H(ay,) < H(w;)+2i|+ O(1). Also, given u;, we can compute w; in the
limit using the idea of machine M, and hence H*°(w;) < 2 |u;|+ O (1) =2i+0(1).
Then, for all i

H(w;) — H®(w;) >i —2i| — O(1). 0

Not only H is different from H 2 but it differs from H* (the prefix-free complex-
ity of a universal monotone machine with oracle A), for every A.

Theorem 4.2  There is no oracle A such that |H°O — HA| <0O().

Proof Immediate from Lemma 3.3 and from the standard result that for all A, H4
is subadditive so, in particular, for every k, H A0F1) < HAWO) + 0(1). O

5 H® and the Cantor Space

The advantage of H* over H can be seen along the initial segments of every recur-
sive sequence: if A € {0, 1}* is recursive then there are infinitely many »’s such that
H(A[n) — H>®(A[n) > c, for an arbitrary c.

Proposition 5.1  Let A € {0, 1}* be a recursive sequence. Then

1. limsup,_,  H(Aln) — H®(A[n) = oo;
2. limsup,_, H*(A[n) — Hn(A[n) = oc.
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Proof

1. Let A(n) be the nth bit of A. Let’s consider the following monotone machine
M with input p:

obtainn := U(p)
write A[(string=1(0") — 1)
for s := 0" to 1" in lexicographic order
write A(string~'(s))
search for a program p such that [p| <nand U(p) = s

If U (p) =n, then M*°(p) outputs A [k,, for some k, such that 2" <k, < ontl
since for all n there is a string of length n with H-complexity greater than
or equal to n. Let us fix n. On one hand, H*°(A[k,) < H(n) 4+ @(1). On
the other, H(Ak,) > n 4+ O(1), because we can compute the first string in
the lexicographic order with H-complexity > n from a program for A[k,,.
Hence, for each n, H(Alk,) — H>®(Alk,) > n— H(n)+ O().

2. Trivial because for each recursive sequence A there is a constant ¢ such that
Hm(Aln) < c and lim,_, o H*(B[n) = oo forevery B € {0, 1}*. 0

5.1 H-triviality and H®°-triviality =~ There is a standard convention to use H with
arguments in N. That is, for any n € N, H (n) is written instead of H (f(n)) where
f is some particular representation of natural numbers on {0, 1}*. This convention
makes sense because H is invariant (up to a constant) for any recursive representation
of natural numbers.

H -triviality has been defined as follows (see Downey et al. [5]): A € {0, 1}* is
H -trivial if and only if there is a constant ¢ such that for all n, H(A[n) < H(n) +c.
The idea is that H-trivial sequences are exactly those whose initial segments have
minimal H-complexity. Considering the above convention, A is H-trivial if and only
ifdcVn H(An) < H0") + c.

In general H° is not invariant for recursive representations of N. We propose the
following definition that insures that recursive sequences are H *-trivial.

Definition 5.2 A € {0, 1}* is H®-trivial if and only if 3¢ Vn H*(A[n)
< H*®(0") +c.

Our choice of the right-hand side of the above definition is supported by the follow-
ing proposition (see Ferbus-Zanda and Grigorieff [6] for further discussion).

Proposition 5.3  Let f : N — {0, 1}* be recursive and strictly increasing with
respect to the length and lexicographical order over {0, 1}*. Then

Vn H*(0") < H*(f () + O (D).

Proof Notice that, since f is strictly increasing, f has recursive range. We con-
struct a monotone machine .M with input p:

t:=0

repeat
if U(p)[t]] isin the range of f thenn := f_l(U(p)[t])
print the needed 0’s to leave 0" on the output tape
t:=t+1



60 Becher, Figueira, Nies, and Picchi

Since f is increasing in the length and lexicographic order over {0, 1}*, if p is a
program for U such that U*°(p) = f(n), then M*°(p) = 0". 1

Chaitin observed that every recursive A € {0, 1} is H-trivial (Chaitin [4]) and that
H -trivial sequences are Ag. However, H-triviality does not characterize the class
A(l) of recursive sequences: Solovay [13] constructed a Ag sequence which is H-
trivial but not recursive (see also [5] for the construction of a strongly computably
enumerable real with the same properties). Our next result implies that H *°-trivial
sequences are A% and Theorem 5.6 characterizes A(l) as the class of H®°-trivial
sequences.

