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SYSTEMS CLASSICALLY AXIOMATIZED AND PROPERLY
CONTAINED IN LEWIS'S S3

JOHN THOMAS CANTY

It is well known that Lewis's modal systems S3, S4 and S5 can be
classically axiomatized. That is, an axiomatic for those systems can be
given with a finite number of axioms taking substitution for propositional
variables and material detachment as the only primitive rules of inference.
It will be shown in this paper that such an axiomatic is available for some
systems properly contained in S3. Each section of the paper introduces new
axiomatics for sub-systems of S3 and then gives new sub-systems which
are classically axiomatized and in which all of Lewis's primitive rules of
inference are derivable. The symbolism throughout is that of [7] and "a is
a thesis" is abbreviated as " h α " .

I. Lemmon in [4] gave new foundations for Lewis's systems SI-S3 of
[5] analogous to a systematic for T of Feys-von Wright [2, 8, 12] due to
Gϋdel in [3]. In this section new foundations for Lemmon's systems are
described and two systems containing Lemmon's SO.5 and properly
contained in S3 are classically axiomatized.

The Lemmon systems are N-C-L calculi with K and E defined in the
usual way by C and N, (S defined as LC and §pq (strict equivalence) as
K&pq&qp. Propositional calculus (PC) is given by three rules:

(PCα) if a is a tautology, then ha;
(PCb) substitution for propositional variables;
(PCc) material detachment (that is, from a and Caβ infer β);

and Lewis's systems are based on selections from the following rules and
axioms:

(a) \-a only if \-La; (a') a is a tautology or axiom only
(a") a is a tautology only if \-La\ if HLα;
(b) hLCaβ only if hLCLaLβ; (b1) substitutability of strict
(bft) h§aβ only if \-&LoιLβ; equivalents;
(1) CLCpqLCLpLq; (lτ) CLCpqCLpLq;
(2) CLpp; (3) CKLCpqLCqrLCpr.
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Lemmon's foundations for the Lewis systems, SI-S3, are then given as:

51 = {PC; (a ); (b ); (3); (2)}

52 = {PC; (a'); (b); (I1); (2)}
S3={PC;(a');(l);(2)}

the system of Feys-von Wright as:

T = {PC; (a); (l ); (2)}

and a system introduced by Lemmon as:

S0.5={PC;(a");(Γ);(2)}

Now from the following list of axioms;

Al. LCCNppp AV. LCLCNppp

A2. LCCpqCCqrCpy A2r. LCLCpqCLCqrLCpr
A3. LCpCNpq A3r. LCLpLCNpq
A4. CLCpqCLpLq A4r. LCLCpqLCLpLq
A5. CLpp A6. CLCpqCLCqpLCLpLq

the axiomatics for the above systems are taken as:

MO = {PCb; PCc; Al; A2; A3; A4; Aδ}
Ml ={M0;(bf); AV; A21}
M2 ={M0; (bτ); AV; A31}
M3 ={M0; AΓ; A4'}
M = {MO; (a)}.

The adequacy of the revisions can be seen by observing first that all of
Lemmon's systems contain MO; (i) A1-A3 follow from PC and either (a);
(af), or (a"), and (ii) A4 either follows from (1) and (2) by PC, or in SI is
provable from (3):

1. CKLCpqLCqrLCpr [(3)]
2. CLCpqCLCqrLCpr [1, PC]
3. CLCNqNpCLCNppLCNqp [2, PC]
4. §CpqCNpNq [PC, (a')]

5. ipCNpp [PC, (a1)]
6. §CNpqCNqp [PC, (a !)]
7. CLCpqCLpLCNpq [3, 4, 5, 6, (b f)[
8. CLCNqNpCLCNpqLCNqq [2, PC]
9. CLCpqCLCNpqLq [8, 4, 5,(bf)]

10. CLCpqCLpLq [7, 9, PC]

Thus, SO.5 contains MO and T contains M.
Secondly, (i) each of the remaining systems, SI-S3, contain (bτ)(cf. p.

178 of [4]), and thus contain AV by (2) and (aτ); while (ii) SI contains A2' by
(3) and (a'), S2 contains A31 by A3 and (b), and S3 contains A41 by (1) and
(a1). Thus SI-S3 contain M1-M3 respectively.
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Conversely, it can be shown that M0-M3, and M contain SO.5, SI-S3,
and T. To this end the following theorems of MO are established.