Theorem 5.4  Suppose that A is a sequence such that, for some b € N,
Vn H®(Aln) < H(n) + b. Then A is H-trivial.

Proof Anre.set W C N x 2<% is a Kraft-Chaitin set (KC-set) if

Z(r,y}EW 27 =1L

For any E C W, let the weight of E be wt(E) = > {277 : (r,n) € E}.
The pairs enumerated into such a set W are called axioms. Chaitin proved
that from a Kraft-Chaitin set W one may obtain a prefix machine M, such that
Vi{r,y) e W3aw (lw|=r N Mg(w) = y).

The idea is to define a Ag tree T such that A € [T'], and a KC-set W showing that
each path of T is H-trivial. For x € {0, 1}* and 7 € N, let

H>®()[t] = min{|p|: U(p)[t] = x} and

H(x)[t] min{|p| : U(p)[t] = x and U(p) halts in at most ¢ steps}

be effective approximations of H* and H. Notice that for all x € {0, 1}*,
lim; 00 H*(x)[t] = H*°(x) and lim;, oo H (x)[¢] = H (x).
Given s, let

Ty ={y:lyl <s A Vm < |y| H*(y[m)[s] < H(m)[s] + b},

then (7s)sen is an effective approximation of a A(Z) tree T, and [T] is the class of
sequences A satisfying Vn H*(A[n) < H(n) + b. Letr = H(|y|)[s]. We define a
KC-set W as follows: if y € T and either there is u < s greatest such that y € T,
andr < H(|y|)[ul,or y ¢ T, for all u < s, then put an axiom (r + b + 1, y) into
w.

Once we show that W is indeed a KC-set, we are done: by Chaitin’s result,
there is d such that (k, y) € W implies H(y) < k + d. Thus, if A € [T], then
H(y) < H(|yl) + b +d + 1 for each initial segment y of A.

To show that W is a KC-set, define strings Ds(y) as follows. When we put an
axiom (r + b+ 1, y) into W at stage s,

- let Dg(y) be a shortest p such that U(p)[s] = y (recall from Definition 2.1
that it is not required that U halts at stage s),

- if B < y, we haven’t defined D;(B8) yet and D;_1(B) is defined as a prefix of
p, then let Ds(B) be a shortest g such that U(g)[s] = B.
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In all other cases, if Ds_1(pB) is defined then we let Dy(8) = Ds—1(B8). We claim
that, for each s, all the strings Ds(fB) are pairwise incompatible (i.e., they form a
prefix-free set). For suppose that p < g, where p = Dy(B) was defined at stage
u < s,and g = D(y) was defined at stage t < s. Thus, B = U(p)[u] and
y = U(q)[t]. By the definition of monotone machines and the minimality of ¢,
u < t and f < y. But then, at stage t+ we would redefine D, (8), a contradiction.
This shows the claim.

If we put an axiom (r + b + 1, y) into W at stage ¢, then for all s > ¢, Ds(y)
is defined and has length at most H(|y|)[t] + b (by the definition of the trees
Ts).NThus, if WS is the set of axioms (k, y) in Wy where k is minimal for y, then
wt(Wy) < ZV 2-IDs(I=1 < 1/2 by the claim above. Hence wt(W;) < 1 as all
axioms weigh at most twice as much as the minimal ones, and Wj is a KC-set for
each s. Hence W is a KC-set. [l

Corollary 5.5  If A € {0, 1}* is H®-trivial then A is H-trivial, hence in Ag.

Theorem 5.6  Let A € {0, 1}*. A is H®-trivial if and only if A is recursive.

Proof From right to left, it is easy to see that if A is a recursive sequence then
A is H®°-trivial. For the converse, let A be H*-trivial via some constant b. By
Corollary 5.5, A is A9, hence, there is a recursive approximation (Ay)sen such that
limg_ 00 Ay = A. Recall that H*>(x)[t] = min{|p| : U(p)[t] = x}. Consider the
following program with coding constant ¢ given by the Recursion Theorem:

k:=1;50:=0;print 0

while 3s; > sx—1 such that H*> (A, [k)[sk] < c+ b do
print O
k=k+1

Let us see that the above program prints out infinitely many Os. Suppose it writes
0K for some k. Then, on one hand, H oo(Ok) < ¢, and on the other, Vs > s;_1, we
have H*®°(Ask)[s] > ¢ + b. Also, H® (A, [k)[s] = H*°(Ak) for s large enough.
Hence, H®(A k) > H>®(0%) + b, which contradicts that A is H *-trivial via b.