Theorem 1. If ha in PC, then hLa.

Proof. If a is an axiom of PC, then La is given by A1-A3 since CCNppp,
CCpqCCqrCpr, and CpCNpq form a set of axioms for PC (cf. Appendix of
[7]), and if a is derived from the axioms of PC, then La is given by:

1. Lβ [Induction hypothesis]
2. LCβa [Induction hypothesis]
3. CLβLa [2,A4]

4. La [1, 3]

Theorem 2. If \-LCaβ and hLCaγ, then hLCaKβγ.

Proof. From hypothesis by Theorem 1 and A4.

Theorem 3. If \-LCaβ and hLCβγ, then hLCaγ.

Proof. From hypotheses by Theorem 1 and A4.

Theorem 4. If \-a and hβ, then \-Kaβ.

Proof. From hypotheses by Theorem 1 and A5.

Theorem 5. If ha and hLCaβ, then hβ.

Proof. From hypotheses by A5.
Hence, PC is contained in each of M0-M3, and M by Theorem 1 and A5, and
thus MO contains SO.5 and M contains T.

Further, M3 contains (bτ). The proof is given by showing that (i) h$aβ
only if h®LaLβf (a) h&aβ only if h($NaNβ, (iii) hδα/3 only if h§Caγ
Cβγ, and (iv) h§aβ only if §Cγa Cγβ. Now (i) follows by A4r and (ii-iv)
follow from CLCpqLCNqNp, CLCpqLCCqrCpr, and CLCpqLCCrpCrq, each
of which are obtained by Theorem 1 and A4.

Moreover M2 contains (b):

1. LCaβ [Hypothesis]
2. LCaa [Theorem 1]
3. LCaKaβ [1, 2, Theorem 2]
4. LCKaβa [Theorem 1]
5. LCLaLa [Theorem 1]
6. LCLaLKaβ [3, 4, 5, (b')j
7. LCLKaβLCNKaβKNaβ [A3']
8. LCLKaβLβ [7, Theorem 1, (bτ)]
9. LCLaLβ [6, 8, Theorem 3]

And by Theorem 1, in order to show that M1-M3 contain (a') it is
sufficient to remark that (i) each system contains LCLpp by Al1 and (b'),
(ii) Ml contains LCKLCpqLCqrLCpr by A2' and (bf), (iϋ) M2 contains
LCLCpqCLpLq by A2\ (bτ) and Theorem 3, and (iv) M3 contains
LCLCpqLCLpLq as A4\
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Thus, to complete the proof that M1-M3 contain S1-S3 it need only be
shown that each of the axioms of S1-S3 which is not an axiom of M1-M3 are
provable in M1-M3. In Ml, (3) follows from LCKLCpqLCqrLCpr by A5.
And in M3, (1) follows from A4' by A5.

On the basis of the new foundations for Lewis's systems it is now
possible to classically axiomatize some systems containing S0.5 and
properly contained in S3. The systems to be considered are:

Rl ={M0; A6; AΓ A2'}
R2 = {MO; A6; AΓ; A31}
R3 = {M3}.

Bull in [1] uses an equivalence relation employing schemata analogous
to A6 as Lemma 1 part ΠI (p. 212) while for R1-R3, since A6 yields (b"),
the proof that each of the systems contains (bτ) can be established as was
the proof above that M3 contains (bf). And thus:

Rl = {SI; A6}
R2 = {S2; A6}
R3 = {S3}.

Hence R1-R3 obviously contain SO.5. But Rl and R2 are properly contained
in S3 as is shown by a variation of Parry's matrix of [6]: a regular expan-
sion of the C-N matrix (as are all matrices considered in this paper) to
eight values:

C\l 2 3 4 5 6 7 8 \N

1 123456788

2113355777

3 121256566

4 111155555

5 123412344

6 12331233 3

7 12121212 2

8 111111111

with L{*1*2*3*45678) =(26888888), where % indicates a designated value.
For with this matrix all the axioms and rules of S2 are designated together
with A6 while A4'(p/l,q/2) = LCLC12LCL1L2 = LCL2LC26 = LC6L5 =
LC68 = L3= 8.

It may be noted that the independence of A6 in Rl and R2 is shown by
Parry's original matrix where only 1 and 2 are designated values. For in
this case all the axioms and rules of S2 are still designated while
A6(p/lfq/2) = CLC12CLC21LCL1L2 = CL2CL1LC26 = C6C2L5 = C6C28 =
C67= 3.

Moreover, the independence of AΓ in R1-R3 is shown by a variation of
Group IV of Lewis [5] in which L(*l*234) = (1333), since AV(p/2) =
LCLCN222 = LCLC322 = LCL22 = LC32 = L2 = 3.

The independence of A3* in R2 is shown by Group V of Lewis [5] in
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which L{*1*234) = (2434), since A3'(p/3,q/2) = LCL3LCN32 = LC3LC22 =
LC3L1 = LC32 = L2 = 3.

And though Lemmon has shown that A21 is derivable in S2 (cf. p. 178 of
[4]), and hence R2, it remains an open question as to whether A21 is
derivable or independent from the remaining axioms of Rl. It should be
noted that Lemmon describes a proof of A2r in S3 (p. 179 of [4]), but in so
doing applies (aτ) to (l f) which is not an axiom of S3. However A21 is
derivable in S3, and hence R3, as follows:

1. LCCpqCCqrCpr [PC, (af)]
2. LCLCpqLCCqrCpr [1, (b)]
3. LCLCpqLCLpLq [(1), (af)]
4. LCLpp [(2), (a')]
5. LCLCpqCLpLq [3, 4, Theorem 3]
6. LCLCpqCLCqrLCpr [2, 5, Theorem 3]

Indeed, this derivation points up a significant difference between
Lemmon's foundations for SI-S3 and those given here. The derivation
requires line 5 whereas that thesis is independent of SO.5 (given Thomas's
matrix of [11] in which L{*1*234)= {2334\ since LCLC34CL3L4 = LCL2C34 =
LCL2C34 = LC32 = L2 = 3). And it is the absence of this thesis and Alf

which gives rise to the systems to be discussed in the next section.
Finally, although A6 is useful in classically axiomatizing systems

properly contained in S3, its addition to system T yields S4, and thus it is
useless in attempting to axiomatize T. That T with A6 yields S4 clearly
follows from the fact that the proper axiom of S4, LCLpLLp, follows from
A6 in T° (= PC; (a); A4):

1. CLCqpCLCpqLCLpLq [A6, PC]
2. CLCqCppCLCCppqLCLCppLq [1, PC]
3. LCqCpp [PC, (a)]
4. CLCCppqLCLCppLq [2, 3, PC]
5. LCqCCppq [PC, (a)]
6. CLqLCCppq [5, A4 PC]
7. CLqLCLCppLq [4, 6, PC]
8. CLCppCCLCppLqLq [PC]
9. LCpp [PC, (a)]

10. CCLCppLqLq [8, 9, PC]
11. LCCLCppLqLq [10, (a)]
12. CLCLCppLqLLq [11, A4, PC]
13. CLqLLq [7, 12, PC]
14. LCLqLLq [13, (a)]

Thus this section gives a classical axiomatization for two systems Rl
and R2 which contain SO.5 and are properly contained in S3.

II. Sobociήski in [9] describes a system, S3*, which is properly con-
tained in S3 and is classically axiomatized. In this section, S3* will be
given a new basis and other systems properly contained in S3* will be
classically axiomatized.
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System S3* is an N-K-M calculus with C and E given their usual
definitions, &pq defined as NMKpNq, §pq as K&pq&qp, and L as NMN. The
rules of inference are PCb adjusted to N-K-M and PCc for N-K (that is
from a and NKaNβ infer β). The following are the axioms of S3*:

Zl. NMKpNKpp (i.e., &pKpp)
Z2. NMKKpqNq (i.e., SKpqq)
Z3. NMKKKγpNKqrNKpNq (i.e., SKKrpNKqrKpNq)
Z4. NMKNMKpNqNNMKNMqNNMp (i.e., <i<ipq(iNMqNMp)

Z5. NKNMpNNp (i.e., CNMpNp)

While the new basis for S3* is the N-C-L calculus:

R3* = {MO; A41}.
To see that R3* contains S3* first observe that the definitions of E, C,

£, and L are provable in the form of strict equivalences, when K is given
its usual N-C definition and M = NLN.