So, for each k, there is some ¢ € {0,1}* with |g| < ¢ + b such that
U(q)lsk] = Ay k. Since there are only 2¢+*+! — 1 strings of length at most
¢+ b, there must be at least one ¢ such that, for infinitely many k, U (q)[sx] = Ay, [k.
Let’s call I the set of all these k’s. We will show that such a ¢ necessarily computes
A. Suppose not. Then, there is a ¢ such that for all s > ¢, U(g)[s] is not an initial
segment of A. Thus, noticing that (sx)ken 1S increasing and [ is infinite, there
are infinitely many sy > ¢ such that k € I and U(q)[sx] = Ak # Alk. This
contradicts that Ay, [k — A when k — oo. O

Corollary 5.7 The class of H*-trivial sequences is strictly included in the class of
H -trivial sequences.

Proof By Corollary 5.5, any H *°-trivial sequence is also H -trivial. Solovay [13]
built an H -trivial sequence in Ag which is not recursive. By Theorem 5.6 this se-
quence cannot be H *-trivial. O



62 Becher, Figueira, Nies, and Picchi

5.2 H®-randomness

Definition 5.8

1. (Chaitin [2]) A € {0, 1}* is H-random iff 3c Vn H(A|n) > n — c.
Chaitin and Schnorr [2] showed that H-randomness coincides with Martin-
Lof randomness [11].

2. (Levin [8]) A € {0, 1} is Hm-random iff 3c Vn Hm(A[n) > n — c.

3. A €0, 1}*is H>®-random iff 3c Yn H*°(A|n) > n — c.

Using Levin’s result [8] that Hm-randomness coincides with Martin-Lof random-
ness, and the fact that Hm gives a lower bound of H®°, it follows immediately that
the classes of H-random, H °°-random, and Hm-random sequences coincide. For the
sake of completeness we give an alternative proof.

Proposition 5.9 (with Hirschfeldt)  There is a by such that for all b > by and z, if
Hm(z) < |z| — b, then there is y < z such that H(y) < |y| — b/2.

Proof Consider the following machine M with coding constant ¢. On input gp,
first it simulates U (g) until it halts. Let’s call b the output of this simulation. Then it
simulates U *°(p) till it outputs a string y of length b + [ where [ is the length of the
prefix of p read by U®°. Then it writes this string y on the output and stops.

Let bg be the first number such that 2 |bg| + ¢ < bo/2 and take b > bg. Suppose
Hm(z) < |z] — b. Let p be a shortest program such that U*°(p) > z and let ¢ be a
shortest program such that U (¢) = b. This means that |p| = Hm(z) and |g| = H(b).
On input ¢ p, the machine M will compute b and then it will start simulating U *°(p).
Since |z| > Hm(z) + b = |p| + b, the machine will eventually read / bits from p
in a way that the simulation of U (p[l) = y and |y| = [ + b. When this happens,
the machine M writes y and stops. Then for p’ = p|l, we have M(¢p’)] = y and
Iyl = |p’| + b. Hence

Hy) <lgl+|p'|+c<HDB) + |yl —b+c <2|b|—b+ |yl +c < |yl —b/2.
O

Corollary 5.10 A € {0, 1}* is Martin-Lif random if and only if A is Hm-random
if and only if A is H*-random.

Proof Since Hn < H + (1) it is clear that if a sequence is Hm-random then
it is Martin-Lof random. For the opposite, suppose A is Martin-Lof random but
not Hm-random. Let by be as in Proposition 5.9 and let 2¢ > bg be such that
Vn H(A[n) > n — c¢. Since A is not Hm-random, Vd In Hm(A[n) < n — d.
In particular for d = 2c there is an n such that Hm(A[n) < n — 2c¢. On one hand,
by Proposition 5.9, there is a y < A[n such that H(y) < |y| — c¢. On the other, since
y is a prefix of A and A is Martin-Lof random, we have H(y) > |y| — c. Thisis a
contradiction. Since Hm is a lower bound of H*°, the above equivalence implies A
is Martin-L6f random if and only if A is H°°-random. O
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