Now the proof of section I that M3 contains(bτ) in no way relies on Al\
Thus R3* contains (Jo1). And hence the axioms of S3*, are obtainable
from the following theses of R3*: LCpKpp, LCKpqq, LCKKrpNKqrKpNq,
LCLCpqLCLpLq, and CLpp, while the rules of S3* are obtainable from the
rules of R3*.

Conversely, to show that S3* contains R3* it must be remarked that the
definitions of K, E, (S, and M are provable in the form of strict equiva-
lences when C is given its usual N-K definition and L = NMN. Thus, once
the substitutability of strict equivalents is shown for S3*, it is clear that
A41 follows from Z4, A5 from Z5, and A4 from A41 and A5 by PC.

Hence, besides showing (b') in S3* it is sufficient to show that S3*
contains PC and that if \-a in PC then \-NMNa in S3*, in order to complete
the proof that S3* contains R3*. For in such a case, A1-A3 will be theses
of S3*.

To this end, the following meta-rules and theses of S3* given passim in
[9] are required.

Rl. hα and \-NMKaNβ only if hβ.
RIM. \-NMKaNβ and hNMKβNγ only if hNMKaNγ.
RIV. hNMKaNβ only if hNMKMaNMβ.
RV. Y-NMKaNβ and hNMKaNγ only if \~NMKaNKβγ.
Z7. NMKNpp Z12. NMKNKNNprNNKrp
Z8. NMKNMKpNqNNMKNqNNp Z16. NMKKpqNKqp

Z9. NMKpNNNp Z21. NMKKpqNp

It is now possible to derive the following meta-rules.

RVII. hNMKaNβ only if hNMKNβNNa.

Proof: From hypothesis by Z8 and Rl.

RVII I. \-NMKaNβ only if hNMKKaγNKβγ.
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Proof:
1. NMKaNβ [Hypothesis]
2. NMKKaγNa [Z21]
3. NMKKaγNβ [1, 2, Rill]
4. NMKKaγNγ [Z2]
5. NMKKaγNKβγ [3, 4, RV]

RIX. \-§aβ and hγ only if hδ where δ results from γ by replacing a by β
(β by a) in one or more places.

Proof: The meta-rule follows immediately from (i) h§aβ only if h§MaMβ,
(ii) h§aβ only if hSNaNβ, (iii) hS'α/3 only if hSKaγKβγ, and (iv) hδα/3
only if h§KγaKγβ, which are obtained from RIV, RVII, RVIM, and RVIM
with Z16, respectively.

RX. If ha in PC, then ha.

Proof: The meta-rule is established by deriving a sufficient set of axioms
for PC. B1-B4, below, is such a set, given by Sobociήski in [10].

Bl. NKpNKpp [Zl, Z5]
B2. NKKpqNq [Z2, Z5]
B3. NKKKrpNKqrNKpNq [Z3, Z5]
B4. NKNKpNqNNKNqNNp [Z12,Z7,.Z9, RIX]

RXI. If ha then hNMNa.

Proof: In case a is an axiom of PC, NMNa is given by:

NMNNKpNKpp [Zl, Z7, Z9t RIX]

NMNNKKpqNq [Z2, Z7, Z9, RIX]
NMNNKKKrpNKqrNKpNq [Z3, Z7, Z99 RIX]
NMNNKNKpNqNNKNqNNp [Z12, Z7, Z9, RIX]

and in case a is derived from the axioms of PC, the proof is completed by
the following derivation.

1. NMNβ [Induction hypothesis]
2. NMNNKβNa [Induction hypothesis]
3. NMKβNa [2, Z7, Z9, RIX]
4. NMKNaNNβ [3, RVII]
5. NMKNMNβNNMNa [4, Z4, Rl]
6. NMNa [1, 5, Rl]

Thus RIX-RXI complete the proof that S3* contains R3*.
With S3* given a basis analogous to those of section I, the following

systems are now defined:

S2* = {MO; (b f ) ;^3 ' } ; R2* = {MO; A6, A31};
SI* ={M0; (b f)}; R l * ={M0; A6}.

The independence of A2' from all the systems under consideration in
this section is given by the Thomas matrix, for A21(p/l,q/2,r/4) =
CCLC12CLC24LC14 = LCL2CL3L4 = LC3C34 = LC32 = L2 = 3. Thus
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S3 properly contains R3*, while proofs of the previous section establish
that

R2* = {S2*; A6 };
Rl* = {SI*; A6};

as well as showing that each of the following systems properly contains its
predecessor: S0.5, Rl*, R2*, and R3*.

Thus this section gives a classical axiomatization for three systems,
Rl*, R2*, and R3*, which properly contain SO.5 and are properly contained
in S3.

III. In [9] Sobociήski has also described a system, S30, analogous to
Sl° and S2° of Feys [2], which is properly contained in S3. In this section,
analogues, Rl°-R3°, of these systems will be classically axiomatized.

Systems Sl°-S3° have the same primitive basis as S3*, while their
rules of inference are the four given by Lewis [5]: substitution for proposi-
tional variables adjusted to N-K-M; substitutability of strict equivalents;
adjunction (that is, h-α and \-β only if t-Kaβ); and strict detachment (that
is, hθί and hNMKaNβ only if \-β). Their axioms are drawn from:

Fl. NMKKpqNp (i.e., &Kpqp)
F2. NMKKpqNKqp (i.e., QKpqKqp)
F3. NMKKKpqrNKpKqr (i.e., ®KKpqrKpKqr)
F4. NMKpNKpp (i.e., &pKpp)
F5. NMKKNMKpNqNMKqNrNNMKpNr (i.e., ®K&pq(gqr(gpr)
Kl. NMKMKpqNMp (i.e., mKpqMp)
LI. NMKNMKpNqNNMKMpNMq (i.e., <&§Pq&MpMq)

so that, with the above rules of procedure:

Sl° = {Fl; F2; F3; F4; Fδ};

S2° ={Sl°;UΓi};
S3° = {Sl°; Ll}f

The R-systems to be considered are:

Rl° = {M0;A6;A21};
R2° ={M0;A6; A2';A3'};
R3° ={M0; A2<;A4<};

and it will be shown that

Rl° = {Sl°; A5; A6\;
R2° = {S2°; A5; A6J;
R3° = {S3°; A5}.

As in section II the required definitions are provable in both the R- and
S-systems as strict equivalences, as is the substitutability of strict
equivalences. Thus RΓ-R3° contain: F1-F4 by Theorem 1 and A5; Fδ by
A2*\ and the remaining rules of inference by Theorems 4 and 5. Moreover,
R2° contains Kl:

1. LCNMNpNMNCNpq [A3\ (b f), MO]
2. LCMNCNpqMNp [1, (b r), MO]
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3. LCMNCNNpNqMNNp [2, PC]
4. NMKMKpqNMp [3, (bf), MO]

and finally, LI follows in R3° byA4\
Conversely, the required containments are obvious, since Sl° together

with A5 yields MO as is clear from Feys [2], and thus the adequacy of
Rl°-R3° is established.

It should be noted that the presence of A5 with S3° (Sl°, or S2°) defines
a system which properly contains S3° (Sl°, or S2°) and is properly contained
in S3 (SI, or S2). A5 is shown to be independent from Sl°-S3° by inter-
preting L as verum, and the independence of AV from Rl°-R3° was given in
section I. (But whether or not it is possible to classically axiomatize S3°
remains an open question.)

Finally, the proofs of independence given in the two previous sections
show that (i) R1-R3 properly contain Rl°-R3° respectively, just as these
systems properly contain Rl*-R3* respectively, while (ii) each of the
following systems properly contains its predecessor: S0.5, Rl°, R2°, R3°
and S3.

Thus this section gives a classical axiomatization for three systems
Rl°-R3° which contain SO.5 and are properly contained in S3.

IV. In conclusion the appended table shows the containment relations
between the systems discussed in this paper.

Rl< R2< R3 (= S3)

/ / /
Rl°< R2°< R3° (=S3°; CLpp)

/ / /
S0.5< R l * < — R 2 * < R3* (= S3*)
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